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Abstract 
The work develops methods for constructing a suboptimal flight route for an unmanned aerial vehicle 
(UAV) that performs the task of eliminating the consequences of an emergency. The UAV must 
sequentially fly around a certain number of route points. Each point must be visited only once. The UAV 
returns to the same point from which it started. This task can be classified as a traveling salesman 
problem (TSP). At the beginning of the work, an analysis of existing research on solving the traveling 
salesman problem was performed. Methods of complete direct search, the method of ordered search based 
on a discrete dynamic programming procedure (Held-Karp method), integer linear programming 
methods, greedy algorithms, and local optimization methods were considered. A conclusion was made 
regarding the feasibility of solving the problem of constructing an optimal route using a combination of 
greedy algorithms and iterative methods for improving the solution. The resulting solution is not 
guaranteed to be optimal, but is close to optimal, that is, suboptimal. At the first stage of calculations, a 
reference trajectory is obtained using the greedy nearest neighbor algorithm. Then, local optimization 
methods are used to improve the reference trajectory. The methods of moving one point, exchanging two 
points, and deleting intersections of route sections are used as local optimization methods. During the 
search computational procedure, individual methods of improving the reference solution can enter local 
optimum, from which they cannot then escape. A combination of different methods allows you to leave 
local optimum, bypass ravine areas, and approach the global optimum. The use of iteration methods in 
the stack loop allows you to quickly find optimal UAV trajectories. The speed of the algorithms allows 
you to calculate the optimal route not only before the flight, but also to recalculate it during the flight, in 
case of a change in the task or the conditions for its execution. The performance of the proposed 
approach was tested by creating a model in the MatLab environment.  
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1. Introduction 

The problems of constructing optimal routes have appeared a long time ago: the problems of 
delivering goods by transport, delivering mail by postmen, delivering goods by traveling salesmen, 
etc. According to the last type of delivery, the problem was called Traveling Salesman Problem 
(TSP). These problems require routes that save time, money, etc. At the same time, the traveling 
salesman had to visit each point only once, and also finish at the point from which he started. The 
relevance of the problem has not decreased over the years. On the contrary, it has increased. 
Therefore, the relevance of methods for solving the problem is only growing. In this study, the TSP 
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is solved to form the optimal route of an unmanned aerial vehicle (UAV), which is used to 
eliminate the consequences of an emergency. 

2. Analysis of existing research  

Let us consider the main methods for solving the TSP for a route with n points to be visited. 
The Brute Force method has a computational complexity of (n-1)! (for the symmetric case, the 

cost of a route section is (n-1)!/2) [1, 2, 3]. The method has a limitation on the maximum number of 
route points, which depends on the computational capabilities. In most cases, the method is used 
when the number of route points is up to 10. The ordered search method is close to the brute force 
method, but due to the rejection of unpromising route sections, it has a lower computational 
complexity of n^2 * 2^n. This is the discrete dynamic programming method (Held-Karp algorithm). 
This allows you to find optimal routes with up to 20-25 points. The disadvantage is the need for 
large memory to store intermediate chains of route sections. The advantage of the methods of 
brute-force selection is the guaranteed optimality of the found routes. The disadvantage is the 
impossibility of optimizing routes with the number of points more than 25. 

Linear programming methods can be considered classical. They have a clear mathematical 
formalization of the problem statement in the form of an integer linear programming problem. 
Unfortunately, they also require a lot of computational resources and can lose even to direct brute-
force methods. These methods can be effective in the case of a certain set of constraints of a special 
type, which can lead to a decrease in the order of the problem (branch-and-bound method) [4]. 

Let us clarify the features of the statement of the applied TSP: 

1. The solution does not necessarily have to be perfectly accurate. It can be close to accurate, 
that is, not optimal, but suboptimal. 

2. But the solution must be timely, even if you have to pay for it with accuracy. 

Conclusion: you need to use methods or a combination of methods that provide an acceptable 
solution in an acceptable time. To do this, at the first stage it is necessary to quickly find a 
reference solution, which can then be refined using other methods. 

Greedy algorithms are fast, but inaccurate [4, 5, 6]. They allow finding a reference solution that 
may be far from optimal. After obtaining the reference solution, it is refined using local 
optimization methods such as 2-opt, 3-opt (permutation of segments). Genetic algorithms, ant 
algorithms, annealing algorithms are also used [4, 7, 8]. Refining the reference solution is a good 
approach that has good convergence. However, existing studies have not paid enough attention to 
the combination of such methods in a single set of nested iterative procedures. 

In [9], the construction of a reference trajectory using a greedy algorithm (Nearest Point 
Method) was already considered. The shortcomings of such routes were noticeable even during 
visual control of their quality. Therefore, just like other researchers, the authors defined the found 
route as a reference and then improved it in an iterative procedure by moving the route points to 
new places in the sequence of route points. For each route point, all possible new positions were 
checked. For each new position of the point, a new route length was calculated. If the movement of 
the point improved the current result, then such a movement was fixed. If it did not improve, then 
it was ignored. In general, such a procedure led to a noticeable improvement in the result, but it 
often also looked imperfect. 

Analysis of existing studies allowed us to draw the following conclusions: 

1. For a large number of route points (more than 20-30), methods of direct enumeration of all 
options and even methods of ordered enumeration of options such as the discrete Bellman 
procedure consume too much computational resources. 

2. Greedy algorithms (Nearest Point Method) are the most economical in terms of machine 
resources, but inefficient in terms of solution quality. 



3. It seems advisable to quickly build a reference solution using greedy algorithms with 
further improvement of the reference solution using special iterative methods. 

4. The method of improving the reference trajectory by sequentially moving individual route 
points to new places in the sequence of route points cannot be considered sufficient. 
Therefore, it would be advisable to supplement (combine) it with other methods of 
improving the reference solution. 

The aim of the article is to improve the quality of route construction by quickly building a 
reference solution and its further improvement by cyclic application of a stack of special iterative 
methods. The task is to develop or adapt existing methods, as well as to determine the scheme of 
their joint (sequential) use and to determine the criteria for stopping the iterative process. 

3. Building a reference route  

A reference route is one that is constructed using simplified and, accordingly, fast methods. For 
example, greedy algorithms (NPM, Nearest Point Method) are such. In the future, the reference 
solution must be refined using other methods that do not require a large amount of computing 
resources. To find the distance between two points, we use the Euclidean measure 

𝐷!(𝑖, 𝑗) = 𝑥! − 𝑥!
! + 𝑦! − 𝑦!

!, 
(1) 

where 𝑖, j - point numbers; 𝑥, 𝑦 - coordinates of points. 
In general, instead of distance, the cost of passing a route section should be used 

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = 𝐷! 𝑖, 𝑗 . (2) 

The cost of passing a route section may include: distance, energy consumption, UAV resource 
use, probability of damage or destruction of the UAV, probability of other incidents, probability of 
failure to complete the task, etc. The cost can also be found as a certain aggregation of a certain set 
of factors (listed or others). For this, scalar convolutions can be used, for example, additive, 
multiplicative, others or a combination thereof [10, 11]. 

In the study, we distinguish the following sets of route points: 
LocationSet. An unordered set of route point numbers that are assigned to certain locations in a 

list sequentially or in random order 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = {1, 2,3,… . .𝑁}. (3) 

RouteSet. An ordered set of route points (tuple) that consists of the same points, but now 
arranged in an order that corresponds to a specific route. 

𝑅𝑜𝑢𝑡𝑒𝑆𝑒𝑡 = (3,7,1,… . .4,𝑁, 10,… ). (4) 

The cost of such a route is equal to the sum of the costs of passing all sections between 
neighboring points. 

𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒 = 𝐶𝑜𝑠𝑡 𝑖, 𝑖 − 1
!"#$%&%$,!!!,!

. 
(5) 

In this study, we assume that the cost of a route is equal to its length, as the sum of the 
distances between neighboring sections. 

𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒 = 𝐷! 𝑖, 𝑖 − 1
!"#$%&%$,!!!,!

. 
(6) 

The procedure for finding the route length is the same for the reference and improved routes. 



4. Improving the reference route  

Improvement of the reference route can be performed using various methods. Let's analyze those 
used in this study. 

4.1. 1-Point Moving Method (1PM) 

We have already considered the 1PM method above when analyzing the publication [9]. The 
disadvantage of the method is that it does not go through all possible route change options. 
Therefore, the procedure of complete analysis of possible movements of all points should be 
repeated several times until the improvement of the quality indicator (route length) stops. 

But previous shuffling can make certain successful solutions unavailable for the procedure of 
subsequent shuffling. By analogy with gradient search procedures, we can say that the search can 
enter a local optimum, which is separated from the global optimum by a ravine. The way out of 
this situation is to shake (shuffle) the route tuple using other methods that allow you to bypass or 
jump over the ravine. 

4.2. 2-Point Exchange Method (2PE) 

This is exactly what the 2PE method may be in many cases, analyzing the feasibility of exchanging 
two points in a tuple describing a route. This procedure analyzes the exchange of points for all 
possible pairs of points. The procedure can be repeated several times. The disadvantage of the 
method is that it can create new intersections of route sections (segments), which immediately 
indicates its non-optimality. Such a newly formed intersection can appear with the participation of 
points that have already been analyzed and therefore do not fall into repeated checks. It would be 
desirable to have a separate method that eliminates only intersections of route sections and does 
not touch other points that are not related to the intersection. 

4.3. Delete Crossing Method (DC) 

The DC method is aimed at eliminating intersections of route sections (Figure 1, 2). The method 
can be considered a special case of the 2PE method. The advantage of the method is that it 
purposefully eliminates only intersections. There remains a small probability that the elimination 
of one intersection will form a new intersection. But this probability is significantly less than in the 
2PE method. 

 

Figure 1: Route segments i1-i2 and i3-i4 intersecting (before intersection elimination) 

 

Figure 2: Route sections i1-i3 and i2-i4 that do NOT intersect (after eliminating the intersection) 

Even based on visual analysis, it can be concluded that the exchange of points i2, i3 should lead 
to a reduction in the length of the route (Figure 1, 2). Since the elimination of one intersection can 
form another intersection, the result of each replacement is checked for a reduction in the length of 
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the route. Let us consider the calculated dependencies. The equations of the lines passing through 
the corresponding pairs of points before the elimination of the intersection have the form 

𝑦 = 𝑎!"𝑥 + 𝑏!"
𝑦 = 𝑎!"𝑥 + 𝑏!"

. (7) 

Substitute the coordinates of the node points 

𝑦! = 𝑎!"𝑥! + 𝑏!"
𝑦! = 𝑎!"𝑥! + 𝑏!"

;       𝑦! = 𝑎!"𝑥! + 𝑏!"
𝑦! = 𝑎!"𝑥! + 𝑏!"

. (8) 

We find the coefficients 

𝑎!" =
𝑦! − 𝑦!
𝑥! − 𝑥!

;    𝑏!" = 𝑦! − 𝑎!"𝑥!;       𝑎!" =
𝑦! − 𝑦!
𝑥! − 𝑥!

;    𝑏!" = 𝑦! − 𝑎!"𝑥!.         
(9) 

We write the equation for the intersection point p5. 

𝑦! = 𝑎!"𝑥! + 𝑏!"
𝑦! = 𝑎!"𝑥! + 𝑏!"

. (10) 

Subtract the upper equation from the lower one. 

0 = 𝑥! 𝑎!" − 𝑎!" + (𝑏!" − 𝑏!").         (11) 

Convert. Find the coordinates of the intersection point 

𝑥! = −
𝑏!" − 𝑏!"
𝑎!" − 𝑎!"

;    𝑦! = 𝑎!"𝑥! + 𝑏!".         
(12) 

Next, we need to make sure that the intersection point really lies on the segments, and not on 
their imaginary extension. To do this, we find the minimum and maximum abscissas and ordinates 
for each pair of points (for each segment) 

𝑥!"!"# = 𝑚𝑖𝑛 𝑥!, 𝑥! ;      𝑥!"!"# = 𝑚𝑖𝑛 𝑥!, 𝑥! ;
𝑦!"!"# = 𝑚𝑖𝑛 𝑦!, 𝑦! ;      𝑦!"!"# = 𝑚𝑖𝑛 𝑦!, 𝑦! ;
𝑥!"!"# = 𝑚𝑎𝑥 𝑥!, 𝑥! ;      𝑥!"!"# = 𝑚𝑎𝑥 𝑥!, 𝑥! ;
𝑦!"!"# = 𝑚𝑎𝑥 𝑦!, 𝑦! ;      𝑦!"!"# = 𝑚𝑎𝑥 𝑦!, 𝑦! .

 

(13) 

A sign that the intersection point lies on the segments is the simultaneous fulfillment of the 
following conditions 

𝑥!"!"# ≤ 𝑥!;      𝑥!"!"# ≤ 𝑥!;       𝑥!"!"# ≥ 𝑥!;      𝑥!"!"# ≥ 𝑥!;
𝑦!"!"# ≤ 𝑦!;      𝑦!"!"# ≤ 𝑦!;       𝑦!"!"# ≥ 𝑦!;      𝑦!"!"# ≥ 𝑦!.

  (14) 

Analysis of Figure 1 shows that it is sufficient to perform the check on only one coordinate. 
This will significantly reduce the computational load. 

𝑥!"!"# ≤ 𝑥!;      𝑥!"!"# ≤ 𝑥!;       𝑥!"!"# ≥ 𝑥!;      𝑥!"!"# ≥ 𝑥!. (15) 

Reducing the computational load can also be achieved by replacing conditions (13), (14) with 
checking the distances between points along one coordinate. 

𝑥! − 𝑥! ≥ 𝑥! − 𝑥! ;           𝑥! − 𝑥! ≥ 𝑥! − 𝑥! ; 
|𝑥! − 𝑥!| ≥ |𝑥! − 𝑥!|;          |𝑥! − 𝑥!| ≥ |𝑥! − 𝑥!|. 

(16) 

If conditions (13), (14) or (13), (15) or (16) are met, then points i2 and i3 are swapped. It is clear 
that such a modification of the route may not be final. The method can be applied repeatedly until 
the condition for stopping the iterative procedure is met. 

4.4. Nesting of iterative procedures  

Let us pay attention to the fact that the proposed approach to improving the reference solution 
provides for several levels of iterative procedures: 



Level 1. Iterations at the level of route points (within the method). All possible route change 
options are reviewed with an analysis of possible changes for all points or all pairs of route points. 

Level 2. Iterations at the level of individual methods. One iteration includes a single application 
of a separate method for all points or all pairs of route points (one of the methods: 1PM, 2PE, DC). 
And such iterations at the level of one method can be repeated. 

Level 3. Iterations at the level of a set of different methods. One iteration includes the sequential 
execution of components of a certain set of methods, represented by a tuple (2PE, 1PM, DC). If the 
sequence of methods can be repeated R times, then the scenario for creating and refining the 
reference solution can be represented by the following chain of methods 

𝑁𝑃𝑀 + (2𝑃𝐸 + 1𝑃𝑀 + 𝐷𝐶) ∗ 𝑅.         (17) 

The order of the 1PM, 2PE, DC methods may vary depending on the specifics of the route and 
the experience of the researcher. It can also be changed in different iterations at the level of the set 
of methods. 

4.5. Conditions for stopping iterative procedures of reference route refinement 
methods  

The stopping conditions of the reference route refinement procedure are used only for Iterations at 
the level of individual methods and for iterations at the level of a set of methods. 

The condition for stopping the iterative procedure at level 2 (of a separate method) is the 
equality of the results of two consecutive iterations of this method. 

𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒(𝑒𝑛𝑑) = 𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒(𝑒𝑛𝑑 − 1). (18) 

After that, the transition to the next method in the tuple occurs (2PE, 1PM, DC). 
The condition for stopping the iterative procedure at level 3 (set of methods) is the equality of 

the results of all methods within the current iteration at level 3 

𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒2𝑃𝐸(𝑒𝑛𝑑) = 𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒1𝑃𝑀(𝑒𝑛𝑑) = 𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝐷𝐶(𝑒𝑛𝑑). (19) 

5. Method validation  

The proposed approach was tested in the MatLab software environment. Let us consider the results 
of the simulation by iterations at level 2 (separate methods) for a route including 50 points (Figure 
3-6). The red circle indicates the location of the base from which the UAV takes off and returns to. 
The blue line indicates the reference route that was built using the greedy algorithm, the red line is 
the route obtained as a result of improving the reference route at this iteration at level 2. 

Figure 7 shows the results of the numerical experiment. To the left of the equal sign is the 
abbreviated name of the method used. To the right of the equal sign are the route lengths that were 
achieved using this method at each iteration of level 2. The protocol of using the reference route 
improvement methods (Figure 7) shows that the 2PE method reached its potential already at the 
second iteration of level 2, the 1PM method implemented 4 successful iterations, and the DC 
method successfully worked only once. In the next iteration cycle of level 3 (multiple methods), the 
2PE method was unable to add any improvements to the solution in the iterations of level 2. But 
after that, the 1PM method successfully implemented two iterations of the reference route 
improvement at level 2. Further repetitions of using the methods did not bring any improvements. 



 

Figure 3: Result of improving the reference route using the 2PE method. 

 

Figure 4: Result of improving the reference route using the 1PM method. 

 

Figure 5: Result of improving the reference route using the DC method. 



 

Figure 6: Result of improving the reference route using the 2PE method. 

 

Figure 7: Reference route improvement procedure protocol. 

The numerical experiment allows us to draw the following conclusions: 

1. Changing methods can improve the result. 
2. In some cases, the result can be improved by a method that seemed to have already done 

everything it could in the previous iteration (for example, 1PM. Otherwise, it may be 
another method). 

6. Conclusions 

The paper presents approaches to solving the TSP for constructing a UAV route involved in 
eliminating the consequences of emergency situations. 

The resulting solution is not guaranteed to be optimal, but is close to optimal, i.e. suboptimal. 
At the first stage of calculations, a reference trajectory is obtained using a greedy nearest 

neighbor algorithm. 
Then, local optimization methods are used to improve the reference trajectory. 
The methods of moving one point, exchanging two points, and eliminating intersections of 

route sections are used as local optimization methods. 
During the computational procedure, individual methods of improving the reference solution 

may enter local optimum, from which they cannot then escape. A combination of different 
methods allows you to exit local optimum, bypass ravine areas, and approach the global optimum. 

Using a stack of iteration methods in a loop allows you to quickly find suboptimal UAV 
trajectories. 

The speed of the algorithms allows you to calculate the optimal route not only before the flight, 
but also to recalculate it during the flight, in case the task or the conditions for its execution 
change. 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools. 

Nearest   = 13271.8873 
2p Exchange    = 12995.0344      12877.7633      12877.7633 
1p Moving      = 12494.982        12301.2062      11952.5211      11910.7467      11910.7467 
Del Crossing X = 11284.9747      11284.9747 
2p Exchange    = 11284.9747      11284.9747 
1p Moving      = 10994.8736      10989.5421      10989.5421 
Del Crossing X = 10989.5421      10989.5421 
2p Exchange    = 10989.5421      10989.5421 
1p Moving      = 10989.5421      10989.5421 
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