
LLM-Driven Knowledge Graphs: Automated Creation and
Natural Language Querying for Materials Science
Research

Vladislav Kaverinskiy1,∗,†, Oeksandr Palagin1,∗,†, Dariia Nikitiuk1,†, Anna Litvin1,†,
Kyrylo Malakhov1,†

1 Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Glushkov av. 40 03187 Kyiv, Ukraine

Abstract
The presented work is devoted to integrating large language models (LLMs) into knowledge graph
construction and query generation presents a transformative opportunity in scientific domains like
materials science. Namely, this study explores using LLMs – specifically GPT-4, DeepSeek, and Qwen2.5-
72B-Instruct – to automate the creation of knowledge graphs from scientific articles and generate Cypher
queries from natural language inputs. A multi-step methodology was developed, involving JSON
extraction, RDF/XML conversion, and deployment into graph databases, with iterative meta-learning to
refine query accuracy. Four knowledge graph variants were evaluated, with the "Qwen–GPT-4"
combination emerging as the most comprehensive due to its detailed entity linkages and structural
coherence. Results demonstrate that iterative LLM prompting significantly enhances Cypher query
generation and addresses issues such as mislabeled relationships and parasitic nodes. This work
highlights the potential of LLMs to streamline knowledge management, aligning and enhancing
accessibility to complex scientific data.

Keywords
natural language processing, large language models, prompt engineering, knowledge graph, knowledge

management 1

1. Introduction

In materials science, the growing volume of research data requires efficient methods to organise
and interrogate knowledge. Traditional approaches to constructing knowledge graphs – manually
curating entities and relationships – are labour-intensive and prone to scalability issues. Recent
advances in large language models (LLMs), however, offer a promising alternative: automating the
extraction of structured information from unstructured texts and enabling natural language
interfaces for querying graph databases.

This study addresses two interconnected challenges: automating knowledge graph creation
from scientific articles using LLMs and generating accurate Cypher queries from natural language
inputs through iterative model refinement. By means of models such as GPT-4, DeepSeek, and
Qwen2.5-72B-Instruct, a pipeline was developed that transforms articles into RDF/XML-based
graphs deployable in systems like Neo4J. Furthermore, it has been introduced a meta-learning

Workshop “Software engineering and semantic technologies" SEST, co-located with 15th International Scientific and Practical
Programming Conference UkrPROG’2025, May 13-14, 2025, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 insamhlaithe@gmail.com (V.Kaverinskiy); palagin_a@ukr.net (O.Palagin); nikityuk.dv@gmail.com (D.Nikitiuk);
litvin_any@ukr.net (A.Litvin); k.malakhov@incyb.kiev.ua (K.Malakhov)

 0000-0002-6940-579X (V.Kaverinskiy); 0000-0003-3223-1391(O.Palagin); 0000-0002-9639-5232 (D.Nikitiuk);
0000-0002-5648-9074 (A.Litvin); 0000-0003-3223-9844 (K.Malakhov)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

approach where LLMs iteratively improve Cypher query generation by learning from corrected
outputs.

This work builds on prior research in LLM-driven SPARQL/Cypher generation and ontology
extraction, yet extends these efforts by focusing on domain-specific challenges in materials science,
such as capturing process-structure-property relationships. The results underscore the viability of
LLMs in democratising access to complex datasets while highlighting critical considerations for
model selection, prompt engineering, and structural validation. By integrating iterative meta-
learning, we address challenges such as parasitic nodes and mislabelled relationships – issues akin
to those observed in multilingual text processing systems [1], where ontology-driven approaches
improve cross-lingual consistency.

The integration of LLMs into knowledge graph construction and query generation represents a
paradigm shift in managing scientific data, particularly in domains like materials science. While
traditional approaches to knowledge extraction rely on manual curation or rigid rule-based
systems [2], recent advancements in semantic analysis and model-driven engineering offer
pathways to automation. For instance, [3, 4] demonstrated the viability of semantic matching for
software asset reuse, leveraging keywords and OCL expressions to align requirements with
existing components – a methodology that parallels the semantic grounding of entities in
knowledge graphs. Similarly, multilingual frameworks for text-to-model transformations [1]
highlight the potential of structured representations (e.g., UML diagrams) to bridge unstructured
texts and formalized knowledge structures, a concept critical to graph-based data interoperability.

The primary objective of this study is to develop and validate a framework that utilizes large
language models to automate the construction of domain-specific knowledge graphs from
unstructured scientific articles and enable intuitive querying through natural language interfaces.
By integrating iterative meta-learning, the approach refines Cypher query generation for graph
databases, addressing challenges in entity linkage accuracy and structural coherence. Focused on
materials science, this work aims to enhance data accessibility and reduce manual curation efforts,
thereby streamlining knowledge management in research workflows.

2. Related Works

The integration of LLMs into the generation of structured data representations, such as RDF/XML
knowledge graphs and SPARQL queries, has emerged as a transformative research area. Recent
advancements highlight the potential of LLMs to bridge the gap between natural language inputs
and formalized knowledge structures, enabling more accessible interaction with complex datasets.
Central to this progress is the ability of LLMs to translate user queries into structured query
languages like SPARQL and Cypher, which are critical for interacting with graph databases and
knowledge graphs. For instance, Emonet et al. [5] introduced a Retrieval-Augmented Generation
(RAG) system that leverages LLMs alongside metadata, including query examples and schema
information, to generate federated SPARQL queries over bioinformatics knowledge graphs. Their
validation step reduces hallucinations, improving reliability. Similarly, Mecharnia and d’Aquin [6]
demonstrated the effectiveness of fine-tuned LLMs in converting natural language questions into
SPARQL queries, though they noted challenges in handling domain-specific nuances and logical
consistency. In the realm of Cypher, Ozsoy et al. [7] developed Text2Cypher, a system that
translates natural language into graph database queries, emphasizing the role of high-quality
datasets and fine-tuning in improving performance. These efforts underscore the dual focus on
enhancing user accessibility and ensuring query accuracy, particularly in scientific domains such
as materials science.

Materials science has seen significant advancements through the application of ontologies and
graph databases. Dreger et al. [8] proposed a native graph database architecture to store
heterogeneous data from fabrication workflows, measurements, and simulations, extending the
European Materials Modelling Ontology (EMMO) to standardize energy materials data. This
approach aligns with the broader goals of FAIR (Findable, Accessible, Interoperable, Reusable) data

principles. A complementary study introduced a materials graph ontology in [9], addressing gaps
in existing ontologies by formalizing data ingest frameworks to capture process-structure–
property relationships. These developments highlight how LLMs can further enhance such systems
by automating ontology creation and query generation, though challenges remain in ensuring
logical validity and scalability.

The evolution of neural machine translation (NMT) architectures for SPARQL generation has
been pivotal. Yin et al. [10] compared CNNs, RNNs, and Transformers, finding that CNN-based
models achieve high BLEU scores and accuracies on datasets like Monument and DBNQA.
However, the structured nature of SPARQL and out-of-vocabulary (OOV) issues persist as
challenges. Hirigoyen et al. [11] addressed OOV by integrating a copy mechanism into encoder-
decoder architectures, enabling the direct transfer of knowledge base tokens from input questions
to queries. This approach mitigates ambiguities in schema elements, a critical step toward robust
query generation. Parallel advancements in visiolinguistic learning, such as survey [12], emphasize
the role of external knowledge graphs and LLMs in tasks like Visual Question Answering (VQA)
and Image Captioning. These studies advocate hybrid models combining explicit knowledge (e.g.,
ontologies) with implicit knowledge (e.g., pre-trained models) to enhance multimodal reasoning.

PAROT, a dependency-based framework for SPARQL generation [13], exemplifies the synergy
between syntactic analysis and ontology alignment. Its lexicon, built using the lemon model,
resolves ambiguities in scalar adjectives and negation, while dependency parsing identifies triples
and logical operators. Evaluated on QALD-9 and Geoquery datasets, PAROT outperformed
gAnswer in complex queries, achieving 87.55% Macro-F1 on Geoquery. However, its reliance on
dependency parsing introduces computational overhead, and temporal query handling remains
limited. These limitations underscore the need for integrative approaches, such as combining LLMs
with symbolic reasoning, to address scalability and domain-specific requirements.

The automation of OWL ontology creation from scientific texts represents a frontier in LLM
applications. Current systems face challenges in ensuring logical consistency and semantic
coherence, as OWL requires strict adherence to description logic. Recent studies, such as the work
by Abolhasani and Pan [14], explore LLMs for ontology extraction, leveraging structured prompts
and iterative refinement. For instance, OntoKGen employs a Chain of Thought algorithm to align
outputs with user requirements, while fusion-jena’s semi-automated pipeline constructs knowledge
graphs from competency questions. Despite these advances, accuracy and validation remain critical
issues, particularly in specialized domains like materials science.

Comparative analyses of LLMs reveal distinct strengths and limitations. GPT-4 demonstrates
broad code generation capabilities but requires post-validation for OWL axioms. Qwen-72B excels
in API-centric tasks and multilingual contexts but struggles with low-resource programming
languages. DeepSeek-MoE, optimized for STEM domains, incorporates lightweight reasoning to
reduce inconsistencies, as seen in its biomedical ontology experiments [15]. These models highlight
the importance of domain-specific fine-tuning and hybrid architectures that blend LLM flexibility
with symbolic constraints.

The evaluation of LLM-based systems often relies on benchmarks like HumanEval and
HumanEval-Math, though metrics for ontology quality remain underdeveloped. Functional
correctness, measured via pass@k rates, is supplemented by structural metrics like CodeBLEU,
which assesses syntax trees. However, assessing logical validity in OWL requires specialized tools,
such as reasoners to detect entailment violations. Future research must prioritize standardized
benchmarks and interdisciplinary methods that merge knowledge representation with deep
learning.

Challenges persist in ambiguity resolution, scalability, and ethical considerations. Natural
language descriptions often lack precision, leading to inconsistent axioms or queries. Temporal
reasoning and aggregation operations remain underexplored, limiting applications in dynamic
datasets. Additionally, biases in training data and knowledge representation can propagate errors,
necessitating rigorous validation frameworks. The integration of LLMs with existing tools like

Protégé and graph databases offers a path forward, enabling iterative refinement and human
oversight.

In materials science, the synergy between LLMs and ontologies has practical implications for
data interoperability. For example, Dreger et al. [8] extended EMMO to capture fabrication
workflows, enabling systematic analysis of material properties. LLMs could automate this process
by extracting entities and relationships from research articles, though domain-specific training and
prompt engineering are essential. Experiments demonstrated varying success across GPT, Qwen,
and DeepSeek in generating ontologies from scientific texts, with DeepSeek’s biomedical focus
yielding the most consistent results.

The future of LLM-driven knowledge representation lies in hybrid architectures, dataset
enrichment, and interdisciplinary collaboration. Integrating LLMs with symbolic reasoning
systems, such as those proposed by Nakajima and Miura [16], could enhance logical rigour.
Expanding training data with domain-specific annotations and leveraging federated learning for
sensitive datasets are additional strategies. Ethical frameworks must also evolve to address
transparency and accountability, ensuring that automated systems align with scientific and societal
values.

Thus, LLMs have revolutionized the translation of natural language into structured data
formats, offering unprecedented opportunities for scientific research and data management. While
challenges in consistency, scalability, and domain adaptation remain, ongoing advancements in
model architectures, evaluation methodologies, and hybrid systems promise to unlock the full
potential of these tools. Prior research in semantic analysis and model-driven engineering provides
foundational insights for LLM-driven knowledge graph workflows. In [1] it was introduced
semantic matching techniques for software reuse, using OCL expressions to compare requirement
specifications with repository assets – a precursor to LLM-based entity linkage in knowledge
graphs. Meanwhile, text-to-model transformation frameworks [17] underscore the importance of
structured representations, such as XMI and PlantUML, in restoring UML diagrams from
heterogeneous formats, a challenge mirrored in RDF/XML graph conversions.

3. Materials and Methods

The presented here study included two main parts. The first is the creation of a knowledge graph
grounded on a set of scientific articles involving LLMs. The second part was devoted to the
creation of Cypher queries to the developed graph database from natural language queries using an
LLM. The input articles [18 – 22] all belong to the domain of material science. The following LLMs
have been use in the study: GPT-4 [23], Deep Seek (R1) [24], and Qwen2.5-72B-Instruct [25].

For the creation of the knowledge graph the following approach has been developed, which
includes the next main steps:

1. Develop a prompt for LLM that includes the list and descriptions of the desired classes of
the graph nodes and links between them. The prompt also includes a template of the JSON
structure to be used for the extracted information storage.

2. Creation of a JSON representation of the knowledge graph using an LLM with the prompt
and input articles. At this stage, several articles at once could be used, if the context
window of the LLM allows it or the JSON representations are created by one for each of the
articles.

3. A merged knowledge graph in JSON format is created from the obtained on the previous
step fragments by means of an LLM. For the knowledge graph merge either the same or
different LLM can be used, depending on the quality of the obtained result.

4. The merged knowledge graph from the JSON format also using an LLM is to be
transformed to RDF/XML format, which is needed to easily export it to a graph DBMS like
Neo4J [26] or Apache Jena Fuseki [27].

5. The final step is deploying the knowledge graph into a chosen graph DBMS.

The scheme of this technique is presented in Figure 1.

Figure 1: A general scheme of the involved knowledge graph from articles creation technique.

The text of the prompt was the same for all the considered LLMs. The text of the prompt as well
as well as the obtained JSON and RDF/XML representations of the knowledge graphs can be found
in the GIT Hub repository [28].

For the interface of Qwen allows only a single file downloading in one message the JSON
representations were being created for each of the given articles and then merged into a one file
using an LLM. Other ones – GPT and Deep Seek – allow several files uploading, however still have
limits for the attached files total size.

During the carried out study, the following four variants of RDF/XML knowledge graphs have
been created:

1. Documents data parsing in Deep Seek, conversion to RDF/XML using GPT-4 (“DS – GPT-
4”).

2. Documents data parsing in Deep Seek, conversion to RDF/XML using Qwen (“DS – Qwen”).
3. Documents data parsing in Qwen, merging and conversion to RDF/XML using GPT-4

(“Qwen – GPT-4”).
4. Documents data parsing in Qwen, conversion to RDF/XML using Qwen – one file without

merging (“Qwen – Qwen”).

For experiments with Cypher queries a knowledge graph “Qwen – GPT-4” has been selected as
containing information from all the articles as well being found rather more complete and well
structured than others.

The following technique has been applied for Cypher query creation from natural language
ones using LLM (GTP-4). An initial prompt has been provided:

Here is an RDF/XML file. This file can be imported to Neo4J. You

following tasks will be generation of Cypher queries from natural
nanguage queries. The init parameters for import were:
handleVocabUris: "IGNORE", handleMultival: "OVERWRITE",
handleRDFTypes: "LABELS".

As it can be seen, an appropriate RDF/XML has been given to LLM to inform it with the

knowledge graph structure. Also, some additional technical information has been provided in this
prompt, namely the graph import parameters. Then the LLM was been asked to create a certain
query for a rather simple natural language phrase. The returned Cypher query execution was

tested in Neo4J. Then the text of the query was manually changed to improve the output. This
revised version of the query was being provided for LLM for further generation improvement.
Then the LLM has been provided with new natural language queries – more complicated and/or
devoted to different subjects. The reason for the procedure was iterative interactive meta-learning
of an LLM to improve its ability for Cypher query generation tuned for a certain knowledge base.

4. Results and Discussion

All of the four created RDF/XML representations of the knowledge graphs appear valid – able to be
opened in Protégé editor and have been successfully imported to Neo4J. However, “DS – GPT-4”
have demonstrated quite a specific structure, so the entity names did not appear as convenient
classes and properties. The fullness of each of them can be judged from the RDF triplets numbers
counted when knowledge graphs are imported to Neo4J. The corresponding values are presented in
Table 1.

Table 1
Estimated sizes the generated knowledge graph

Knowledge graph
(by LLMs used)

Number or RDF
triples

File size, Kb

DS – GPT-4 129 12.4
DS – Qwen 126 14.1
Qwen – GPT-4 207 23.8
Qwen – Qwen 201 20.6

The knowledge graph “DS – GPT-4” has appeared rather brief and mostly thesaurus-like. Each

entity description contains tags <rdfs:label> and <rdfs:comment> to provide their appropriate
name and description. However, the descriptions appeared quite brief and not very informative.
Instead of the usual <rdf:type> tag this representation includes an <ex:category> container tag. In
general this knowledge graph includes not very developed linkage between entities and looks
rather as a demonstrative example.

The next “DS – Qwen” knowledge graph has some similarities to the previously mentioned one,
which is not surprising for Deep Seek LLM was used in the main operation of knowledge
extraction for both of them. The descriptions are still brief but now are included in tags
<ex:description> and instead of <rdfs:label> here we found <ex:name>. However, the class
belonging identifiers now are in <rdf:type> tags. So when parsing it through Protégé or Neo4J the
types (classes) of the nodes explicitly appeared and were accessible. However, as well as
previously, here we see quite pour rather demonstrative linkage. It seems like Deep Seek LLM
works in a “lazy” way, especially when dealing with a set of files. It extracts some random linked
data and then allows you to proceed in the same way behaving rather like a virtual assistant than a
working tool which it is expected to be regarded to the current task.

Somewhat better results have been obtained by processing the input files one by one using
Qwen 72B-Instruct for the purpose. Having less input information but operating with the same
amount of the context window volume more information could be extracted from each of the input
documents. An example of such an approach here is the “Qwen – GPT-4” knowledge graph. It has
a rather more developed linkage and covers most of the key aspects presented in the articles. In
this version of our knowledge graph, the most detailed and comprehensive descriptions are
provided. Moreover, some of such descriptions contain not only presented in the input article
information but also details collected elsewhere, probably owing to the web search possibility of
the LLMs used.

Dealing with the stage of RDF/XML formation with only one document JSON representation. It
does not contain such detailed and comprehensive descriptions, but the biggest number of entities

related to one article. One of the peculiarities of this knowledge graph is named intermediate
resource nodes with <ex:has_value> tags that represent the qualitative values of the links. The
links themselves do not include values but directions only. The “Qwen – GPT-4” knowledge graph
either does not have values of the links but has “parasitic” nodes built between the reasonable
nodes. Such “parasitic” nodes we can see as well in the structure of the “DS – GPT-4” knowledge
graph and their presence could be caused by some drawbacks brought in by some GPT-4 behaviour
hangs on the RDF/XML creation stage. It seems like Qwen represents the link value explicitly but
GPT-4 is not.

The “Qwen – GPT-4” knowledge graph has been selected for further study of Cypher queries
creation for several main reasons: it covers several articles of different topics but some similarities;
it is rather developed in linkage than “DS – GPT-4” and “DS – Qwen”; it has those “parasitic” nodes
which are an interesting challenge for LLM to overcome when queries creation meta-learning; it
has comprehensive descriptions which seam perspective for further practical implementation.

Let us consider an example of meta-learning of Cypher query creation using GPT-4o with
reasoning. The first task will be: “Give me the names of the article and the corresponding
keywords.”. The first resulting Cypher query returned by the LLM was as follows:

 MATCH (a:Article)-[:HAS_KEYWORD]->(kw:Keyword)
 RETURN a.name AS articleName, kw.name AS keyword
This query is generally syntactically correct, but does not assume all the specifics regarding to a

certain knowledge graph. Namely, the correct link name here must be “includes_terms” not
“HAS_KEYWORD”, the class of the node is “Key_word” but not “Keyword”. The class “Article” is
correct, but here is not obligatory, because in the current graph all the “Key_word” have incoming
links from “Articles” only. Thereby, more correct query will be the next:

 MATCH (n)-[:includes_terms]->(m:Key_word)
 RETURN n.name AS articleName, m.name AS keyword

The following task was to create a Cypher query from: “Give me the names of the articles by
the keyword "Steel". This time the LLM coped with the job and returned the next correct query:

 MATCH (n)-[:includes_terms]->(m:Key_word {name:"Steel"})
 RETURN n.name AS articleName
The query have returned a correct result of two articles names (“Mathematical Modelling of

Primary Recrystallization Kinetics and Precipitation of Carbonitride Particles in Steels. II.
Recrystallization Kinetics” and “Mathematical Modelling of Kinetics of Decomposition of the
Supercooled Austenite in Alloyed Steels”) which indeed include the keyword “Modelling” in the
knowledge graph.

Then a different and a bit more complicated task was given to LLM, namely to create a Cypher
query for the request: “Provide the names and descriptions of the topics to which the articles
belong.” The first returned result was again not correct:

 MATCH (a)-[:belongs_to]->(t:Topic)
 RETURN DISTINCT t.name AS topicName, t.description AS

topicDescription
The two main reasons are not assuming a “parasitic” node between “Article” and “Topic”, and, a

minor one, the real name of the link is “belongs_to_topic” not just “belongs_to”. Thus, the correct
version will be:

 MATCH (n)-[:belongs_to_topic]-(m)-[:links_to]-(c:Topic)
 RETURN n.name as Article, c.name AS Topic, c.description AS

Description
Here appears that “parasitic” node (m) with its following link “links_to”. Also a not critical but

making the response more convenient will be returning the name of the article as well.
The following query to the LLM to make a Cypher query was: “To which topic belong articles

that have the keyword "Phase Diagrams"?”. The response of LLM this time was almost completely
correct:

 MATCH (n)-[:includes_terms]->(kw:Key_word {name:"Phase
Diagrams"}),

 (n)-[:belongs_to_topic]-(m)-[:links_to]-(c:Topic)
 RETURN DISTINCT c.name AS Topic, c.description AS Description
To improve this query the following prompt has been provided to LLM:
 This is almost correct. A correct result has been repurned.

But there was not a request for the description, but instead it
would be better to include also the name of the article to the
resules.

After this notice the next corrected version of the query was returned:
 MATCH (n)-[:includes_terms]->(kw:Key_word {name:"Phase

Diagrams"}),
 (n)-[:belongs_to_topic]-(m)-[:links_to]-(c:Topic)
 RETURN n.name AS Article, c.name AS Topic
This one returns articles matched to their topics, but without descriptions, which it was not

asked for.
For the request to make a Cypher query for the natural language query: “Give me the name and

description of the technology devoted to the phase transformation process”. A completely correct
response has been obtained, which is grounded on the previous tries and fails:

 MATCH (a:Article)-[]-(r)-[:links_to]-(n:Technology)-
[:include_process]-(m)-[:links_to]-
 (c:Process {name:"Phase Transformation"})

 RETURN n.name AS Technology, n.description AS Description, a.n
ame as InArticle

Such an interactive iterative process of meta-learning of an LLM seams to be a promising
approach to adopt such a model to a certain knowledge graph to convert natural language requests
to formal Cypher queries. This could be useful for natural language reference systems development
which use in their structure APIs of large language modes as a working tool.

In addition, the semantic coherence observed in our Cypher queries aligns with findings from
software reuse experiments [3, 4], where AI-driven comparisons of user stories reduced
development time. However, challenges persist in entity labelling consistency, akin to limitations
in multilingual systems handling natural languages of different types [1, 17]. Future work could
integrate domain-specific fine-tuning, as proposed for PlantUML-based UML generation [17, 29], to
improve contextual awareness. By addressing these challenges, our framework not only
streamlines knowledge management but also advances compliance with FAIR principles [30],
echoing the transformative potential of LLMs in software engineering and cross-lingual data
interoperability.

5. Conclusions
This study demonstrates the efficacy of LLMs in automating knowledge graph construction and
query generation for materials science research. By comparing four LLM-generated graph variants,
the "Qwen–GPT-4" combination proved superior, balancing structural coherence with
comprehensive entity linkages. The iterative meta-learning approach for Cypher query generation
– where models adapt to correct relationship labels and navigate parasitic nodes – significantly
enhanced accuracy, enabling robust natural language interfaces.

Challenges persist, particularly in ensuring consistent entity labelling and minimising
extraneous nodes introduced during RDF conversion. Future work could explore hybrid
architectures combining LLMs with symbolic reasoning tools to enforce logical rigour, or domain-
specific fine-tuning to improve contextual awareness. Additionally, expanding benchmarking
metrics to assess ontological validity and scalability remains critical.

Ultimately, this approach offers a pathway to streamline knowledge management in scientific
domains. By reducing reliance on manual curation, LLMs can accelerate research workflows, foster
interoperability, and make complex datasets more accessible to both specialists and non-experts.
As as LLM capabilities evolve, integrating them with knowledge graphs promises to unlock new
frontiers in data-driven research.

Acknowledgements
This research was carried out as part of the scientific and technical project “Develop means of
supporting virtualization technologies and their use in computer engineering and other
applications” (state registration number: 0124U001826). The study was also conducted under the
scientific and technical project “To develop theoretical foundations and a functional model of a
computer for processing complex information structures” (state registration number:
0124U002317). Both projects are being implemented at the V. M. Glushkov Institute of Cybernetics
of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Declaration on Generative AI
The author(s) have not employed any Generative AI tools.

CRediT authorship contribution statement
Vladislav Kaverinsky: Investigation, Writing – Original Draft, Resources, Methodology. Oleksandr
Palagin: Conceptualization, Supervision. Dariia Nikitiuk: Writing – Review & Editing. Anna Litvin:
Writing – Review & Editing. Kyrylo Malakhov: Validation, Writing – Review & Editing.

References

[1] O. Chebanyuk, Multilingual Question-Driven Approach and Software System to Obtaining
Information From Texts, in: CEUR Workshop Proceedings, vol. 3501, 2022, pp. 256–265.
URL: https://ceur-ws.org/Vol-3501/s24.pdf.

[2] A. Litvin, O.V. Palagin, V.V. Kaverinskiy, K.S. Malakhov, Ontology-Driven Development of
Dialogue Systems, South African Computer Journal 35 (1), 37–62 (2023).
doi:10.18489/sacj.v35i1.1233.

[3] O. Chebanyuk, An Approach to Software Assets Reusing, in: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 450 of
LNICST, 2022, pp. 73–83. doi:10.1007/978-3-031-17292-2_6.

[4] O. Chebanyuk, Requirement Analysis Approach to Estimate the Possibility of Software
Development Artifacts Reusing Consulting with Artificial Intelligence Technologies, in: CEUR
Workshop Proceedings, vol. 3806, 2024, pp. 62–74. URL: https://ceur-ws.org/Vol-
3806/S_43_Chebanyuk.pdf.

[5] V. Emonet, J. Bolleman, S. Duvaud, T. M. de Farias, A. C. Sima, LLM-based SPARQL Query
Generation from Natural Language over Federated Knowledge Graphs, arXiv preprint
arXiv:2410.06062 (2024).

[6] T. Mecharnia, M. d’Aquin, Performance and Limitations of Fine-Tuned LLMs in SPARQL
Query Generation, in: Proceedings of the Workshop on Generative AI and Knowledge Graphs
(GenAIK), 2025, pp. 69–77.

[7] M. G. Ozsoy, L. Messallem, J. Besga, G. Minneci, Text2Cypher: Bridging Natural Language and
Graph Databases, in: Proceedings of the Workshop on Generative AI and Knowledge Graphs
(GenAIK), 2025, pp. 100–108.

[8] M. Dreger, K. Malek, M. J. Eslamibidgoli, M. H. Eikerling, Synergizing Ontologies and Graph
Databases for Highly Flexible Materials-to-Device Workflow Representations, J. Mater.
Inform. 3 (2023).

[9] S. P. Voigt, S. R. Kalidindi, Materials Graph Ontology, Mater. Lett. 295, 129836 (2021).
doi:10.1016/j.matlet.2021.129836.

[10] X. Yin, D. Gromann, S. Rudolph, Neural Machine Translating from Natural Language to
SPARQL, Future Gener. Comput. Syst. 117, 510–519 (2021). doi:10.1016/j.future.2020.12.013.

[11] R. Hirigoyen, A. Zouaq, S. Reyd, A Copy Mechanism for Handling Knowledge Base Elements
in SPARQL Neural Machine Translation, in: Findings of the Association for Computational
Linguistics: AACL-IJCNLP 2022, 2022, pp. 226–236.

[12] M. Lymperaiou, G. Stamou, The Contribution of Knowledge in Visiolinguistic Learning: A
Survey on Tasks and Challenges, CEUR Workshop Proceedings, 2023.

[13] P. Ochieng, PAROT: Translating Natural Language to SPARQL, Expert Syst. Appl. 10, 100024
(2020). doi:10.1016/j.eswax.2020.100024.

[14] M. S. Abolhasani, R. Pan, Leveraging LLM for Automated Ontology Extraction and Knowledge
Graph Generation, arXiv preprint arXiv:2412.00608 (2024).

[15] L. Zhang et al., Biomedical Ontology Generation with DeepSeek, J. Biomed. Semantics (2024).
doi:10.1186/s13326-024-00311-4.

[16] H. Nakajima, J. Miura, Combining LLMs and Symbolic Reasoning for OWL Ontology
Generation, in: Proc. AAAI Conf. Artif. Intell., 2024. arXiv:2410.16804v1.

[17] An Approach of Text to Model Transformation of Software Models, in: ENASE 2018:
Proceedings of the 13th International Conference on Evaluation of Novel Approaches to
Software Engineering, Funchal, Madeira, Portugal, 2018, pp. 432–439.
doi:10.5220/0006804504320439.

[18] V.V. Kaverynsky, A.I. Trotsan, Z.P. Sukhenko, Mathematical Modelling of Kinetics of
Decomposition of the Supercooled Austenite in Alloyed Steels, Metallofiz. Noveishie
Tekhnol. 39(8), 1051–1068 (2017). doi:10.15407/mfint.39.08.1051.

[19] V.V. Kaverinsky, Z.P. Sukhenko, Mathematical Modelling of Primary Recrystallization Kinetics
and Precipitation of Carbonitride Particles in Steels. I. Precipitation, Metallofiz. Noveishie
Tekhnol. 43(1), 27–45 (2021). doi:10.15407/mfint.43.01.0027.

[20] V.V. Kaverinsky, Z.P. Sukhenko, Mathematical Modelling of Primary Recrystallization Kinetics
and Precipitation of Carbonitride Particles in Steels. II. Recrystallization Kinetics, Metallofiz.
Noveishie Tekhnol. 43(2), 235–244 (2021). doi:10.15407/mfint.43.02.0235.

[21] V.V. Kaverinsky, Z.P. Sukhenko, G.A. Bagluk, D.G. Verbylo, About Al–Si Alloys Structure
Features and Ductility and Strength Increasing after Deformation Heat Processing, Metallofiz.
Noveishie Tekhnol. 44(6), 769–784 (2022). doi:10.15407/mfint.44.06.0769.

[22] V.V. Kaverynsky, Z.P. Sukhenko, Evaluation of Computer Model Results for Thermodynamic
and Kinetic Calculation of Phase Transformation in a Middle-Carbon Alloyed Steel, Metallofiz.
Noveishie Tekhnol. 47(2), 183–197 (2025). doi:10.15407/mfint.47.02.0183.

[23] OpenAI, GPT-4 Technical Report, arXiv preprint arXiv:2303.08774 (2023).
doi:10.48550/arXiv.2303.08774.

[24] Alibaba, Qwen Technical Report, 2023. [Online]. URL: https://qwenlm.github.io.
[25] DeepSeek, Lightweight Reasoning in DeepSeek, 2023. [Online].

URL: https://deepseek.ai/docs/reasoning.
[26] Neo4j Inc, Neo4j graph database, 2025. URL: https://github.com/neo4j/neo4j
[27] The Apache Software Foundation, Apache jena kuseki, 2025. [Online]. URL:

https://github.com/apache/jena.
[28] GitHub Repository, "Files for the Article Approach to Knowledge Graphs Creatusing Using

LLMs," 2024. URL: https://github.com/VladislavKaverinskiy/Files-for-the-article-Approach-to-
knowledge-graphs-creatusing-using-LLMs.

[29] O. Chebanyuk, An Approach to Class Diagram Design, in: Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2014), Lisbon, Portugal, 2014, pp. 448–453. doi:10.5220/0004763504480453.

[30] M.D. Wilkinson et al., The FAIR Guiding Principles for Scientific Data Management and
Stewardship, Sci. Data 3, 160018 (2016).

