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Abstract 
The presented work is devoted to integrating large language models (LLMs) into knowledge graph 
construction and query generation presents a transformative opportunity in scientific domains like 
materials science. Namely, this study explores using LLMs – specifically GPT-4, DeepSeek, and Qwen2.5-
72B-Instruct – to automate the creation of knowledge graphs from scientific articles and generate Cypher 
queries from natural language inputs. A multi-step methodology was developed, involving JSON 
extraction, RDF/XML conversion, and deployment into graph databases, with iterative meta-learning to 
refine query accuracy. Four knowledge graph variants were evaluated, with the "Qwen–GPT-4" 
combination emerging as the most comprehensive due to its detailed entity linkages and structural 
coherence. Results demonstrate that iterative LLM prompting significantly enhances Cypher query 
generation and addresses issues such as mislabeled relationships and parasitic nodes. This work 
highlights the potential of LLMs to streamline knowledge management, aligning and enhancing 
accessibility to complex scientific data. 
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1. Introduction 

In materials science, the growing volume of research data requires efficient methods to organise 
and interrogate knowledge. Traditional approaches to constructing knowledge graphs – manually 
curating entities and relationships – are labour-intensive and prone to scalability issues. Recent 
advances in large language models (LLMs), however, offer a promising alternative: automating the 
extraction of structured information from unstructured texts and enabling natural language 
interfaces for querying graph databases. 

This study addresses two interconnected challenges: automating knowledge graph creation 
from scientific articles using LLMs and generating accurate Cypher queries from natural language 
inputs through iterative model refinement. By means of models such as GPT-4, DeepSeek, and 
Qwen2.5-72B-Instruct, a pipeline was developed that transforms articles into RDF/XML-based 
graphs deployable in systems like Neo4J. Furthermore, it has been introduced a meta-learning 

                                                        

Workshop “Software engineering and semantic technologies" SEST, co-located with 15th International Scientific and Practical 
Programming Conference UkrPROG’2025, May 13-14, 2025, Kyiv, Ukraine 
∗ Corresponding author. 
† These authors contributed equally. 

 insamhlaithe@gmail.com (V.Kaverinskiy); palagin_a@ukr.net (O.Palagin); nikityuk.dv@gmail.com (D.Nikitiuk); 
litvin_any@ukr.net  (A.Litvin); k.malakhov@incyb.kiev.ua (K.Malakhov) 

 0000-0002-6940-579X (V.Kaverinskiy); 0000-0003-3223-1391(O.Palagin); 0000-0002-9639-5232 (D.Nikitiuk); 
0000-0002-5648-9074 (A.Litvin); 0000-0003-3223-9844 (K.Malakhov) 

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



approach where LLMs iteratively improve Cypher query generation by learning from corrected 
outputs. 

This work builds on prior research in LLM-driven SPARQL/Cypher generation and ontology 
extraction, yet extends these efforts by focusing on domain-specific challenges in materials science, 
such as capturing process-structure-property relationships. The results underscore the viability of 
LLMs in democratising access to complex datasets while highlighting critical considerations for 
model selection, prompt engineering, and structural validation. By integrating iterative meta-
learning, we address challenges such as parasitic nodes and mislabelled relationships – issues akin 
to those observed in multilingual text processing systems [1], where ontology-driven approaches 
improve cross-lingual consistency. 

The integration of LLMs into knowledge graph construction and query generation represents a 
paradigm shift in managing scientific data, particularly in domains like materials science. While 
traditional approaches to knowledge extraction rely on manual curation or rigid rule-based 
systems [2], recent advancements in semantic analysis and model-driven engineering offer 
pathways to automation. For instance, [3, 4] demonstrated the viability of semantic matching for 
software asset reuse, leveraging keywords and OCL expressions to align requirements with 
existing components – a methodology that parallels the semantic grounding of entities in 
knowledge graphs. Similarly, multilingual frameworks for text-to-model transformations [1] 
highlight the potential of structured representations (e.g., UML diagrams) to bridge unstructured 
texts and formalized knowledge structures, a concept critical to graph-based data interoperability. 

The primary objective of this study is to develop and validate a framework that utilizes large 
language models to automate the construction of domain-specific knowledge graphs from 
unstructured scientific articles and enable intuitive querying through natural language interfaces. 
By integrating iterative meta-learning, the approach refines Cypher query generation for graph 
databases, addressing challenges in entity linkage accuracy and structural coherence. Focused on 
materials science, this work aims to enhance data accessibility and reduce manual curation efforts, 
thereby streamlining knowledge management in research workflows. 

2. Related Works 

The integration of LLMs into the generation of structured data representations, such as RDF/XML 
knowledge graphs and SPARQL queries, has emerged as a transformative research area. Recent 
advancements highlight the potential of LLMs to bridge the gap between natural language inputs 
and formalized knowledge structures, enabling more accessible interaction with complex datasets. 
Central to this progress is the ability of LLMs to translate user queries into structured query 
languages like SPARQL and Cypher, which are critical for interacting with graph databases and 
knowledge graphs. For instance, Emonet et al. [5] introduced a Retrieval-Augmented Generation 
(RAG) system that leverages LLMs alongside metadata, including query examples and schema 
information, to generate federated SPARQL queries over bioinformatics knowledge graphs. Their 
validation step reduces hallucinations, improving reliability. Similarly, Mecharnia and d’Aquin [6] 
demonstrated the effectiveness of fine-tuned LLMs in converting natural language questions into 
SPARQL queries, though they noted challenges in handling domain-specific nuances and logical 
consistency. In the realm of Cypher, Ozsoy et al. [7] developed Text2Cypher, a system that 
translates natural language into graph database queries, emphasizing the role of high-quality 
datasets and fine-tuning in improving performance. These efforts underscore the dual focus on 
enhancing user accessibility and ensuring query accuracy, particularly in scientific domains such 
as materials science. 

Materials science has seen significant advancements through the application of ontologies and 
graph databases. Dreger et al. [8] proposed a native graph database architecture to store 
heterogeneous data from fabrication workflows, measurements, and simulations, extending the 
European Materials Modelling Ontology (EMMO) to standardize energy materials data. This 
approach aligns with the broader goals of FAIR (Findable, Accessible, Interoperable, Reusable) data 



principles. A complementary study introduced a materials graph ontology in [9], addressing gaps 
in existing ontologies by formalizing data ingest frameworks to capture process-structure–
property relationships. These developments highlight how LLMs can further enhance such systems 
by automating ontology creation and query generation, though challenges remain in ensuring 
logical validity and scalability. 

The evolution of neural machine translation (NMT) architectures for SPARQL generation has 
been pivotal. Yin et al. [10] compared CNNs, RNNs, and Transformers, finding that CNN-based 
models achieve high BLEU scores and accuracies on datasets like Monument and DBNQA. 
However, the structured nature of SPARQL and out-of-vocabulary (OOV) issues persist as 
challenges. Hirigoyen et al. [11] addressed OOV by integrating a copy mechanism into encoder-
decoder architectures, enabling the direct transfer of knowledge base tokens from input questions 
to queries. This approach mitigates ambiguities in schema elements, a critical step toward robust 
query generation. Parallel advancements in visiolinguistic learning, such as survey [12], emphasize 
the role of external knowledge graphs and LLMs in tasks like Visual Question Answering (VQA) 
and Image Captioning. These studies advocate hybrid models combining explicit knowledge (e.g., 
ontologies) with implicit knowledge (e.g., pre-trained models) to enhance multimodal reasoning. 

PAROT, a dependency-based framework for SPARQL generation [13], exemplifies the synergy 
between syntactic analysis and ontology alignment. Its lexicon, built using the lemon model, 
resolves ambiguities in scalar adjectives and negation, while dependency parsing identifies triples 
and logical operators. Evaluated on QALD-9 and Geoquery datasets, PAROT outperformed 
gAnswer in complex queries, achieving 87.55% Macro-F1 on Geoquery. However, its reliance on 
dependency parsing introduces computational overhead, and temporal query handling remains 
limited. These limitations underscore the need for integrative approaches, such as combining LLMs 
with symbolic reasoning, to address scalability and domain-specific requirements. 

The automation of OWL ontology creation from scientific texts represents a frontier in LLM 
applications. Current systems face challenges in ensuring logical consistency and semantic 
coherence, as OWL requires strict adherence to description logic. Recent studies, such as the work 
by Abolhasani and Pan [14], explore LLMs for ontology extraction, leveraging structured prompts 
and iterative refinement. For instance, OntoKGen employs a Chain of Thought algorithm to align 
outputs with user requirements, while fusion-jena’s semi-automated pipeline constructs knowledge 
graphs from competency questions. Despite these advances, accuracy and validation remain critical 
issues, particularly in specialized domains like materials science. 

Comparative analyses of LLMs reveal distinct strengths and limitations. GPT-4 demonstrates 
broad code generation capabilities but requires post-validation for OWL axioms. Qwen-72B excels 
in API-centric tasks and multilingual contexts but struggles with low-resource programming 
languages. DeepSeek-MoE, optimized for STEM domains, incorporates lightweight reasoning to 
reduce inconsistencies, as seen in its biomedical ontology experiments [15]. These models highlight 
the importance of domain-specific fine-tuning and hybrid architectures that blend LLM flexibility 
with symbolic constraints. 

The evaluation of LLM-based systems often relies on benchmarks like HumanEval and 
HumanEval-Math, though metrics for ontology quality remain underdeveloped. Functional 
correctness, measured via pass@k rates, is supplemented by structural metrics like CodeBLEU, 
which assesses syntax trees. However, assessing logical validity in OWL requires specialized tools, 
such as reasoners to detect entailment violations. Future research must prioritize standardized 
benchmarks and interdisciplinary methods that merge knowledge representation with deep 
learning. 

Challenges persist in ambiguity resolution, scalability, and ethical considerations. Natural 
language descriptions often lack precision, leading to inconsistent axioms or queries. Temporal 
reasoning and aggregation operations remain underexplored, limiting applications in dynamic 
datasets. Additionally, biases in training data and knowledge representation can propagate errors, 
necessitating rigorous validation frameworks. The integration of LLMs with existing tools like 



Protégé and graph databases offers a path forward, enabling iterative refinement and human 
oversight. 

In materials science, the synergy between LLMs and ontologies has practical implications for 
data interoperability. For example, Dreger et al. [8] extended EMMO to capture fabrication 
workflows, enabling systematic analysis of material properties. LLMs could automate this process 
by extracting entities and relationships from research articles, though domain-specific training and 
prompt engineering are essential. Experiments demonstrated varying success across GPT, Qwen, 
and DeepSeek in generating ontologies from scientific texts, with DeepSeek’s biomedical focus 
yielding the most consistent results. 

The future of LLM-driven knowledge representation lies in hybrid architectures, dataset 
enrichment, and interdisciplinary collaboration. Integrating LLMs with symbolic reasoning 
systems, such as those proposed by Nakajima and Miura [16], could enhance logical rigour. 
Expanding training data with domain-specific annotations and leveraging federated learning for 
sensitive datasets are additional strategies. Ethical frameworks must also evolve to address 
transparency and accountability, ensuring that automated systems align with scientific and societal 
values. 

Thus, LLMs have revolutionized the translation of natural language into structured data 
formats, offering unprecedented opportunities for scientific research and data management. While 
challenges in consistency, scalability, and domain adaptation remain, ongoing advancements in 
model architectures, evaluation methodologies, and hybrid systems promise to unlock the full 
potential of these tools. Prior research in semantic analysis and model-driven engineering provides 
foundational insights for LLM-driven knowledge graph workflows. In [1] it was introduced 
semantic matching techniques for software reuse, using OCL expressions to compare requirement 
specifications with repository assets – a precursor to LLM-based entity linkage in knowledge 
graphs. Meanwhile, text-to-model transformation frameworks [17] underscore the importance of 
structured representations, such as XMI and PlantUML, in restoring UML diagrams from 
heterogeneous formats, a challenge mirrored in RDF/XML graph conversions. 

3. Materials and Methods 

The presented here study included two main parts. The first is the creation of a knowledge graph 
grounded on a set of scientific articles involving LLMs. The second part was devoted to the 
creation of Cypher queries to the developed graph database from natural language queries using an 
LLM. The input articles [18 – 22] all belong to the domain of material science. The following LLMs 
have been use in the study: GPT-4 [23], Deep Seek (R1) [24], and Qwen2.5-72B-Instruct [25]. 

For the creation of the knowledge graph the following approach has been developed, which 
includes the next main steps: 

1. Develop a prompt for LLM that includes the list and descriptions of the desired classes of 
the graph nodes and links between them. The prompt also includes a template of the JSON 
structure to be used for the extracted information storage. 

2. Creation of a JSON representation of the knowledge graph using an LLM with the prompt 
and input articles. At this stage, several articles at once could be used, if the context 
window of the LLM allows it or the JSON representations are created by one for each of the 
articles. 

3. A merged knowledge graph in JSON format is created from the obtained on the previous 
step fragments by means of an LLM. For the knowledge graph merge either the same or 
different LLM can be used, depending on the quality of the obtained result. 

4. The merged knowledge graph from the JSON format also using an LLM is to be 
transformed to RDF/XML format, which is needed to easily export it to a graph DBMS like 
Neo4J [26] or Apache Jena Fuseki [27]. 

5. The final step is deploying the knowledge graph into a chosen graph DBMS. 



The scheme of this technique is presented in Figure 1. 

 

Figure 1: A general scheme of the involved knowledge graph from articles creation technique. 

The text of the prompt was the same for all the considered LLMs. The text of the prompt as well 
as well as the obtained JSON and RDF/XML representations of the knowledge graphs can be found 
in the GIT Hub repository [28]. 

For the interface of Qwen allows only a single file downloading in one message the JSON 
representations were being created for each of the given articles and then merged into a one file 
using an LLM. Other ones – GPT and Deep Seek – allow several files uploading, however still have 
limits for the attached files total size. 

During the carried out study, the following four variants of RDF/XML knowledge graphs have 
been created: 

1. Documents data parsing in Deep Seek, conversion to RDF/XML using GPT-4 (“DS – GPT-
4”). 

2. Documents data parsing in Deep Seek, conversion to RDF/XML using Qwen (“DS – Qwen”). 
3. Documents data parsing in Qwen, merging and conversion to RDF/XML using GPT-4 

(“Qwen – GPT-4”). 
4. Documents data parsing in Qwen, conversion to RDF/XML using Qwen – one file without 

merging (“Qwen – Qwen”). 

For experiments with Cypher queries a knowledge graph “Qwen – GPT-4” has been selected as 
containing information from all the articles as well being found rather more complete and well 
structured than others. 

The following technique has been applied for Cypher query creation from natural language 
ones using LLM (GTP-4). An initial prompt has been provided: 

 
Here is an RDF/XML file. This file can be imported to Neo4J. You 

following tasks will be generation of Cypher queries from natural 
nanguage queries. The init parameters for import were: 
handleVocabUris: "IGNORE", handleMultival: "OVERWRITE", 
handleRDFTypes: "LABELS". 

 
As it can be seen, an appropriate RDF/XML has been given to LLM to inform it with the 

knowledge graph structure. Also, some additional technical information has been provided in this 
prompt, namely the graph import parameters. Then the LLM was been asked to create a certain 
query for a rather simple natural language phrase. The returned Cypher query execution was 



tested in Neo4J. Then the text of the query was manually changed to improve the output. This 
revised version of the query was being provided for LLM for further generation improvement. 
Then the LLM has been provided with new natural language queries – more complicated and/or 
devoted to different subjects. The reason for the procedure was iterative interactive meta-learning 
of an LLM to improve its ability for Cypher query generation tuned for a certain knowledge base. 

4. Results and Discussion 

All of the four created RDF/XML representations of the knowledge graphs appear valid – able to be 
opened in Protégé editor and have been successfully imported to Neo4J. However, “DS – GPT-4” 
have demonstrated quite a specific structure, so the entity names did not appear as convenient 
classes and properties. The fullness of each of them can be judged from the RDF triplets numbers 
counted when knowledge graphs are imported to Neo4J. The corresponding values are presented in 
Table 1. 

Table 1 
Estimated sizes the generated knowledge graph 

Knowledge graph 
(by LLMs used) 

Number or RDF 
triples 

File size, Kb 

DS – GPT-4 129 12.4 
DS – Qwen 126 14.1 
Qwen – GPT-4 207 23.8 
Qwen – Qwen 201 20.6 

 
The knowledge graph “DS – GPT-4” has appeared rather brief and mostly thesaurus-like. Each 

entity description contains tags <rdfs:label> and <rdfs:comment> to provide their appropriate 
name and description. However, the descriptions appeared quite brief and not very informative. 
Instead of the usual <rdf:type> tag this representation includes an <ex:category> container tag. In 
general this knowledge graph includes not very developed linkage between entities and looks 
rather as a demonstrative example. 

The next “DS – Qwen” knowledge graph has some similarities to the previously mentioned one, 
which is not surprising for Deep Seek LLM was used in the main operation of knowledge 
extraction for both of them. The descriptions are still brief but now are included in tags 
<ex:description> and instead of <rdfs:label> here we found <ex:name>. However, the class 
belonging identifiers now are in <rdf:type> tags. So when parsing it through Protégé or Neo4J the 
types (classes) of the nodes explicitly appeared and were accessible. However, as well as 
previously, here we see quite pour rather demonstrative linkage. It seems like Deep Seek LLM 
works in a “lazy” way, especially when dealing with a set of files. It extracts some random linked 
data and then allows you to proceed in the same way behaving rather like a virtual assistant than a 
working tool which it is expected to be regarded to the current task. 

Somewhat better results have been obtained by processing the input files one by one using 
Qwen 72B-Instruct for the purpose. Having less input information but operating with the same 
amount of the context window volume more information could be extracted from each of the input 
documents. An example of such an approach here is the “Qwen – GPT-4” knowledge graph. It has 
a rather more developed linkage and covers most of the key aspects presented in the articles. In 
this version of our knowledge graph, the most detailed and comprehensive descriptions are 
provided. Moreover, some of such descriptions contain not only presented in the input article 
information but also details collected elsewhere, probably owing to the web search possibility of 
the LLMs used.  

Dealing with the stage of RDF/XML formation with only one document JSON representation. It 
does not contain such detailed and comprehensive descriptions, but the biggest number of entities 



related to one article. One of the peculiarities of this knowledge graph is named intermediate 
resource nodes with <ex:has_value> tags that represent the qualitative values of the links. The 
links themselves do not include values but directions only. The “Qwen – GPT-4” knowledge graph 
either does not have values of the links but has “parasitic” nodes built between the reasonable 
nodes. Such “parasitic” nodes we can see as well in the structure of the “DS – GPT-4” knowledge 
graph and their presence could be caused by some drawbacks brought in by some GPT-4 behaviour 
hangs on the RDF/XML creation stage. It seems like Qwen represents the link value explicitly but 
GPT-4 is not.  

The “Qwen – GPT-4” knowledge graph has been selected for further study of Cypher queries 
creation for several main reasons: it covers several articles of different topics but some similarities; 
it is rather developed in linkage than “DS – GPT-4” and “DS – Qwen”; it has those “parasitic” nodes 
which are an interesting challenge for LLM to overcome when queries creation meta-learning; it 
has comprehensive descriptions which seam perspective for further practical implementation. 

Let us consider an example of meta-learning of Cypher query creation using GPT-4o with 
reasoning. The first task will be: “Give me the names of the article and the corresponding 
keywords.”. The first resulting Cypher query returned by the LLM was as follows: 

 MATCH (a:Article)-[:HAS_KEYWORD]->(kw:Keyword) 
 RETURN a.name AS articleName, kw.name AS keyword 
This query is generally syntactically correct, but does not assume all the specifics regarding to a 

certain knowledge graph. Namely, the correct link name here must be “includes_terms” not 
“HAS_KEYWORD”, the class of the node is “Key_word” but not “Keyword”. The class “Article” is 
correct, but here is not obligatory, because in the current graph all the “Key_word” have incoming 
links from “Articles” only. Thereby, more correct query will be the next: 

 MATCH (n)-[:includes_terms]->(m:Key_word)  
 RETURN n.name AS articleName, m.name AS keyword 

The following task was to create a Cypher query from: “Give me the names of the articles by 
the keyword "Steel". This time the LLM coped with the job and returned the next correct query: 

 MATCH (n)-[:includes_terms]->(m:Key_word {name:"Steel"}) 
 RETURN n.name AS articleName 
The query have returned a correct result of two articles names (“Mathematical Modelling of 

Primary Recrystallization Kinetics and Precipitation of Carbonitride Particles in Steels. II. 
Recrystallization Kinetics” and “Mathematical Modelling of Kinetics of Decomposition of the 
Supercooled Austenite in Alloyed Steels”) which indeed include the keyword “Modelling” in the 
knowledge graph. 

Then a different and a bit more complicated task was given to LLM, namely to create a Cypher 
query for the request: “Provide the names and descriptions of the topics to which the articles 
belong.” The first returned result was again not correct: 

 MATCH (a)-[:belongs_to]->(t:Topic) 
 RETURN DISTINCT t.name AS topicName, t.description AS 

topicDescription 
The two main reasons are not assuming a “parasitic” node between “Article” and “Topic”, and, a 

minor one, the real name of the link is “belongs_to_topic” not just “belongs_to”. Thus, the correct 
version will be: 

 MATCH (n)-[:belongs_to_topic]-(m)-[:links_to]-(c:Topic) 
 RETURN n.name as Article, c.name AS Topic, c.description AS 

Description 
Here appears that “parasitic” node (m) with its following link “links_to”. Also a not critical but 

making the response more convenient will be returning the name of the article as well. 
The following query to the LLM to make a Cypher query was: “To which topic belong articles 

that have the keyword "Phase Diagrams"?”. The response of LLM this time was almost completely 
correct: 



 MATCH (n)-[:includes_terms]->(kw:Key_word {name:"Phase 
Diagrams"}), 

  (n)-[:belongs_to_topic]-(m)-[:links_to]-(c:Topic) 
 RETURN DISTINCT c.name AS Topic, c.description AS Description 
To improve this query the following prompt has been provided to LLM: 
 This is almost correct. A correct result has been repurned. 

But there was not a request for the description, but instead it 
would be better to include also the name of the article to the 
resules. 

After this notice the next corrected version of the query was returned: 
 MATCH (n)-[:includes_terms]->(kw:Key_word {name:"Phase 

Diagrams"}), 
  (n)-[:belongs_to_topic]-(m)-[:links_to]-(c:Topic) 
 RETURN n.name AS Article, c.name AS Topic 
This one returns articles matched to their topics, but without descriptions, which it was not 

asked for. 
For the request to make a Cypher query for the natural language query: “Give me the name and 

description of the technology devoted to the phase transformation process”. A completely correct 
response has been obtained, which is grounded on the previous tries and fails: 

 MATCH (a:Article)-[]-(r)-[:links_to]-(n:Technology)-
[:include_process]-(m)-[:links_to]-
 (c:Process {name:"Phase Transformation"}) 

 RETURN n.name AS Technology, n.description AS Description, a.n
ame as InArticle 

Such an interactive iterative process of meta-learning of an LLM seams to be a promising 
approach to adopt such a model to a certain knowledge graph to convert natural language requests 
to formal Cypher queries. This could be useful for natural language reference systems development 
which use in their structure APIs of large language modes as a working tool. 

In addition, the semantic coherence observed in our Cypher queries aligns with findings from 
software reuse experiments [3, 4], where AI-driven comparisons of user stories reduced 
development time. However, challenges persist in entity labelling consistency, akin to limitations 
in multilingual systems handling natural languages of different types [1, 17]. Future work could 
integrate domain-specific fine-tuning, as proposed for PlantUML-based UML generation [17, 29], to 
improve contextual awareness. By addressing these challenges, our framework not only 
streamlines knowledge management but also advances compliance with FAIR principles [30], 
echoing the transformative potential of LLMs in software engineering and cross-lingual data 
interoperability. 

5. Conclusions 
This study demonstrates the efficacy of LLMs in automating knowledge graph construction and 
query generation for materials science research. By comparing four LLM-generated graph variants, 
the "Qwen–GPT-4" combination proved superior, balancing structural coherence with 
comprehensive entity linkages. The iterative meta-learning approach for Cypher query generation 
– where models adapt to correct relationship labels and navigate parasitic nodes – significantly 
enhanced accuracy, enabling robust natural language interfaces. 

Challenges persist, particularly in ensuring consistent entity labelling and minimising 
extraneous nodes introduced during RDF conversion. Future work could explore hybrid 
architectures combining LLMs with symbolic reasoning tools to enforce logical rigour, or domain-
specific fine-tuning to improve contextual awareness. Additionally, expanding benchmarking 
metrics to assess ontological validity and scalability remains critical. 



Ultimately, this approach offers a pathway to streamline knowledge management in scientific 
domains. By reducing reliance on manual curation, LLMs can accelerate research workflows, foster 
interoperability, and make complex datasets more accessible to both specialists and non-experts. 
As as LLM capabilities evolve, integrating them with knowledge graphs promises to unlock new 
frontiers in data-driven research. 
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