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Abstract
Natural Language Processing (NLP) is rapidly evolving, with significant advancements in tasks such as translation,
summarization, and language understanding across multiple languages. The field has made remarkable progress
in enabling machines to comprehend and generate human language, bridging communication gaps. However,
summarization for Indian languages, especially low-resource ones like Hindi, remains a challenging problem
due to limited availability of annotated datasets and linguistic diversity. This paper presents an approach
using the IndicBART model, a pre-trained language model designed for Indian languages, to generate coherent
and meaningful summaries for Hindi text, addressing the unique challenges associated with Indian language
summarization. This approach also discusses the possibility of dividing the articles into smaller chunks to generate
sub-summaries when compute resources are not available, and a smaller model is required to be used.
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1. Introduction

Natural Language Processing (NLP) has seen rapid advancements over the past decade, enabling
machines to perform tasks such as translation, summarization, and sentiment analysis across diverse
languages. These developments have significantly improved the ability to bridge language barriers
and facilitate multi-language communication. However, challenges remain, especially in the context of
low-resource languages, where the availability of high-quality annotated data is limited, hindering the
effectiveness of various NLP models.

In the case of Indian languages, summarization poses a unique challenge due to the vast linguistic
diversity and complex syntactic structures. While some progress has been made for widely spoken
languages like Hindi, there is still a need for more refined approaches that can accurately capture the
nuances and produce coherent summaries. This paper addresses these challenges by focusing on Hindi
language summarization using pre-trained language models.

One of the initial approaches explored for Hindi summarization was the use of the IndicBERT model, a
pre-trained language model specifically designed for Indian languages. IndicBERT has shown promising
results in various language understanding tasks; however, it encountered significant challenges in
tokenizing Hindi text for summarization. Specifically, the tokenizer often stripped away vowel markers
and other diacritics, which are crucial for meaning in Hindi. This resulted in distorted tokenized
representations that compromised the quality of generated summaries. The inability to retain essential
linguistic components made IndicBERT unsuitable for the task, as it failed to adequately capture the
semantic nuances of the original text.

Another approach tested was the mT5 model, a multilingual variant of the T5 (Text-to-Text Transfer
Transformer) model that supports over 100 languages, including Hindi. The mT5-small model was
chosen due to computational resource constraints. However, it struggled to learn effectively during the
training phase, yielding low ROUGE scores that did not show significant improvement over successive
epochs. While larger versions of mT5, such as mT5-base or mT5-large, could potentially offer better
performance, upgrading to these models was not feasible due to the limited availability of GPU memory.
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Consequently, mT5-small was found to be inadequate for producing high-quality summaries, particularly
for a complex language like Hindi.

IndicBART emerged as a more suitable model for Hindi summarization compared to both IndicBERT
and mT5-small. Unlike IndicBERT, IndicBART’s tokenizer handled the intricacies of the Hindi language
much more effectively, preserving vowel markers and diacritics, which are essential for capturing
the meaning of words accurately. This resulted in better tokenized representations that retained the
linguistic richness of the original text. Additionally, while both IndicBART and mT5-small are based
on encoder-decoder architectures, IndicBART is specifically fine-tuned for Indian languages and has
been pre-trained on a diverse corpus of Indian language texts. This likely gave it an advantage over
mT5-small, which, although multilingual, may not have had the same level of exposure to Indian
language data. Consequently, IndicBART demonstrated better learning capabilities and produced higher
quality summaries, making it a more effective choice for the task.

We further discuss the approach of dividing large input text (news articles in this case) into smaller
chunks so that fit into the maximum input size of IndicBART (1024 tokens).

2. Methodology and Algorithm

IndicBART is conceptually based on the mBART25/50 model family, utilizing a sequence-to-sequence
architecture with both an encoder and a decoder. The model features six layers each for the encoder and
decoder, with a hidden size of 1024 and a feed-forward filter size of 4096. It employs 16 attention heads
to effectively capture contextual information across the input sequence. With a total of 244 million
parameters,

Following are the details of our approach -
The model IndicBART allows an input size of a maximum of 1024 tokens. The average size of the

input in the dataset (Headline + Article) was 474 words before the tokenizer was applied, while the
maximum was 5089 words. IndicBART uses a sentence-piece tokenizer, which breaks down words into
sub-words. Essentially, this means that the length of the input tensor comprising of the tokens that
the model generates for each input article, will be even greater than the number of words. Thus, we
cannot pass the whole input string directly into the This meant that if the Tokenizer for IndicBART was
applied directly on the input row of each dataset, the tokenizer would simply truncate all the tokens
past the 1024 count. This would result in severe information loss.

To counter this, the following approach was used. Initially we combined the headline and article into
a single column called "Combined" so as to give the article more context in a single data sample. Then
we executed an approach to form chunks of each sample in the "Combined" column. We then trained
the model on these chunks, created the summary for each chunk, and then recombine the generated
summary for each chunk belonging to the same article and evaluated against the target summaries.

Following is the step-by-step flow of the algorithm -

1. Create a column called Combined that combines each Headline with it’s corresponding Article.
2. Initialize chunks = []
3. Initialize current chunk = []
4. Initialize current chunk length = 0
5. For each data sample in the Combined Column

a) Split the whole text into sentences.
b) Initial
c) For each sentence

i. Tokenize the sentence using the IndicBART Tokenizer.
ii. If (length of tokenizedsentence) + currentchunklength > maxtokens then

A. currentchunk.clear(), currentchunk.push(tokenizedsentence) // Create a new chunk
B. currentchunklength = tokenizedsentence.length()

iii. Else



Figure 1: Before Chunking

Figure 2: After Chunking

A. currentchunk.push(tokenizedsentence)
B. currentchunklength += tokenizedsentence.length()

We have implemented the above using the pandas apply function in python, and we return an array
of chunks for each data in the "Combined" column. We create an additional column named "Chunks" to
store the returned array of Chunks. We now use the explode function provided by pandas to make sure
each chunk has a common id. In this case the same id as the original data sample in the combined row.

Following this, we used the Trainer API provided by hugging face to train the IndicBART model.
We trained the model for 10 epochs, with a weight decay of 0.01, and a batch size of 4. The model
generated summary for each chunk, which we further recombined with the help of the id that we
preserved in the dataset post chunking. An individual sub-summary is generated for each chunk and all
the sub-summaries associated with a chunk having common ids are recombined to generate the final
summary, which is what is used for rouge score evaluation.

3. Experimentation Details

3.1. Dataset

The dataset given for this task contained pairs of articles and headlines from various newspapers. A
target summary has also been given against which validation is to be performed. The training, validation
and test datasets consisted of 10427, 1500 and 3000 rows respectively.

The histograms in Figure 3 show the token count (post-tokenization) of the training dataset for the
Article (including headline) and the Summary.



Figure 3: Token Counts for Article and Summary

Table 1
Rouge scores of Indic BART on validation set

Epoch Rouge 1 Rouge 2 Rouge L Rouge L Sum

1 24.190600 17.483600 23.869000 23.836200
2 24.644900 18.038200 24.288400 24.296900
3 24.569500 17.944300 24.182100 24.200600
4 24.859600 18.206600 24.464000 24.463400
5 24.424100 18.021200 24.019500 24.048800
6 25.298400 18.339500 24.906300 24.919000
7 25.100300 18.341100 24.672400 24.694700
8 25.202000 18.306900 24.797500 24.818400
9 25.210600 18.330100 24.817400 24.840900
10 25.254200 18.325700 24.869300 24.901600

4. Results

In the results, we observed a clear performance distinction between IndicBART and mT5-small when
evaluated on the Hindi summarization dataset. IndicBART (Validation Set Results shown in Table 1)
demonstrated consistently lower training and validation loss values across multiple epochs, indicating
improved convergence. The ROUGE scores for IndicBART showed a steady increase, ultimately reaching
25.25 for ROUGE-1, 18.32 for ROUGE-2, 24.87 for ROUGE-L, and 24.91 for ROUGE-Lsum by the 10th
epoch. In contrast, mT5-small (Validation Set Results shown in Table 2) yielded lower ROUGE scores,
with ROUGE-1 peaking at 11.78, ROUGE-2 at 5.10, ROUGE-L at 11.60, and ROUGE-Lsum at 11.53
after five epochs. These metrics underscore IndicBART’s ability to generate summaries with higher
relevance and coherence for this task, outperforming mT5-small, which struggled to capture sufficient
contextual information in its summaries, likely due to its smaller pre-trained vocabulary and fewer
layers. IndicBART’s performance on the Test Set is documented in Table 3 and Table 4.



Table 2
Rouge scores of mT5 on validation set

Epoch Rouge 1 Rouge 2 Rouge L Rouge L Sum

1 7.199400 2.875800 7.052600 7.058600
2 9.560700 2.783800 9.411800 9.428500
3 9.756800 3.457000 9.670700 9.701200
4 10.031700 3.622100 9.891900 9.905100
5 11.781600 5.096500 11.603400 11.533300

Table 3
Rouge scores of IndicBART on test set

Rouge 1 Rouge 2 Rouge-4 Rouge-L

0.3421 0.1713 0.102 0.312

Table 4
BERT scores of IndicBART on test set

BertScore-Precision BertScore-Recall BertScore-F1

0.7204 0.7449 0.7318

5. Conclusion and Future Work

In this paper we explored fine tuning the IndicBART model for Summarization by applying some
additional data preprocessing techniques like chunking to cover the large amount of text data that
overshot the input size of the model.

In the future, we would like to explore the how to transform the data further so as to establish more
coherent relation between the chunked summaries. We also would explore using larger models like the
mT5 family by acquiring stronger compute environments.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT and Grammarly in order to: Grammar
and spelling check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the publication’s content.
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