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Abstract 
The concepts and methods of mathematical logic find wide application in computer science and 
programming. Among them, modal logics are of particular importance as they are used to model dynamic 
systems, in artificial intelligence, expert systems and for program specification and verification. This 
paper explores new classes of program-oriented logical formalisms of modal type – pure first-order modal 
logics of partial ambiguous quasiary predicates. Modal logics of quasiary predicates combine the 
expressive capabilities of traditional modal logics with those of the logics of quasiary predicates. The most 
important class of these logics is transitional modal logics (TML), which allow us to describe the evolution 
and dynamics of subject domains. At the core of TML lies the notion of a transitional modal system 
(TMS). Two variants of TML based on logics of partial ambiguous (multi-valued) quasiary predicates of 
relational type, or R-predicates, are proposed: pure first-order general TMS (GMSQ) and pure first-order
multiple-expert modal systems with dominance. This work describes the specific semantic features of 
GMSQ of R-predicates and demonstrates the connection between TML of R-predicates and four-valued
modal logics based on Belnap's logic. The second type of the proposed TMS is pure first-order multiple-
expert modal systems of R-predicates (MEMSQ). On the set of experts, a transitive dominance relation is
introduced. Differing from known multiple-expert modal systems, which are oriented towards preserving 
truth under dominance, the proposed MEMSQ preserve both truth and falsity under dominance. To avoid 
inconsistencies in dominance, a separate dominance relation is proposed: an expert may be directly 
dominated by at most one other expert. The languages of pure first-order MEMS, referred to as MEMSQ, 
are formally defined. On the set of formulas specified by both experts and states, a number of logical 
consequence relations are introduced. In MEMSQ of P-predicates, we specify consequence relations |=IR, |=T,
|=F, and |=TF, while in в MEMSQ of R-predicates, there remains a single non-degenerate relation R|=TF. A
further study of the proposed logics is planned for future work.  
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1. Introduction

The concepts and tools of mathematical logic are widely used to describe and model various subject 
domains, as well as in information and software systems (see, for example, [1–3]). Among them, 
modal logics have found broad application in practical areas [4, 5], especially temporal logics [6] 
and epistemic logics [7]. Temporal logics are used for dynamic systems modelling, program 
specification and verification; epistemic logics are applied in artificial intelligence systems, 
knowledge bases and expert systems (see, e.g., [1–3, 5, 7]). 

The capabilities of traditional modal logics and logics of partial quasiary predicates [8] are 
combined in composition nominative modal logics. The most important class of such logics is 
transitional modal logics (TML) of partial quasiary predicates. These logics allow describing the 
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evolution and change of subject domains. TML have been studied in a number of works. In 
particular, [9, 10] investigate pure first-order TML without monotonicity condition on quasiary 
predicates; these logics are referred to as TMLQ. The main focus of those works is on TMLQ with 
predicates of strong equality and weak equality; the corresponding classes of logics are denoted as 
TMLQ

≡ and TMLQ=.  
The concept of TML is based [9, 10] on the notion of a transitional modal system (TMS). Pure 

first-order TMS are called TMSQ. Common varieties of TMS include general TMS (GMS), temporal 
TMS (TmMS), and multimodal TMS (MMS). Works [9, 10] focus on GMS, though similar techniques 
can be applied to study other TMS variants. Pure first-order GMS are referred to as GMSQ. 

The modal systems explored in [9, 10] were based on logics of single-valued quasiary predicates, 
or P-predicates, which were described, for example, in [8].  

The aim of this work is to investigate new classes of program-oriented logical formalisms of 
modal type, which are not restricted by conditions of predicate single-valuedness and 
monotonicity. In this paper, we begin studying modal logics of ambiguous (multi-valued, non-
deterministic) quasiary predicates of relational type, or R-predicates. Such predicates are described, 
for example, in [8]. We consider two variants of pure first-order TMS: the GMSQ of R-predicates, 
and special multiple-expert modal systems with dominance (MEMSQ), which may be viewed as a 
specific type of epistemic logic. 

In the second part of the work, we focus on MEMS. Let us examine this in more detail. 
Epistemic logics (logics of knowledge and belief) are characterized by the presence of 

knowledge experts, or intelligent agents. Each of these experts may be in a certain situation (that 
is, a state of the world). For each expert, a binary relation is defined on the set of such possible 
situations (states), called the transition relation (or accessibility relation). The accessibility relation 
▹a for an expert (intelligent agent) a is interpreted as follows: α ▹a β means that in state (situation) 
α, expert a considers state (situation) β to be possible. Each expert may have their own opinion 
about a given situation. If an expert’s opinion is independent of others, conflicting situations may 
arise in multiple-expert systems. Hence, the problem of making a final decision emerges. To 
address this, a dominance relation is introduced on the set of experts. The notion of truth then 
depends on the dominance relation between experts: in a given possible situation, it may differ for 
different experts. Accessibility relations between possible situations may also vary across experts. 
Multiple-expert modal models of the propositional level with a dominance relation are described in 
[11]. If expert a dominates expert b and believes a statement S is true, then b must also accept S as 
true. Similarly, if a considers situation β to be possible from α (i.e., α▹a β), then b must also
consider β possible from α (i.e., α ▹b β). This means that the multiple-expert modal models in [11]
are designed to preserve truth under dominance, and are thus studied basing on relational models 
of propositional intuitionistic logic. For such relational multiple-expert models, equivalent many-
valued modal models are constructed based on Heyting algebra. 

The interaction of knowledge experts (intelligent agents) is studied in [12–14]. The problem of 
reaching the consensus by a group of communicating intelligent agents is examined in [14].  
Notably, the ordering of agents by sharpness of perception in [14] is opposite to the ordering 
considered in [11]. 

In this paper, we consider multiple-expert modal systems based on logics of pure first-order 
quasiary predicates. The truth values of such logics are true and false, denoted T and F. We require 
that truth values be preserved under dominance, that is, both T and F must be preserved. This 
means: if expert a dominates b and considers statement S to be true, then b must also consider S to 
be true; if a considers statement S to be false, then b must also consider S to be false. The 
dominance relation is assumed to be transitive. If an expert is directly dominated by more than one 
expert, a conflict can arise: for instance, dominant expert a may require S to be true, while another 
dominant expert b may require S to be false. Note that such a conflict cannot arise in the models 
from [11], since dominance there only requires preservation of truth, not falsity. In a multiple-
expert system based on the logic of quasiary predicates, such inconsistency can be avoided by 



restricting the dominance relation, requiring that an expert may be directly dominated by only one 
expert. 

The modal logical formalisms proposed in this work can be applied to the adequate modeling of 
complex information and software systems that require accounting for partiality, ambiguity and 
incompleteness of information. In particular, multiple-expert modal systems based on quasiary 
predicates may be used in artificial intelligence systems and expert systems to model the 
interaction between experts (intelligent agents). 

We will follow the notation used in works [8–10]. Concepts that are not defined here are 
interpreted in the sense of [8–10]. 

2. Transitional Modal Systems of R-predicates

We specify a V-A-quasiary predicate as a partial ambiguous (non-deterministic) function
Q : 

VA → {T, F }, where VA is the set of V-A-nominative sets (V-A-NS), V is the set of subject names 
(variables), A is the set of subject values, {T, F } is the set of truth values. V-A-NS is formally defined 
[8] as a single-valued function of the form d : V  → A.

In this paper we interpret ambiguous (multi-valued) V-A-quasiary predicates as
correspondences (relations) between VA and {T, F }. Therefore, we consider R-predicates [8]. 

Each R-predicate Q is determined by two sets: 
– the truth domain T(Q) = {d∈VA | T∈Q(d)};
– the falsity domain F(Q) = {d∈VA | F∈Q(d)}.
The single-valuedness condition for an R-predicate Q is T(Q)∩F(Q) = ∅. Single-valued quasiary

predicates are referred to as P-predicates [see 8]. Thus, we obtain a P-predicate, provided that 
condition T(Q)∩F(Q) = ∅ holds for an R-predicate Q.   

We will denote by PrRV–A and PrPV–A the classes of V-A-quasiary R-predicates and V-A-quasiary 
P-predicates, respectively.

For an R-predicate Q, the set Q(d) of values that Q can take when applied to d∈VA, can be one of
the following sets: ∅, {T }, {F }, or {T, F }. These values will be denoted by #, T, F, and TF, 
respectively. For a P-predicate Q, the set Q(d) can be one of the following: ∅, {T}, or {F}; this will be 
denoted by Q(d)↑, Q(d) = T, and Q(d) = F, respectively.  

Pure first-order TMS, or TMSQ, is defined [9, 10] as the object M = ((St, R, Pr, C), Fт, Iт), where 
– St is the set of states of the world; we specify states as algebraic systems (structures) of the

form α = (Aα, Prα), where Aα is the set of basic data of state α, Prα is the set of quasiary predicates 
VAα → {T, F}, called predicates of state α; 

– R is a set of relations of the form R ⊆ St × St, interpreted as transition relations on states;
– Pr is a set of predicates of the system M;
– C is a set of compositions on Pr;
– Fт is a set of formulas of the TMLQ language;
– Iт is an interpretation mapping for formulas of the language on states of the world.
The set Pr consists of state predicates and global predicates; global predicates have the form

VA →{T, F }, where α
α

.
∈

= U
S

A A  

The set C is defined by basic logical compositions ¬ , ∨ , ,
,R ,v u
x ⊥  ∃x, Ez, and basic modal 

compositions. 
As noted above, one can define [9, 10] the following classes of TMS: General TMS (GMS), 

Temporal TMS (TmMS), and Multimodal TMS (MМS).  
GMSQ is a TMSQ with R ={ }>  and a basic modal composition £ .
TmMSQ is a TMSQ with R ={ }>  and basic modal compositions £ ↑ and £ ↓.

MМSQ is a TMSQ with R = { i> | i∈I } and corresponding basic modal compositions Mi, i∈I.



Epistemic MMSQ (EpMSQ) is a MMSQ with finite sets of same-type relations i> .

In the next section of the paper, we propose multiple-expert modal systems with dominance, 
which may be seen as a special type of epistemic logic systems. In this section, we restrict our 
attention to GMSQ.  

Let us describe a language of a GMSQ. The alphabet: a set V of variables (subject names), a set Ps 

of predicate symbols, a set of basic logical compositions’ symbols v u
xR x Ez⊥¬ ∨ ∃,
,{ , , , ; },  a set Ms = {£} 

of basic modal compositions’ symbols. 
The set Fт of language formulas is given as follows: 

Fa) Ps ⊆ Fm; formulas of the form р∈Ps will be called atomic; 
F¬) Φ∈Fm ⇒ ¬Φ∈Fm; 
F∨) Φ, Ψ∈Fm ⇒ ∨ΦΨ∈Fm; 

FR) Φ∈Fm ⇒ Φ,
,
v u
xR ⊥ ∈Fm;

F∃) Φ∈Fm ⇒ ∃xΦ∈Fm;  
F
¨

) Φ∈Fm ⇒ £Φ∈Fm. 
Formulas that contain symbols of modal compositions (in our case, the symbol £), are called 

modalized.  
Formulas that do not contain modal composition symbols are called non-modalized. 
The symbols Ez of predicates-indicators (see [8, 10]) form the set Frs of singular formulas of the 

language: Frs = {Ez | z∈V }. Such symbols are not components of complex formulas and may only 
appear as elements of sets of formulas of the language. The predicates-indicators are special 0-ary 
compositions; they are used for quantifier elimination (see [8, 10]).  

The set Fr = Fm ∪ Frs will be called the extended set of formulas.  
So far we have defined formulas in prefix notation. Going forward, the traditional infix notation 

and the symbols of derived compositions →, &, ∀x, and ¸ will be used (see [8, 10]). In particular, 
the formulas ¬∃x¬Φ and ¬£¬Φ will be abbreviated as ∀xΦ and ¸Φ, respectively. 

Note that from a syntactic point of view, the languages GMSQ of R-predicates and GMSQ of P-
predicates are identical. The difference lies in the different classes of semantic models and different 
interpretation mappings.  

The distinction of certain classes of quasiary predicates induces the distinction of the 
corresponding interpretation classes, or semantics. We consider the general class of R-predicates, 
within which a subclass of single-valued R-predicates, or P-predicates, is identified. Therefore, in the 
context of GMSQ, we may further refer to R-semantics and P-semantics.  

Let us specify an interpretation mapping for formulas on states of the world of GMSQ. 
We start by defining Im : Рs × St → Pr, where it must hold that Iт(p, α) ∈ Prα. Therefore, basic 

predicates are states predicates. Composition symbols are interpreted as the corresponding logical 
or modal compositions. The mapping Im : Рs × St → Pr is extended to a full interpretation mapping 
Im : Fт × St → Pr as follows: 

I¬) Im(¬Φ, α) = ¬ (Im(Φ, α). 
I∨) Im(∨ΦΨ, α) = ∨ (Im(Φ, α), Im(Ψ, α)). 

IR) ⊥ ⊥Φ α = Φ α, ,
, ,( , ) R ( ( , )).v u v u

x xIm R Im  

I∃) Im(∃xΦ, α) = ∃x(Im(Φ, α)). 
I£ ) d∈T(Im(£Φ, α)) ⇔ there : ;β∈ α β δ∈>St Stexists    and for any  we have:  

α δ⇒ ∈ Φ δ> ( ( , ));d T Im  

d∈F(Im(£Φ, α))  ⇔ there δ∈ α δ ∈ Φ δ>exists :   and  ( ( , )).St d F Im  

We will abbreviate the predicate Im(Φ, α) as Φα. 
Statement 1. The clauses I¬, I∨, IR, and I∃ can be reformulated in terms of the truth and falsity 

domains of the respective predicates as follows:  



I¬d) T ((¬Φ)α) = F (Φα); 
F ((¬Φ)α) = T (Φα).   

I∨d) T ((∨ΦΨ)α) = T (Φα)∪F (Φα); 
F ((∨ΦΨ)α) = F (Φα)∩F (Φα). 

IRd) ⊥ α ⊥ αΦ = ∈ ∈ Φ, ,
,  ,(( ) ) { |  ( ) ( )};v u V v u

x xT R d A r d T  

⊥ α ⊥ αΦ = ∈ ∈ Φ, ,
,  ,(( ) ) { |  ( ) ( )}.v u V v u

x xF R d A r d F  

I∃d) 
α

α − α
∈

∃ Φ = ∪ ∈ ΦaU(( ) ) { | ||  ( )};x
a A

T x d d x a T

α
α − α

∈
∃ Φ = ∪ ∈ ΦaI(( ) ) { | ||  ( )}.x

a A
F x d d x a F

Statement 2. For the negations of membership in the truth and falsity domains of the predicate 
(£Φ)α, we have:  

I¬£ ) d∉T((£Φ)α) ⇔ : ,there doesn't exist  Stβ∈ α β>  

δδ∈ α δ ∉ Φ>or there exists :  and ( );St d T
d∉F((£Φ)α) ⇔ δδ∈ α δ⇒ ∉ Φ>for any  we have: ( ( ).St d F I

The algebra of partial ambiguous quasiary predicates of relational type (R-predicates) is 
isomorphic [15] to the algebra of total single-valued predicates of Belnap’s 4-valued logic [16]. 
Therefore, R-predicates can be modelled as predicates of Belnap’s 4-valued logic with the set of 
truth values {#, T, F, TF }. 

Thus, for R-predicates we have: 
Q(d) = T, if T∈Q(d) and F∉Q(d); 
Q(d) = F, if T∉Q(d) and F∈Q(d);  
Q(d) = TF, if T∈Q(d) and F∈Q(d);   
Q(d) = #, or Q(d)#, if T∉Q(d) and F∉Q(d). 

Note that the algebra of total single-valued predicates of Kleene’s strong 3-valued logic and the 
algebra of partial single-valued quasiary predicates (P-predicates) are also isomorphic [15], 
therefore, P-predicates can be modelled as predicates of Kleene’s strong 3-valued logic with the set 
of truth values {#, T, F }. 

Hence, modal logics of quasiary P-predicates can be modelled as 3-valued modal logics based on 
Kleene’s strong 3-valued logic, and modal logics of quasiary R-predicates can be modelled as 4-valued 
modal logics based on Belnap’s 4-valued logic.  

Statement 3. The clauses I¬, I∨, and IR can be presented as follows: 

I¬B) 

, ( ) ;
, ( ) ;( ) ( ) , ( ) ;
, ( )

α

α
α

α

α

Φ =⎧
⎪ Φ =

¬Φ = ⎨ Φ =
⎪
↑ Φ =↑⎩

  if   
  if    
 if  
  if  . 

T d F
F d T

d TF d TF
d

I∨B) 

, ( ) ( )
( ) ( ) ) ( ) ( ) );

, ( ) ( ) ;
( ) ( )

α α

α α α α

α α

α

Φ = Ψ =
Φ = Ψ =↑ Φ =↑ Ψ =
Φ = Ψ =

∨ΦΨ =

 if   or  or 
  (  and  or (  and 

  if   and   

T d T d T
d TF d d d TF

F d F d F
d , ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) );
, ( ) ( )

α α

α α α α

α α

Φ = Ψ =
Φ = Ψ = Φ = Ψ =

↑ Φ =↑ Ψ =

 if  (  and  or 
 and  or  and 

 if  (  and 

TF d TF d TF
d TF d F d F d TF
d d )
( ) ( ) ) ( ( ) ( ) )α α α α

⎧
⎪
⎪
⎪
⎨
⎪
⎪ ↑
⎪ Φ =↑ Ψ = Φ = Ψ =↑⎩

 or
 (  and  or  and .  d d F d F d

IRB) 

,
,
,

, ,
, ,

,
,
,

, ( ( )) ;
, ( ( )) ;

( ) ( )
, ( ( )) ;
, ( ( ))

α ⊥

α ⊥
⊥ α

α ⊥

α ⊥

⎧ Φ =
⎪ Φ =⎪

Φ = ⎨
Φ =⎪

⎪ ↑ Φ =↑⎩

 

 

 

 

  if   
  if   
 if  
  if  .   

v u
x
v u

v u x
x v u

x
v u
x

T r d T
F r d F

R d
TF r d TF

r d



Similar concretizations of the interpretation mapping in the style of Belnap’s 4-valued logic can 
be made for the clauses I∃ and I£, basing on the following theorems. 

Theorem 1. For any Φ∈Fm, α∈St, and a, b, c∈A, and d∈VA, we have: 
1) (∃xΦ)α(d) = T ⇔ d∈T ((∃xΦ)α) and d∉F ((∃xΦ)α) ⇔ ( ||  )xd x a Tα −Φ ∪ =a for some a∈Aα or (

( ||  )xd x c TFα −Φ ∪ =a for some c∈Aα and ( ||  )xd x bα −Φ ∪ =↑a  for some b∈Aα);

2) (∃xΦ)α(d) = F ⇔ d∉T ((∃xΦ)α) and d∈F ((∃xΦ)α) ⇔ ( ||  )xd x a Fα −Φ ∪ =a for any a∈Aα;

3) (∃xΦ)α(d) = TF ⇔ d∈T ((∃xΦ)α) and d∈F ((∃xΦ)α) ⇔ ( ||  )xd x a TFα −Φ ∪ =a for some a∈Aα

and for any b∈Aα we have ( ( ||  )xd x b TFα −Φ ∪ =a or ( ||  )xd x bα −Φ ∪ =↑a );

4) (∃xΦ)α(d) = ↑ ⇔ d∉T ((∃xΦ)α) and d∉F ((∃xΦ)α) ⇔ for any b∈Aα we have

( ( ||  )xd x b Fα −Φ ∪ =a  or ( ||  )xd x bα −Φ ∪ =↑a ) and ( ||  )xd x bα −Φ ∪ =↑a  for some a∈Aα.

Theorem 2. For any Φ∈Fm, and α, β, δ∈St, and d∈VA, we have: 
1) £Φα(d) = T ⇔ d∈T (£Φα) and d∉F (£Φα) ⇔

⇔ there exists β: α β,>  and for any δ ( α δ>  ⇒ Φδ(d) = T );

2) £Φα(d) = F ⇔ d∉T (£Φα) and d∈F (£Φα) ⇔
⇔ there exists δ (α δ>  and Φδ(d) = F ) or (there exists δ (α δ>  and Φδ(d) = ↑) and β (α β>  and

Φβ(d) = TF )); 
3) £Φα(d) = TF ⇔ d∈T (£Φα) and d∈F (£Φα) ⇔

⇔ there exists δ (α δ>  and Φδ(d) = TF ), and for any δ ( α δ> ⇒ Φδ(d) = T or Φδ(d) = TF );
4) £Φα(d) = ↑ ⇔ d∉T (£Φα) and d∉F (£Φα) ⇔

⇔ there doesn’t exist β:α β,>  or (there exists δ ( α δ>  and Φδ(d)=↑) and for any δ (α δ> ⇒

⇒ Φδ(d)=T or Φδ(d)=↑)). 
Corollary. The clauses I∃ and I£ can be presented in the following manner: 

I∃B) (∃xΦ)α(d) = 
, ( || )
( || ) ( || ) ;

, ( || )

α − α

α − α α − α

α −

Φ ∪ = ∈
Φ ∪ = ∈ Φ ∪ =↑ ∈

Φ ∪ =
=

a
a a

a

  if    for some , or 
  for some  and    for some 

  if    for 

x

x x

x

T d x a T a A
d x c TF c A d x b b A

F d x a F
, ( || )
( ( || ) (

α

α − α

α − α

∈
Φ ∪ = ∈

Φ ∪ = Φ
a

a

any ;  
 if    for some , and  

    or 
x

x

a A
TF d x a TF a A

d x b TF d || ) )
, ( || ) ( || ) )

( || )

− α

α − α − α

α − α

⎧
⎪
⎪
⎪
⎨

∪ = ∈⎪
⎪ ↑ Φ ∪ = Φ ∪ =↑ ∈
⎪ Φ ∪ =↑ ∈⎩

a
a a

a

  for any ;  
  if  (   or   for any , and  

  for some .

x

x x

x

x b F b A
d x b F d x b b A

d x a a A

I£B) £Φα(d) = 
, , ( ( ) );
, ( ( ) ),

( ( ) ) ( ( ) );
,

δ

δ

δ δ

β α β δ α δ⇒Φ =
δ α δ Φ =
δ α δ Φ =↑ β α β Φ =

=

> >
>
> >

  if  there exists :  and for any   
  if  there exists  and  
  or there exists   and  and   and 
 if  the

T d T
F d F

d d TF
TF ( ( ) ),

( ( ) ( ) );
, , ( ( ) ),

δ

δ δ

δ

δ α δ Φ =
δ α δ ⇒Φ = Φ =

↑ β α β δ α δ Φ =↑

>
>

> >

re exists   and  and  
 for any    or 

  if there doesn't exist :  or (there exists  and  and 

d TF
d T d TF

d
( ( ) ( ) )).δ δ

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪ δ α δ ⇒Φ = Φ =↑⎩ >    for any    or  d T d

For modal logics of quasiary P-predicates, a similar concretization of the interpretation mapping 
can also be made in the style of Kleene’s strong 3-valued logic. 

Thus, modal logics of quasiary R-predicates can be described in terms of 4-valued modal logics 
based on Belnap’s logic, and vice versa; modal logics of quasiary P-predicates can be described in 
terms of 3-valued modal logics based on Kleene’s strong 3-valued logic.  

Depending on the properties of the accessibility relation ▹ , one can define different classes of 
GMSQ. This can be done in the same way as for GMS of P-predicates (see [9, 10]).  

Depending on how the value of Φδ(d) is assigned under the condition d∉VAδ , one can distinguish 
(see [9]) TMS with a strong condition of definedness on states and TMS with a general condition of 



definedness on states. For GMSQ of R-predicates, the general condition of definedness on states is 
preferable, since the strong condition of definedness imposes unnecessary constraints on semantic 
models. The general condition of definedness means that state predicates δ respond only to 
components with basic data a∈Aδ. 

Therefore, for non-modalized formulas, under the condition d∉VAδ, we assume that 
Φδ(d) = Φδ(dδ). Here dδ denotes the nominative set [v "a∈d | a∈Aδ ]. 

The semantic properties of GMSQ that are not related to modalities are, in general, analogous to 
the corresponding properties of the logic of quasiary R-predicates; properties related to the 
interaction of modal compositions with renominations and quantifiers also hold in GMSQ (see 
[9, 10]). 

On the set of formulas of the GMSQ language specified with states, one can define a number of 
logical consequence relations. In the case of GMSQ of R-predicates, we do this in the same way as 
for GMSQ of P-predicates (see [9, 10]). First, we define the relations of IR-consequence, T-
consequence, F-consequence, and TF-consequence within a specific GMS; then, based on this, we 
specify the corresponding logical consequence relations for a given class M of such GMS. For 
GMSQ of P-predicates, we obtain four non-degenerate logical consequence relations: M|=IR, M|=T, M|=F,
and M|=TF; they correspond to the analogous relations P|=IR, P|=T, P|=F, and P|=TF in the traditional logics
of quasiary predicates (see [8]). However, in the case of GMSQ of R-predicates, there is a single non-
degenerate relation MR|=TF, which is analogous to the relation R|=TF in logics of quasiary predicates.

The non-modal properties of the relation MR|=TF repeat the corresponding properties of the
relation R|=TF for sets of formulas in the traditional logic of quasiary predicates (for more details, see
[8 – 10]). The properties related to modal compositions (e.g., carrying modal compositions through 
renominations and elimination of modalities) are analogous to the corresponding properties for 
GMSQ of P-predicates (see [9]).  

3. Multiple-Expert Modal Systems of Quasiary Predicates

We define multiple-expert modal system (MEMS) as an object M = ((Ex, ≻ , St, ▹ , Pr, Cm), Fm, IM), 
where: 

– Ex is a finite non-empty set, which we interpret as a set (group) of experts;
– ≻  ⊆ Ex × Ex is a relation of immediate dominance on the set of experts;
– St is a non-empty set interpreted as the set of possible states of the world, or situations;
– ▹  ⊆ Ex × St × St is an accessibility relation ▹  between possible states (situations), which

depends on the expert being considered; instead of (e, α, β)∈ ▹ , we will shortly write α ▹e β; 
– Pr is a set of predicates of the system M;
– Cm is a set of compositions on Pr;
– Fm is a set of formulas of the MEMS language;
– IM : Ps × Ex × St → {T, F } is an interpretation mapping for atomic formulas; IM depends on the

state and expert being considered. 
The reflexive-transitive closure of the relation ≻ will be denoted by ≫. 
Instead of ≻ (e, g) and ≫ (e, g), we will usually write e ≻ g and e ≫ g.  
For the first-order MEMS, we specify the set St as a set of algebraic structures α = (Aα, Prα), 

where Aα is a set of basic data of the state α, Prα is a set of quasiary predicates VAα → {T, F }. Such 
predicates will be called predicates of the state α. The set α

α∈
= U

S
A A  is called the set of basic data of 

the system M. The predicates VA → {T, F } will be called global. 
Pure first-order MEMS M = ((Ex, ≻ , St, ▹ , Pr, Cm), Fm, IM) will be shorter denoted by 

M = (Ex, ≻ , St, ▹ , A, IM).  
The previously described GMS can be interpreted as 1-expert MEMS with a trivial dominance 

relation. 



The accessibility relation ▹  ⊆ Ex × St × St is connected to the domination relation ≫  ⊆ Ex × Ex  
in the following way:  α ▹e β  аnd  e ≫ h  ⇒  α ▹h β.  

Informally, if expert e considers that situation β is possible relative to the situation α (i.e., state 
β is accessible from state α), then any expert h over whom e dominates must also acknowledge
this. 

The dominance relation in MEMS must preserve both T and F: if expert a dominates b and 
considers statement (predicate) S to be true, then b must also consider S to be true; if a considers 
statement S to be false, then b must also consider S to be false. Therefore, a conflict can emerge 
when an expert is directly dominated by two or more experts. For instance, expert e is directly 
dominated by experts a and b, and a assumes predicate S on a data d to be true (i.e., S(d) = T), while 
b requires S to be false (i.e., S(d) = F). Hence the question arises: how expert e should evaluate S(d)?  

Thus, for MEMS, it is appropriate to consider the following restriction on the dominance 
relation: only one expert may directly dominate any given expert. This means that the relation 
≻  must be injective: for each  e∈Ex, there exists at most one  g∈Ex such that g ≻ e . An injective 
relation ≻ ⊆ Ex × Ex can be represented as a forest of trees with vertices from  Ex. 

The reflexive-transitive closure of the injective relation of immediate dominance will be called 
the relation of separate dominance. 

From now on, we will concentrate on the case of MEMS with a separate dominance relation. 
Further study of MEMS, particularly the properties of dominance relations and accessibility 

relations is planned in future papers. 
Let us describe the language of pure first-order MEMS, or MEMSQ. 
From a syntactic point of view, the languages GMSQ and MEMSQ are identical. The difference 

lies in their semantic models. Thus, in the MEMSQ language the set  of formulas Fт is defined 
according to the clauses Fa, F¬, F∨, FR, F∃, F¨

 (see Section 2).  
We distinguish modalized formulas (that include symbols of modal compositions) and non-

modalized formulas (that do not include such symbols). 
The set of non-modalized formulas in a MEMSQ language coincides with the set of formulas of 

its basic logical language. 
Let us define the interpretation mapping IM of formulas on states of the world and experts. 
First, we specify IM : Ps × Ex × St → Pr, where IM (p, e, α) ∈ Prα.  
The mapping IM : Ps × Ex × St → Pr is extended to the mapping IM : Fm × Ex × St → Pr as follows: 

I¬) IM (¬Φ, e, α) = ¬ (IM (Φ, e, α).   
I∨) IM (∨ΦΨ, e, α) = ∨ (IM (Φ, e, α), IM (Φ, e, α)). 

IR) R⊥ ⊥Φ α = Φ α, ,
, ,( ( ), , ) ( ( , , )).v u v u

M x x MI R e I e
I∃) IM (∃xΦ, e, α) = ∃x(IM (Φ, e, α)). 
I£ ) d∈T(IM (£Φ, e, α))  ⇔ : ;β∈ α β ∈ δ∈>there exists   and for any  and  we have:eSt g Ex  St  

( ( , , ));α δ ⇒ ∈ Φ δ? > and   g Me g  d T I g

d∈F (IM (£Φ, e, α)) ⇔ : ( ( , , )).δ∈ α δ ∈ Φ δ>there exists   ande MSt   d F I e  

Then IM (Φ, e, α) is the predicate that represents the value of the formula Φ for expert e on 
state α.  

We will also denote the predicate IM (Φ, e, α) briefly as ,eM αΦ  and also as αΦ
e  if M is taken by

default. 
Statement 4. For formula abbreviations of the form ¸Φ, we have: 

I¸) d∈T (IM (¸Φ, e, α))  ⇔ : ( ( , , ));δ∈ α δ ∈ Φ δ>there exists   ande MSt   d T I e  

d∈F (IM (¸Φ, e, α))  ⇔ : ,eStβ∈ α β>there exists  

∈ δ∈g Ex  Stand for any  and  we have:  ( ( , , )).⇒ ∈ Φ? > and α δ  δg Me g  d F I g  

This follows from the clause I£  and the following: 



d∈T(IM (¸Φ, e, α)) ⇔ d∈T(IM (¬£¬Φ, e, α)) ⇔ d∈F(IM (£¬Φ, e, α))  and 
d∈F(IM (¸Φ, e, α)) ⇔ d∈F(IM (¬£¬Φ, e, α)) ⇔ d∈T(IM (£¬Φ, e, α)).  

We consider the general class of R-predicates and its subclass of single-valued R-predicates, or P-
predicates. The distinction between them induces the corresponding distinction between 
interpretation classes, or semantics: R-semantics and P-semantics, respectively. For the MEMSQ 
language, this is done in the same way as for the GMSQ language and the corresponding basic 
logical language of the logic of quasiary predicates (see [8]).  

On the set of formulas of the MEMSQ language specified with experts and states, we introduce 
consequence relations and logical consequence relations. These relations are defined analogously 
to the corresponding relations in the logics of quasiary predicates (see [8]).  

A formula specified by expert and state names has the form 
,
.

e α
Φ  Here, Φ is a formula of the 

MEMSQ language, e∈E and α∈S, where E is a set of expert names and S is a set of states of the 
world names.  

Let Σ be a set of formulas specified with expert and states, with sets of experts’ and states’ 
names E and S, respectively. 

We say that the set Σ is consistent with MEMSQ M = (Ex, ≻ , St, ▹ , A, IM), provided that injections
from E into Ex and from S into St are defined. 

By using the notation Γ M|=*Δ, we assume by default the consistency of sets of specified 
formulas Γ and Δ with MEMS M.  

For sets of specified formulas Γ and Δ of the MEMSQ language let us define the following 
consequence relations in a fixed MEMS M = (Ex, ≻ , St, ▹ , A, IM): these are the traditional relations of 
irrefutability (IR), truth (T), falsity (F), and strong (TF) consequence.  

Let Γ and Δ be sets of specified formulas of the MEMSQ language. 
Δ is an IR-consequence of Γ in a consistent with them MEMSQ M (denoted Γ M|=IR Δ), if for any

d∈VA we have 
,

( ) for any 
α

α∈ Φ Φ ∈Γ
ee

Md T  ⇒ 
,

( ) .
gg

Md F
δ

δ∉ Ψ Ψ ∈Δ for some  (I) 

Δ is a T-consequence of Γ in a consistent with them MEMSQ M (denoted Γ M|=T Δ), if for any d∈VA
we have 

,
( ) for any 

α

α∈ Φ Φ ∈Γ
ee

Md T  ⇒ 
,

( ) . for some 
δ

δ∈ Ψ Ψ ∈Δ
gg

Md T (T) 

Δ is an F-consequence of Γ in a consistent with them MEMSQ M (denoted Γ M|=F Δ), if for any
d∈VA we have 

,
( ) for any 

δ

δ∈ Ψ Ψ ∈Δ
gg

Md F  ⇒ 
,

( ) . for some 
α

α∈ Φ Φ ∈Γ
ee

Md F (F) 

Δ is a TF-consequence of Γ in a consistent with them MEMSQ M (denoted Γ M|=TF Δ),  if  Γ M|=T Δ
and  Γ M|=F Δ. 

In the case of MEMS of P-predicates, the conditions (I), (T), and (F) can be presented as follows: 
,

( )  for any 
ee

M d T
α

αΦ = Φ ∈Γ  ⇒
,

( )  for some .
gg

M d F
δ

δΨ ≠ Ψ ∈Δ              (IP) 
,

( )  for any 
ee

M d T
α

αΦ = Φ ∈Γ  ⇒
,

( )  for some .
gg

M d T
δ

δΨ = Ψ ∈Δ  (TP) 
,

( )  for any 
gg

M d F
δ

δΨ = Ψ ∈Δ ⇒
,

( )  for some .
ee

M d F
α

αΦ = Φ ∈Γ (FP) 

The relations of logical IR-, T-, F-, and TF-consequence for sets of specified formulas Γ and Δ 
with respect to a MEMSQ of a certain type are specified according to the following scheme (σ 
denotes either IR,T, F, or TF ).  

Δ is a logical σ-consequence of Γ with respect to a MEMSQ of a type M, if Γ M|=σ Δ for any MEMS
M∈M; it will be denoted by Γ M|=σ Δ, and also by Γ |=σ Δ, provided that M is taken by default. 

According to the definitions, we have:  Γ M|=TF Δ  ⇔  Γ M|=T Δ  and  Γ M|=F Δ. 
In the case of MEMS of P-predicates, we obtain non-degenerate consequence relations P|=IR, P|=T,

P|=F, and P|=TF, which correspond to the analogous relations p|=IR, p|=T, p|=F, and p|=TF in the traditional



logics of quasiary predicates (see [8]). In the case of MEMS of R-predicates, a single non-degenerate 
consequence relation R|=TF remains, and it is analogous to the relation R|=TF in logics of quasiary R-
predicates.  

As in the case of the traditional logics of quasiary predicates and GMSQ, in MEMSQ we have the 
following relationships between the introduced logical consequence relations: 

Theorem 3. R|=TF ⊂ 
P|=TF , 

P|=TF ⊂ 
P|=T ⊂ 

P|=IR,  P|=TF ⊂ 
P|=F ⊂ 

P|=IR;  P|=T ≠ 
P|=F.

The non-modal properties of the relations P|=IR, P|=T, P|=F, 
P|=TF, and R|=TF in MEMSQ repeat the

corresponding properties of the relations p|=IR, p|=T, p|=F, 
p|=TF, and R|=TF for sets of formulas of the

traditional logic of quasiary predicates (see [8]). The general properties related to modal 
compositions are analogous to the corresponding properties for GMSQ of P-predicates (see [9, 10]).  

4. Conclusion

The paper investigates new classes of program-oriented logical formalisms – pure first-order
transitional modal systems (TMS) of partial ambiguous (non-deterministic) quasiary predicates. We 
propose two varieties of these TMS: pure first-order General Transitional Modal Systems (GMSQ), 
and pure first-order Multiple-Expert Modal Systems with dominance (MEMSQ). These systems are 
based on logics of R-predicates – partial ambiguous (multi-valued) quasiary predicates of relational 
type. The work describes the semantic features of GMSQ and shows the connection between modal 
logics of quasiary R-predicates and four-valued modal logics based on Belnap’s logic. The proposed 
MEMS preserve both true and falsity under dominance as we introduce a transitive relation of 
separate dominance on the set of experts which guarantees that no expert can be directly 
dominated by more than one other expert. The languages of MEMSQ are described. On the set of 
formulas specified with both experts and states, a number of consequence relations in MEMS and 
logical consequence relations are defined.  

In the future works, we will focus on studying MEMS with different properties of the dominance 
and accessibility relations, investigating logical consequence relations in MEMS, and constructing 
sequent-type calculi for MEMS.  
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