
Embedded Software Testing Issues and Addressing them
with Software Product Lines Paradigm

Iurii Ierofeiev1,†, Igor Sinitsyn1,∗,† and Olha Slabospitska1,†

1 Institute of Software Systems of the NAS of Ukraine 40, University Academician Glushkov Avenue, 40, Kyiv, 03187, Ukraine

Abstract
The paper declares a novel approach for Embedded Software (ES) development based on Embedded
DevSecOps enhancing with Software Product Line paradigm. While retaining DevSecOps benefits to cope
its everyday challenges an approach firstly focuses on the new ones that (non)anticipated diversity,
interdependence and volatility of DevSecOps environment pose in today’s rapidly evolving technological
landscape, such as comprehensive Variability managing and Reuse enabling.
To this end an approach prescribes: consider end-to-end ES Continuous Testing over DevSecOps CI/CD
pipeline as its Foundation mostly assuring ES quality; fix its key blocking Issues; represent it as a
feedback-based series of the stages where regular ES testing procedures known as X-in-Loops should be
executed with simulator/emulator; finally, each stage explicit modeling in a Test driven development style
i.e. as a process of dedicated Test Product Line (TPL) engineering up to ISO/IEC 26554 while assuming
Embedded DevSecOps process to be in turn modeled as a target ES Product line (SPL) engineering up to
ISO/IEC 26550. Each of successive TPL modeling should be tightly aligned with all TPLs and SPL
assumptions just defined and with current refinement of SPL assumptions to enable it drive adjoining TPL
To justify the approach proposed two results are presented of applying it to ES Continuous Testing sub-
process being performed on host at the very beginning of Software in open Loop (CT) just producing first
ES code for it. The first is sound (i. e. compliant, transparent, ES Quality-focused and automated) CT’s
Technological Model composing its Context, Parameters, Sub-processes. Pilot Kit for CT automation
combining proven tools for the minimal set of necessary TPL processes tasks up to the Model proposed is
thus the second one. Drafting the Model proposed benefits and future work to refine it concludes the
paper.

Keywords
embedded software, DevSecOps, continuous testing, CI/CD pipeline, Product Line, kit, model1

1. Introduction

In today’s rapidly evolving technological and social landscape conventional challenges of
Embedded Software (ES) Development being adequately coped with Embedded DevSecOps
dedicated practices [1, 2, 3, 4] are complemented with the new ones that ever growing
(non)anticipated diversity, interdependence and volatility of DevSecOps environment currently
cause such as [2]:

• proper all-leveled and all-aspect Variability management over DevSecOps Embedded CI/CD
Pipeline environment

• directed reuse of ES with their (non)executable components/tests and Pipeline’s workflows,
its infrastructure-as-a-code fragments, test harnesses elements

Workshop “Software engineering and semantic technologies" SEST, co-located with 15th International Scientific and Practical
Programming Conference UkrPROGР’2025, May 13-14, 2025, Kyiv, Ukraine∗
*Corresponding author.
† These authors contributed equally.

 seo@erofeev.com.ua (I.Ierofeiev); ips2014@ukr.net (I.Sinitsyn); ols2014@ukr.net (O.Slabospitska)

 0009-0006-8985-2729 (I.Ierofeiev); 0000-0002-4120-0784 (I.Sinitsyn); 0000-0002-9443-4154 (O.Slabospitska)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

• safety and secure managing complex and highly distributed ES development environment.

Recognizing Embedded DevSecOps insufficiency to cope them both academia [5] and
practitioners [6] just consider Software Product Line paradigm as its perspective complement.

The purpose of the paper is two-fold. First, in line with ideas of [5, 6] it presents a novel
approach for Embedded DevSecOps-based ES Development enhancing with System and Software
Product Line paradigm up to ISO/IEC 265xx series as a remedy to effectively and efficiently address
both above-mentioned new ES DevSecOps challenges and conventional ones. To this end ES
Continuous Testing within DevSecOps CI/CD pipeline is proposed to consider as a feedback-based
series of the stages where regular ES testing procedures known as X-in-Loops [7] should be
executed and step-by-step modeling each stage in a Test driven development style i.e. as a service
process of dedicated Test Product Line (TPL) engineering up to ISO/IEC 26554 while assuming
Embedded DevSecOps process to be in turn coherently modeled as a target ES Product line (SPL)
engineering up to ISO/IEC 26550 that drives adjoining TPL and wraps it on .

Secondly, the paper sums up the results of the author’s attempt to justify their approach. It
describes draft Technological Model for ES Continuous Testing critical sub-process (CT from now
on) that should be performed on host at the very beginning of Software on open Loop stage [7] to
produce the first (or just changed to fix the bugs) ES code for it with appropriately high quality..
Moreover, pilot Toolkit to automate the Model’s usage is also presented.

2. ES Continuous Testing: Issues and Approach to Address them

The process of end-to-end Software Continuous Testing over СI/CD pipeline is introduced with
ISO/IEC/IEEE 32675 as implementation of core DevOps Principle “Left shift and continuous
everything”. Within Embedded domain it purposes at constantly meeting unique requirements for
ES safety, security, privacy, reliability, performance and extremely long life cycles thus becoming
the Foundation of DevSecOps. As such, being well-designed and implemented, its key promising
features are as follows:

• Just it should ensure both ES appropriate quality and its generation efficiency (speed,
security, and coordination among Dev, Sec, Ops and Test teams) enabling its usage within
target system as expected [2].

• It should implement feedback among ES versions within a single build (in single Embedded
CI/CD pipeline round) as well as traceability and controllability among ES versions of
different builds (across multiple rounds) thus implementing Variability Management for ES
and their (non)executable artifacts.

• It have to highlight defects at Continuous Integration, Continuous Deployment and
Operation stages; concerning information obtained after ES careful static analysis [8],
particularly Advanced Static Application Security Testing (SAST) [8, 9, 10] for (non-
)directed fuzzing, followed further by automated (and appropriate manual) testing of safety
and security, reliability, compatibility, performance, load, maintainability, and portability.

• It should set up and maintain appropriate conceptual and information environment for
Embedded DevSecOps.

Realizing the above promises could however be blocked with key Issues. Some of them are largely
originated in embedded systems overarching architecture and inherent complexities of their design
and deployment [1] and aren’t thus considered in the paper. But others are inherent ES Continuous
Testing Issues especially addressed further concerning ES CT with Product Line Paradigm.

These are listed beneath.

1. Common conventional processes and techniques for dynamic testing as prescribed with
ISO/IEC/IEEE 29119-3 and ISO/IEC/IEEE 29119-4 effective usage within Embedded domain.

2. ES Continuous Testing assets effective and efficient configuration, management and
controllable reuse both over single Embedded DevSecOps rounds and among them.

3. Full-aspect traceability enablement among ES Continuous Testing assets themselves on the
one hand and over DevSecOps process as a whole on the other one.

4. ES testsing on embedded targets from Software in the Loop to Hardware (or in automotive
domain even vehicle) in the Loop Initiation, Monitoring and Management.

5. Due ES quality, especially Safety and Security, timely and carefully monitoring, reporting
and assuring.

6. Proper responsibilities division and control among various Test and Dev, Sec, Ops teams.
7. Current maturity assessment of ES Continuous Testing process and gain insights

concerning the needs, aspects and ways to increase it.

As far as proper ES Continuous Testing process should be the Foundation for Embedded
DevSecOps its intrinsic above-listed Issues 1-7 become also crucial for DevSecOps too thus
demanding be effectively and efficiently addressed. Analysis of Embedded domain [1, 2, 4, 7]
identifies Model Driven Engineering as a top-level meta-paradigm for ES development and also
two most promising paradigms within it beyond Embedded DecSecOps, namely System and
Software Product Line [5, 6] (as defined with ISO/IEC 265xx series) and Microservice Architecture,
preferably with Docker [1] compared in Table 1. As Table 1 shows they partially complement each
other in addressing the Issues 1-7 above over different DevSecOps stages. The both could also
refine it while Microservice Architecture especially increases Continuous Integration efficiency
and its builds quality with proper Docker-based containers [1]. Moreover, automated tests over ES
Continuous Testing could be distributed across separate containers and executed independently
thereby enabling incremental ES improvement [2].
Table 1
Comparing Product line and Microservice Architecture for ES Engineering

Product Line paradigm with appropriate containerization should thus be effective remedy to
enhance Embedded DevSecOps with addressing ES Continuous Testing intrinsic Issues 1-7 above.

3. ES Continuous Testing Process: Sound Technological Model

With above-mentioned ultimate purpose in mind of Embedded DevSecOps enhancing with Product
Line and Microservice Architecture, proper ES CT process is proposed to introduce in Test driven
development style [1] but under PL context. More specifically, this process is modeled as a couple
of Testing sub-processes of target SPL Domain and, respectively, Application Verification and
Validation, on the one hand, and simultaneously as SPL— driven process for TPL engineering.
Common concepts necessary to define the process at hand in such a way are delineated beneath to
use hereafter.

Paradigm Key Idea Benefit Limitation Use case

Software
product
line

Focus on
Reusability

Embedded ESe
Quality and
Consistency

Initial Implementation Cost

Variations Maintaining
Complexity

Automotive
electronics featuring
model variations

Micro-
services
architect-
ture

Collection of
independent
micro-
services

Efficient resources
usage

Agility, scalability,
and maintainability

Not deterministic

Data consistency,
synchronization, integrity,
Complex design

Consumer devices
like weather station

Control units: solar
panels, gas, fuel

The first such concept is Embedded DevSecOps. It could be considered as two-stepped
refinement of conventional DevOps defined with ISO/IEC/IEEE 32675-2022 as a set of principles
and practices which enable better communication and collaboration between relevant stakeholders
for the purpose of specifying, developing, and operating software and systems products and
services, and continuous improvements in all aspects of the life cycle. — for further delivering and
maintaining higher-quality ES overcoming the challenges above. It brings together three core
fundamentals: development, operations, quality assurance [1].

ES safety and security become a next-gen challenge that transforms Embedded DevOps [1] into
Embedded DevSecOps. Secure ES requires early potential threats identification to define
appropriate security requirements that guide ES development from architecture to coding to
operation within target system. In other words, security must be embedded into ES from the very
beginning, as an integral component of overall target embedded system quality.

Embedded CI/CD pipeline is thus the second
The third one is PL being defined with ISO/IEC 26550 as a set of products and/or services

sharing explicitly defined and managed common and variable features and relying on the same
domain architecture to meet the common and variable needs of specific markets. ISO/IEC 26550
also fixes PL engineering peculiarities useful hereafter such as:

• Problem and Solution spaces being formed with anticipated common and variable domain
products’ features (that are referred to as commonality and variability) together with the
rules of composing them for a product and, respectively, with reusable assets (both non-
executable and software) together with corresponding rules of configuring assets for
terminal or compound features implementing within a sample product.

• Problem space de-facto standardized representation with Feature Model (FM) being defined
as a tree of commonalities and variabilities with their additional dedicated interrelations.

• In turn, Solution space de-facto standardized representation with Platform being defined as
a PL architecture, a configuration management plan and domain assets enabling
Application engineering to effectively reuse and produce a set of derivative products.

• Domain and Application engineering lifecycles where the above reusable resources are
engineered (for reuse) and, respectively, iteratively configured within sample products with
commonalities and anticipated variabilities (with their respective Verification and
Validation and also Realization processes where ES development specificity will be
primarily implemented).

• Both Organizational and Technical management process groups with the process of PL
Variability management within the second one where Variability is considered as the
ability of PL’s product or artefact to be extended, changed, customized or configured for use
in a specific context.

To cope ES Continuous Testing Issues 1—7 from Section 2 let’s define CT (being considered as
earliest and simplest sub-stage) with its dedicated Technological Model trough three successive
steps. First, assume ES is being developed for various hardware systems with explicitly define
common and variable characteristics as an extensible set of software products possessing hardware
data—driven common and variable features with appropriate PL (SPL) where:

1. SPL engineering process is constituted with the series of PL environment initial Set-up and
further Reinvention rounds with its FM and Platform initial defining and then evolving
(where PL products creating is prohibited) that interchange with unified production rounds
(where FM and Platform are conversely fixed and options are especially provided to create
ES up to them). Just this round is considered further in the article as a context of TPL
defining within process perspective.

2. Unlike ISO/IEC 26550, SPL Domain Engineering and Application Engineering life cycles are
implemented by means of appropriate Domain and Application Embedded DevSecOps

cyclic processes being synchronized with Organizational and Technical Management
processes that are however left conventional. In particular, Domain and Application
Realization processes are implemented by means of Embedded CI/CD pipelines from
corresponding DevSecOps processes.

Secondly, list requirements for the Model to make it constructive. These are inspired with the
requirements [8, 9] or reliable analysis of ES code data and control flows as follows.

1. Compliance — applicability for any ES target PL and CI/CD pipelines implementation
technologies, test automation strategy and Dev, Sec, Ops, Test teams responsibilities and
skills.

2. Transparency — clear representation of CT’s tasks, tests and artifacts being produced as
their solutions, teams’ roles producing them and all the traceability links between and
target ES PL artifacts.

3. Focus on ES Quality — enablement tests for compliance checking with critical ES Quality
characteristics, foremost Safety and Security, Performance efficiency, Reliability,
Compatibility, Maintainability and, not compromising, Functional suitability prescribed
with ES quality model adopted (ISO/IEC 25010 by default or its refinements e. g.
Z.Tamrabet’s ESQuMO).

4. Lean automatability — acceptability any test automation strategy (from classical R. Martin’s
Test Pyramid to DevOps Hourglass to Spotify’s Honeycomb) and tools (from online and
opensource tools to proprietary software).

5. CT estimability — enablement its sound, informed and consistent maturity profile
assessment in accordance with TPI Next [11] industrial testing maturity model.

Lastly, to meet the requirements listed, seamlessly combine industrially proven best practices
and techniques from ES Engineering and business-driven industrial testing domains, namely:

• Embedded DevSecOps process and its CI/CD pipeline effective patterns [1]
• ISO/IEC 26554 Product line testing reference model
• Advanced static analysis of (non) executable DevSecOps artifacts [8, 9, 10]
• Embedded (non)directed fuzzing, both forward and backward [4, 12]
• Common conventional techniques for software testing levels from unit to system being

defined with ISO/IEC/IEEE 29119-4 and their model-based, foremost with state charts
enhancements for exactly ES testing [3]

• Performing and Organizing Topics of TMap Body of knowledge covering Industrial testing
best practices to reconcile the rest highly divergent constructs [13].

Resulted high-level CT’s Model is defined from the process perspective to be three-leveled
structured triple:

; (1)

 (2)

, (3)

where is CT’s context — organizational , developmental and methodical ;
 denotes CT’s parameters proposed to tailor it up to , namely CT’s Strategy and

extensible sets of quality characteristics to be necessarily tested, adopted testing techniques
and automated tools , TPL reinvention rules and CT’s automation levels ;

 is a structured sextet (2) of TPL generic processes and TPL information environment
where they should execute that includes Domain Testing and Application Testing , Test

Management , Asset Management in Testing and Variability Management in Testing
as defined with ISO/IEC 26554 while being enhanced with appropriate reference CT workflows
using advanced static analysis and embedded fuzzing for CI/CD pipelines within Domain and
Engineering DevSecOps being assumed [14];

 composes domain assets and application assets that and (2) processes
produce with own internal structure (presented further in Figure 1);

, (4)

where fixes TPL features with their interrelations thus capturing its variability;
 and contains patterns for static analysis of SPL Platform elements and respectively

autonomous tests and scenarios for dynamically testing them thus constituting TPL Platform;
, are the same as , but for admissible configurations of SPL Platfom elements;
 fixes rules for , , elements within Application Testing;

 and store reports being produced with and ;
 contains CT maturity profiles up to TPI Next [11].

At the second TM’s level its constituents from (1) are further detailed as follows:
 is an extensible set of paired personal and team roles of CT’s actors from Dev (tester,

programmer, analyst, Tec writer, manager by default), Quality Assurance (leader, analyst,
technician by default), Security (CISO, analyst, technician by default) and Operations (CIO, analyst,
technician by default);

 fixes an extensible set of Embedded DevSecOps with CI/CD pipeline proven patterns where
J. Beningo’s “ideal” CI/CD pipeline [1] is a core element by default;

 combines Organizing and Performing topics from Sogety’s TMap Body of knowledge [11];
 is proposed to define as a four-dimensional relation that enables explicit responsibility

distribution among CT’s actors;

 (5)

where extensible set includes reference modes of testing being performed by actors with
roles from at unit (u), integration (i) and system (s) levels within Domain engineering(d) or
Application one (a) that by default are: product by product testing with tests immediately
generating (); product by product testing with tests proactively generating as a Domain
engineering reusable assets (); incremental testing where the first product is tested with or
mode but for the next only tests for new features are generated while for the features yet
previously tested existing tests are used as reusable assets of Domain engineering () or
Application one ();

 contains initial level (where only open source, free trial and as-a-service solutions should be
used along with initial requirements for automation kit eliciting), interim level (additional
subscription solutions and requirements refining) and the last level of full CT’s automation with
proprietary and custom tools meeting elicited requirements that altogether are the core.

In turn, for CT’s sub-processes from (2), (3) unified view is proposed focusing at ’s tasks:

 (6)

where just lists these ’s tasks;
 includes workflows of ’s operations being executing over ’s sub-environment

to perform its tasks .
Table 2 presents all the tasks from obtained through CT-based refinement of conventional

PL testing sub-processes’ tasks as prescribed with ISO/IEC 26554.

Table 2
Tasks of CT sub-processes to TPL set-up and evolve for it

Sub-Process Task description

Domain Testing

Test Initiation
and Design DD

Domain tests for SPL domain artefacts initiation including requirements and
conditions for them and design for unit, integration and system testing (above
u, i, s levels from (5)) while accounting TPL variability

Environment
Set-up and

Maintenance DS

Implementing or setting up TPL domain test environment including test data
and tools, enabling interoperability with SPL information environment in order
to access domain artefacts to test and proper feedback, changing TPL domain
test environments and sharing its status with the relevant stakeholders

Test Execution
DE

Preparing review, inspection or static analysis to conduct static testing of SPL
domain artefacts, executing domain static tests and recording their results while
differentiating those for commonality from for variability ones

Running an ordered set of test cases, determining the pass/fail of them,
document test execution and results related to variability

Test Reporting
DR

Trace the status of defects in both SPL domain artefacts commonality and
variability reported during domain and application testing, produce reports on
domain test status and results

Application Testing

Test Initiation
and Design AD

Setting up the readiness to Application Testing, deriving application-specific
test cases and defining test procedures based on Domain Testing assets

Environment
Set-up and

Maintenance AS

Setting up and maintaining Application Testing environments based on Domain
Testing environment established with DS

Test Execution
AE

Performing application static and dynamic testing on Application testing
environments established with AS

Test Reporting
AR

Reporting application-specific and domain test incidents and how they will be
managed, analyzing the failures and locations where they have occurred

Test Management

Test Strategy
defining SD

Providing technical guidelines for performing domain and application testing.
Elaborating Test Strategy (primarily as (5)) that provides the scope of domain
testing (of SPL domain artefacts) and application testing, where these tested
artefacts will be deferred to

 Test Process
defining PD

Selecting and tailoring the rest TPL processes from (2) to prevent and solve
TPL-specific test problems

Planning PL Providing test plans for performing TPL tests while accounting variability

It’s worthwhile to note that besides process-oriented view (1)-(6) it should also be useful to
consider CT within staged perspective as series beginning with Set-up round and then
interchanging Production and Reinvention rounds inspired and tightly driven with SPL evolution.

Internal structure of CT’s Model outlined above is depicted with Figure 1 where notation of (2)-
(4) is kept

model of both domain and application testing

Monitoring and
Control MC

Accounting domain and application test progress and sharing it with the
relevant stakeholders, monitoring and controlling its compliance with test plans

Variability Management in Testing

Variability
Mechanism

Category VC

Maintaining a set of TPL variability implementation mechanisms that can be
used for expressing or realizing variability in Domain Testing artefacts

Variability in
Test Artefacts

VA

Defining TPL variability types and ways to express variability included in TPL
artefacts and products such as test plans, test cases and scenarios within both
Domain and Application Testing

Traceability of
Variability in

Test TV

Establishing and maintaining trace links between variability in test artefacts
and variability models in test defined separately to support the reuse of test
artefacts in Application Testing (foremost with the authors’ dedicated
Integrated three-dimensional variability assessment sub-model [14])

Asset
Management in
Testing AM

Managing Domain Testing artefacts that will be reused there and in Application
Testing such as test cases for commonalities, variabilities and their interactions

Managing TPL Application Testing artefacts that will be referred in regression
testing due to the application evolution or as inputs in other applications

SP
L	
Or

ga
ni
za
tio

na
l	M

an
ag
em

en
t

Domain	Space Solution	Space

SPL -inspired	
T PL 	FM

TF PS PD

T PL 	Platform

C S CD DRP

RC AS AD ARP

DAS

AAS
TMP

SPL 	FM

SP
L	
Do

m
ai
n	
En

gi
ne
er
in
g SPL 	Domain	Embedded	DevSecOps	cycles

Plan C I 	pipeline C D	pipeline

TP
L	
Do

m
ai
n	
Te

sti
ng

T PL 	DD 	and	DS	processes		composition	

T PL 	DE 	and	DR			processes	composition:	
sa,	sr	modes	for	SPL 	Platform	elements
ir	mode	for	their	configurations

SP
L	
Ap

pl
ica

tio
n	
En

gi
ne
er
in
g SPL 	Application	Embedded	DevSecOps	cycles

Plan C I 	pipeline C D	pipeline

TP
L	
Ap

lic
at
io
n	

Te
sti
ng

T PL 	AD 	and	AS	processes		composition	

T PL 	AE 	and	AR			processes	composition:	
sa,	ir,	ia	modes	for	SPL 	ES	and	code	
components

T PL 	E N	T PL 	TM	

SD

PD

PL

MC

T PL 	VM	

T PL 	
AM	

VC 	

VA	

TV 	

SP
L	
Te

ch
ni
ca
l	M

an
ag
em

en
t

TMAP Organizing Topics
1. Quality & Test policy
2. Responsibilities
 & Roles
3. Monitoring & Control
4. Anomaly management
5. Reporting & Alerting
6. Estimating
7. Planning
8. Infrastructure
9. Tooling
10. Metrics
11. Continuous
 improvement

TMAP Performing Topics
1. Quality risk analysis &
 Test strategy
 2. Acceptance criteria
3. Quality measures
4. Reviewing
5. Test design
6. Test data management
7. Test automation
8. Test execution
9. Investigate and assess
 outcome

Figure 1: Inner Structure of CT Technological Model

As Figure 1 shows, SPL, when defined, in turn defines and then drives TPL by means of its FM
in Problem space and through integration CT workflows as and composition into Domain
CI/CD pipelines as well as and ones — into Application CI/CD pipelines.

It’s worthwhile to note that besides process-oriented view (1)-(6) it should also be useful to
consider CT within staged perspective as series beginning with Set-up round and then
interchanging Production and Reinvention rounds inspired and tightly driven with SPL evolution.

While be formally enabled with (1) — (6) expressions above expected benefits of CT being
modeled accordingly to them couldn’t be achieved without its proper automation.

As the first step to this end pilot CT automation Toolkit is proposed based on both the maximal
shortening the list of tasks to be automated from Table 2 and generic requirements for necessary
tools in foremost ISO/IEC 23643 and 30130 as well as ISO/IEC 20741, 23396, 23531, 24766, 33060.

Resulting Toolkit aligned with the Model (1)-(6) above is presented with Figure 2.

4. Conclusion and Future work

The Technological Model and Prototype Toolkit for ES Continuous Testing being now considered
only on host at the very beginning of Software in the open Loop stage provides Dev, Sec and Ops
teams with significant benefits such as:

• Ensures readiness of tested software for Software in-the-Loop testing
• Provide a background for comprehensive embedded testing process model elaborating
• Leverages and coordinates various Test and Dev, Sec, Ops teams efforts at all the testing

levels among embedded CI/CD stages over SPL Domain and Application engineering.

Figure 2: Author’s view of Pilot Toolkit for CT automation

Their additional bonus is the possibility to further enhance CT with GenAI potential related to
TMap Organizing and Performing topics [13] included in the Model.

Extending the outlined Model and its automation Kit for Embedded Testing process as a whole
for further implementing an approach proposed is the authors’ future work.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] J. Beningo, Embedded Software Design: A Practical Approach to Architecture, Processes, and
Coding Techniques, Apress, Linden, MI, USA, 2022

[2] The Ultimate Guide to CI/CD for Embedded Software Systems. Parasoft Whitepaper. URL:
https://alm.parasoft.com/hubfs/Whitepaper-CI-CD-for-Embedded-Systems.pdf

[3] Y. Yongfeng, J. Bo, Embedded Software System TestingAutomatic Testing Solution Based on
Formal Method, CRC Press, Press2 Park Square, Milton Park, Abingdon, Oxon,, 2024

[4] Eisele et al, Embedded fuzzing: a review of challenges, tools, and solutions Cybersecurity
(2022) 5:18. doi: https://doi.org/10.1186/s42400-022-00123-y

[5] .W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe, S. Schröck (Eds.): Model-Based Engineering of
Collaborative Embedded Systems. ISBN 978-3-030-62135-3. Springer, Jan. 2021.
https://doi.org/10.1007/978-3-030-62136-0

[6] J. Park, S. Han, Product Line Engineering for Basic Software of Automotive Embedded
Systems, SAE Technical Paper (2018). URL: https://www.sae.org/publications/technical-
papers/content/2018-01-1457/

[7] Clausen et al. A scoping review of In the loop paradigms in the energy sector focusing on
software in the loop, Energy Informatics (2024) 7:12. doi:org/10.1186/s42162-024-00312-8

[8] M. Becker, J. Palczynski, Automatic Verification of (un)intended Data and Control Flows in
Embedded Software (2024). URL:
https://www.mathworks.com/content/dam/mathworks/conference-or-academic-
paper/automatic-verification-of-unintended-data-and-control-flows-in-embedded-software-
ew24.pdf

[9] M. Becker, J. Palczynski, Increasing Resilience to Cyberattacks through Advanced Use of Static
Code Analysis (2021). URL: https://www.mathworks.com/company/technical-
articles/increasing-resilience-to-cyberattacks-through-advanced-use-of-static-code-
analysis.html

[10] M. Becker, J. Palczynski, Reconciling Software Development Speed and Robustness with
Optimally Balanced Static Application Security Testing (2023). URL:
https://www.mathworks.com/company/technical-articles/reconciling-software-development-
speed-and-robustness-with-optimally-balanced-static-application-security-testing.html

[11] A. van Ewijk et al., TPI® NEXT Business Driven Test Process Improvement, Sogeti, 2013
[12] M. Huang, C. Lemieux, Directed or Undirected: Investigating Fuzzing Strategies in a CI/CD

Setup (Registered Report), in; Proceedings of the 3rd ACM International Fuzzing Workshop
(FUZZING ’24), September 16, Vienna, Austria. ACM, New York, NY, USA, 2024, pp. 33-41. doi:
org/10.1145/3678722.3685532

[13] Topics plotted on the High-performance IT delivery models, 2025. URL:
https://www.tmap.net/page/topics-plotted-high-performance-it-delivery-models

[14] O. Slabospitskaya, A. Kolesnik, The Model for Enhanced Variability Management Process in
Software Product Line, in: Mayr H.C., Kop C., Liddle S., Ginige A. Information Systems:
Methods, Models and Applications. Revised selected papers of 4-th International United
Information Systems Conference (UNISCON 2012). Yalta, Ukraine, 2012, pp. 162–171.
doi: https://doi.org/10.1007/978-3-642-38370-0_15

