
Prompt Engineering Using GPT for Word-Level
Code-Mixed Language Identification in Low-Resource
Dravidian Languages
Aniket Deroy1,∗,†, Subhankar Maity1

1IIT Kharagpur, Kharagpur, India

Abstract
Language Identification (LI) is crucial for various natural language processing tasks, serving as a foundational step
in applications such as sentiment analysis, machine translation, and information retrieval. In multilingual societies
like India, particularly among the youth engaging on social media, text often exhibits code-mixing, blending local
languages with English at different linguistic levels. This phenomenon presents formidable challenges for LI
systems, especially when languages intermingle within single words. Dravidian languages, prevalent in southern
India, possess rich morphological structures yet suffer from under-representation in digital platforms, leading to
the adoption of Roman or hybrid scripts for communication. This paper introduces a prompt based method for a
shared task aimed at addressing word-level LI challenges in Dravidian languages. In this work, we leveraged
GPT-3.5 Turbo to understand whether the large language models are able to classify words into correct categories
correctly. Our findings show that the results on the Kannada dataset consistently outperformed the Tamil dataset
across most metrics, indicating a higher accuracy and reliability in identifying and categorizing Kannada language
instances. In contrast, the results on the Tamil dataset showed moderate performance, particularly needing
improvement across all metrics.

Keywords
GPT, Word level identification, Classification, Low-resource Languages, Prompt Engineering

1. Introduction

Language Identification (LI) [1] is a fundamental task in natural language processing (NLP) that involves
determining the language(s) present in a given text. This task is pivotal for numerous applications such
as sentiment analysis, machine translation, information retrieval, and natural language understanding.
Accurate LI becomes particularly challenging in multilingual societies where texts often exhibit code-
mixing, a phenomenon where multiple languages co-occur within the same discourse, ranging from
phrases to individual words.

In the context of India, a country renowned for its linguistic diversity [2], social media platforms
reflect a vibrant mix of languages. Among the youth, in particular, there is a prevalent use of code-mixed
text that blends local languages from the Dravidian language family with English. Dravidian languages,
spoken predominantly in southern India, including languages like Kannada, Tamil, Malayalam, and
Tulu, are characterized by rich morphological structures and diverse linguistic features. However,
despite their significance, these languages face technological challenges, such as inadequate digital
representation and script variations, which complicate language processing tasks like LI.

This paper focuses on addressing the specific challenges of word-level LI in Dravidian languages,
leveraging the unique linguistic characteristics and code-mixed nature prevalent in social media and
digital communications. We introduce a prompt engineering based method aimed at advancing LI
capabilities in these languages by experimenting at different temperature values. By doing so, we aim
to contribute to the broader goal of enhancing NLP tools for under-resourced languages, ultimately
facilitating more accurate and inclusive language processing technologies.

Forum for Information Retrieval Evaluation, December 12-15, 2024, India
∗Corresponding author.
Envelope-Open roydanik18@kgpian.iitkgp.ac.in (A. Deroy); subhankar.ai@kgpian.iitkgp.ac.in (S. Maity)
Orcid 0000-0001-7190-5040 (A. Deroy); 0009-0001-1358-9534 (S. Maity)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:roydanik18@kgpian.iitkgp.ac.in
mailto:subhankar.ai@kgpian.iitkgp.ac.in
https://orcid.org/0000-0001-7190-5040
https://orcid.org/0009-0001-1358-9534
https://creativecommons.org/licenses/by/4.0/deed.en

An example of the dataset structure and word categories (adapted from-https://sites.google.com/
view/coli-dravidian-2024/datasets?authuser=0) for the task is shown in Figure 1.

To the best of our knowledge, there is no work which explores unsupervised approaches for language
identification. In this work, we leveraged GPT-3.5 Turbo [3] to understand whether the large language
models is able to correctly classify words into correct categories. We experiment with GPT at different
temperature values namely 0.7, 0.8, and 0.9.

GPT models are trained on large corpora from the internet, but the availability of high-quality data
in Dravidian languages is limited compared to more widely spoken languages like English, Spanish, or
Chinese. This means that GPT might not have been exposed to as much diverse or extensive data in
these languages. Dravidian languages use distinct scripts (e.g., Tamil script for Tamil, Kannada script
for Kannada). Moreover, code-mixing (where Dravidian languages are mixed with English or Hindi,
often using the Roman script) is common on social media and informal communications. GPT’s ability
to handle code-mixed text varies and may not be as robust as its handling of pure English text.

Based on our experiments we observe that for Tamil and Kannada, GPT models have significant
room for improvement.

Figure 1: Dataset structure and word categories for the task

2. Related Work

Language Identification (LI) [4, 5, 6] has been a crucial area of research within Natural Language
Processing (NLP) due to its foundational role in various applications such as sentiment analysis,
machine translation, and information retrieval. Traditional LI approaches [7, 8, 9, 10, 11] have primarily
focused on monolingual or bilingual sentences, where clear boundaries between languages are assumed.
However, these methods often struggle in multilingual and code-mixed environments, especially in
regions like India, where linguistic diversity [12, 13, 14, 15, 16, 17] is high and social media usage reflects
complex language practices.

Code-mixing [18, 19] presents unique challenges for LI systems. Early research in code-mixing focused
on language pairs like English-Spanish or Hindi-English, where code-mixed texts predominantly used
Roman scripts. Notable works explored the linguistic features of code-switched texts and highlighted
the difficulties in segmenting and identifying languages at the word level. Similarly, Hindi-English
code-mixed social media text, emphasizes the necessity for specialized LI models capable of handling
intra-word language switches.

Dravidian languages [20] have been relatively underexplored in the context of LI, primarily due to the
scarcity of annotated datasets and the complexmorphological characteristics inherent to these languages.
Previous efforts have developed initial datasets and models for LI in Dravidian languages; however,
these models often fall short in handling code-mixed text, where Roman or hybrid scripts are employed.
The Dravidian-CodeMix shared task aimed to address some of these gaps by introducing datasets for
Tamil, Malayalam, and Kannada, which included code-mixed instances. Yet, the performance of models
on these datasets indicated significant room for improvement, particularly in distinguishing between
closely related languages and dialects.

https://sites.google.com/view/coli-dravidian-2024/datasets?authuser=0
https://sites.google.com/view/coli-dravidian-2024/datasets?authuser=0

Large Language Models (LLMs) [21, 22, 23, 24] like GPT-3 have shown promise in various NLP
tasks, including LI. Previous works have demonstrated the capability of GPT-3 in performing zero-shot
and few-shot learning, making it a potentially powerful tool for LI in resource-constrained settings.
However, the application of LLMs [25, 26, 27, 28] to code-mixed and morphologically rich languages
remains underexplored. Recent studies, have started to explore the use of transformers and pre-trained
models for multilingual LI, but the effectiveness of these models in code-mixed Dravidian languages,
particularly at the word level, requires further investigation.

Our work builds upon these existing efforts by focusing on a prompt-based method using GPT-3.5
Turbo to address word-level LI challenges in Dravidian languages. Unlike previous approaches, we
leverage the linguistic diversity and code-mixed nature of the datasets to enhance the robustness of LI
systems in detecting and classifying under-resourced languages. This study contributes to the growing
body of research by providing a prompt engineering based method for Kannada, Tamil and evaluating
the performance of advanced LLMs in this complex linguistic landscape.

3. Dataset

This shared task (adapted from https://sites.google.com/view/coli-dravidian-2024/datasets?authuser=0)
consists of four distinct datasets [29, 30, 31, 32, 33, 34, 35, 36, 33, 37]:

1. Tulu Dataset: This dataset is composed of 7,171 code-mixed sentences gathered from YouTube
videos. These sentences have been cleaned to remove non-textual elements and transliterated
into Roman script. The dataset contains a total of 36,002 words, which are organized into six
categories: ’English’, ’Kannada’, ’Tulu’, ’Location’, ’Name’, and ’Mixed-language’. The dynamic
and context-specific nature of mixed-language words presents notable challenges for processing.

2. Kannada Dataset: This Kannada dataset contains 14,847 tokens in Roman script and is divided
into six categories: ’English’, ’Kannada’, ’Name’, ’Mixed-Language’, ’Other’, and ’Location’. The
primary goal of the dataset is to improve techniques for language identification and classification,
particularly for Kannada-English code-mixed texts.

3. Tamil Dataset: The Tamil dataset comprises 17,568 tokens, created using a methodology similar
to that employed for the Kannada and Tulu datasets. It is divided into six categories and is
designed to facilitate a range of NLP tasks tailored to the Tamil language.

4. Malayalam Dataset: This dataset consists of 25,035 tokens classified into 7 categories: ’Number’,
’Mixed’, ’English’, ’Location’, ’Name’, ’sym’ (for sentence boundaries), and ’Malayalam’. This
dataset offers extensive coverage for NLP tasks and includes the ’Number’ category for numerical
values, akin to the structure of the other provided datasets.

We participated in shared tasks based on two languages, namely, Kannada and Tamil. The test dataset
size for Kannada is 2502 words. The test dataset size for Tamil is 2024 words.

4. Task Definition

The goal of this task is to classify individual words from a code-mixed text into predefined categories or
classes. The words should be classified into the following categories:

• English: Words or phrases that are in the English language (e.g., hello, book, run).
• Dravidian: Words or phrases that are in the Kannada language or Tamil language.
• Mixed: Words or phrases that mix English, Kannada, or Tamil or combine elements from both
languages.

• Name: Proper nouns, including names of people, organizations, etc. (e.g., John, Infosys).
• Location: Names of places, such as cities, countries, or landmarks (e.g., Bangalore, India, Taj
Mahal).

• Symbol: Symbols or punctuation marks used in the text (e.g., ∗, =, #, ;).
• Other : Words or elements that do not fit into the above categories or are ambiguous.

https://sites.google.com/view/coli-dravidian-2024/datasets?authuser=0

5. Methodology

5.1. Why Prompting?

Prompting [38] to solve a word-level classification problem often arises from the need to accurately
identify and categorize individual words within texts that exhibit code-mixing or multilingual content.
Next we discuss the reasons why the problem of language identification is tried via prompting through
GPT-3.5 Turbo:

- Code-Mixing in Texts: In multilingual societies or digital platforms, texts frequently mix
languages, such as local languages with English [39]. Understanding which language each
word belongs to is essential for applications like sentiment analysis, machine translation, and
information retrieval.

- Accuracy in Language Processing: For effective natural language processing (NLP), identifying
the language of each word enhances the accuracy of subsequent tasks [40]. It ensures that
language-specific models or algorithms are applied correctly.

- Contextual Understanding: Words in code-mixed texts can change meaning based on the
language they are derived from [41]. Accurate language identification at the word level aids in
preserving context and meaning during NLP tasks.

- Challenges and Innovation: Word-level classification poses challenges due to the intricacies of
code-mixed languages, where words may seamlessly blend multiple languages or scripts [42].
Addressing these challenges fosters innovation in NLP methodologies and technologies.

In summary, prompting to solve word-level classification problems stems from the practical need to
accurately handle code-mixed languages and optimize language-specific processing in diverse linguistic
contexts.

5.2. Prompt Engineering-Based Approach

We used the GPT-3.5 Turbo model via prompting1 to solve the classification task in Zero-shot mode.
After the prompt is provided to the LLM, the following steps occur internally while generating the
output. GPT-3.5 Turbo follows a decoder-only architecture. So based on [3, 26, 43], we list these steps,
summarizing the prompting approach using GPT-3.5 Turbo. The set of steps [26, 43] for GPT-3.5 Turbo
[3] is as follows:

Step 1: Tokenization

• Prompt: 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]
• The input text (prompt) is first tokenized into smaller units called tokens. These tokens are often
subwords or characters, depending on the model’s design.

• Tokenized Input: 𝑇 = [𝑡1, 𝑡2, … , 𝑡𝑚]

Step 2: Embedding

• Each token is converted into a high-dimensional vector (embedding) using an embedding matrix
𝐸.

• Embedding Matrix: 𝐸 ∈ ℝ|𝑉 |×𝑑, where |𝑉 | is the size of the vocabulary and 𝑑 is the embedding
dimension.

• Embedded Tokens: 𝑇emb = [𝐸(𝑡1), 𝐸(𝑡2), … , 𝐸(𝑡𝑚)]

Step 3: Positional Encoding

1https://platform.openai.com/docs/models/gpt-3-5-turbo

https://platform.openai.com/docs/models/gpt-3-5-turbo

• Since the model processes sequences, it adds positional information to the embeddings to capture
the order of tokens.

• Positional Encoding: 𝑃(𝑡𝑖)
• Input to the Model: 𝑍 = 𝑇emb + 𝑃

Step 4: Attention Mechanism (Transformer Architecture)

• Attention Score Calculation: Themodel computes attention scores to determine the importance
of each token relative to others in the sequence.

• Attention Formula:

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (1)

• where 𝑄 (query), 𝐾 (key), and 𝑉 (value) are linear transformations of the input 𝑍.
• This attention mechanism is applied multiple times through multi-head attention, allowing the
model to focus on different parts of the sequence simultaneously.

Step 5: Feedforward Neural Networks

• The output of the attention mechanism is passed through feedforward neural networks, which
apply non-linear transformations.

• Feedforward Layer:
FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (2)

• where 𝑊1, 𝑊2 are weight matrices and 𝑏1, 𝑏2 are biases.

Step 6: Stacking Layers

• Multiple layers of attention and feedforward networks are stacked, each with its own set of
parameters. This forms the ”deep” in deep learning.

• Layer Output:
𝐻 (𝑙) = LayerNorm(𝑍 (𝑙) + Attention(𝑄(𝑙), 𝐾 (𝑙), 𝑉 (𝑙))) (3)

𝑍 (𝑙+1) = LayerNorm(𝐻 (𝑙) + FFN(𝐻 (𝑙))) (4)

Step 7: Output Generation

• The final output of the stacked layers is a sequence of vectors.
• These vectors are projected back into the token space using a softmax layer to predict the next
token or word in the sequence.

• Softmax Function:
𝑃(𝑦𝑖|𝑋) =

exp(𝑍𝑖)

∑|𝑉 |
𝑗=1 exp(𝑍𝑗)

(5)

• where 𝑍𝑖 is the logit corresponding to token 𝑖 in the vocabulary.
• The model generates the next token in the sequence based on the probability distribution, and
the process repeats until the end of the output sequence is reached.

Step 8: Decoding

• The predicted tokens are then decoded back into text, forming the final output.
• Output Text: 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑘]

Figure 2: An overview of GPT-3.5 Turbo for Kannada code-mixed language classification.

We used the following prompt for Kannada language for the purpose of classification: ”Please identify
which category the word is in English, Kannada, Mixed, Name, Location, Symbol and Other. Please state en,
kn, mixed, name, location, sym and other. The word is <Word>.” The figure representing the methodology
is shown in Figure 2.

We used the following prompt for Tamil language for the purpose of classification: ”Please identify
which category the word is in English, Tamil, Mixed, Name, Location, Symbol and Other. Please state en,
tm, tmen, name, Location, sym and Other. The word is <Word>.” The figure representing the methodology
is shown in Figure 3.

Corresponding to the two distinct prompts (for Kannada and Tamil) the two distinct figures are stated
(Figure 2 and Figure 3).

Figure 3: An overview of GPT-3.5 Turbo for Tamil code-mixed language classification.

6. Results

Table 1 presents metrics comparing the performance of two language identification models, one for
Tamil and the other for Kannada. Our Team ranked in the 10th position for both tasks. Here’s a detailed
discussion of each metric.

Next, we discuss the metric values as well as their corresponding analysis to explain the results in
the Table 1. For Tamil language, the macro F1 score is 0.3312. This suggests that the model achieves a
balanced performance in terms of precision and recall for Tamil language identification. However, it
indicates there is room for improvement in correctly identifying both positive and negative instances.

Table 1
Comparison of various metrics for Word level identification in code-mixed languages in two languages-Tamil,
Kannada. The team name is TextTitans and the username is roydanik18. All metric values have been reported
in this table.

Metric Tamil Kannada

Macro F1 0.3312 0.4493
Macro Precision 0.3259 0.5474
Macro Recall 0.3657 0.4241
Weighted F1 0.7022 0.6725
Weighted Precision 0.7559 0.7191
Weighted Recall 0.6689 0.6994
Accuracy 0.6689 0.6994

For Kannada, the macro F1 score is 0.4493. This score is higher compared to Tamil, indicating a better
overall balance between precision and recall for Kannada language identification. The model for
Kannada performs better in correctly classifying instances across the dataset.

For Tamil, the macro precision score is 0.3259. For Kannada, the macro precision score is 0.5474. This
score indicates a higher accuracy in positive predictions for Kannada compared to Tamil, suggesting
better precision in correctly identifying Kannada instances.

For Tamil, the macro recall score is 0.3657. The macro recall score is 0.4241 for Kannada. This score
indicates a slightly higher ability to identify Kannada instances correctly compared to Tamil.

For Tamil, the weighted F1 score is 0.7022. This metric considers the F1 score weighted by the number
of samples in each class, indicating a solid overall performance for Tamil language identification. For
Kannada, the weighted F1 score is 0.6725. This indicates a slightly lower weighted F1 score compared
to Tamil, suggesting a nuanced performance when considering class distribution.

For Tamil, the weighted precision score is 0.7559. This metric reflects the precision of the model
when adjusted for the distribution of samples across Tamil language classes. For Kannada, the weighted
precision score is 0.7191. This score indicates a slightly lower weighted precision compared to Tamil,
reflecting the model’s ability to accurately predict positive instances in Kannada.

For Tamil, the weighted recall score is 0.6689. This metric demonstrates the model’s ability to
identify all positive instances within the Tamil language classes when considering class distribution. For
Kannada, the weighted recall score is 0.6994. This score indicates a slightly higher ability to correctly
identify positive instances within Kannada language classes compared to Tamil.

For Tamil, the accuracy score is 0.6689. This metric measures the overall correctness of the model’s
predictions for Tamil language identification. For Kannada, the accuracy score is 0.6994. This indicates
a slightly higher overall correctness in predictions for Kannada compared to Tamil.

The metrics highlight differences in performance between the Tamil and Kannada language identifi-
cation models across various evaluation criteria. These metrics provide insights into the strengths and
areas for improvement in both models, guiding further optimizations and enhancements for accurate
language identification tasks in practical applications.

The weighted precision, recall, and f1-scores being higher than the macro precision, recall, and
f1-scores shows that dataset likely has an imbalance, with some classes having many more samples than
others. The weighted F1 score takes this into account by giving more importance to the performance
on larger classes. The model is performing well on the classes that contribute the most to the overall
accuracy. This could mean that it is effectively identifying the majority classes but may struggle with
minority classes for both languages.

Weighted precision being higher than weighted recall suggests that the model performs better on the
more frequent classes in the dataset. This means it is more effective at correctly identifying positive
instances for these majority classes for both datasets. For Kannada dataset, a higher macro precision
than recall may suggest that the model is conservative in its positive predictions, prioritizing accuracy
over completeness. For Tamil dataset, a higher macro recall than precision suggests that while the

model is effective at capturing relevant instances, it may not be very reliable in its predictions.

7. Conclusion

In this study, we investigated the effectiveness of language identification models for Tamil and Kannada
using the advanced capabilities of GPT-3.5 Turbo via prompting. Language identification is a crucial
preliminary step in various natural language processing applications, including sentiment analysis,
machine translation, and information retrieval. Our research focused on evaluating and comparing the
performance of these models across multiple metrics: macro F1 score, macro precision, macro recall,
weighted F1, weighted precision, weighted recall, and accuracy. The results reveal notable distinctions
between the Tamil and Kannada models. Kannada consistently demonstrated superior performance
across most metrics. This indicates that the GPT for Kannada effectively identifies and categorizes
Kannada language instances with greater accuracy and reliability. Conversely, while the Tamil model
exhibited moderate performance, there remains room for improvement, particularly in precision and
recall metrics.

The methodology employed in this research leveraged GPT-3.5 Turbo via prompting, harnessing
its natural language processing capabilities to handle code-mixed texts and diverse linguistic patterns
prevalent in real-world applications. This approach allowed for comprehensive evaluation under
varying linguistic contexts, ensuring robustness and applicability in multilingual environments.

Moving forward, further refinements in model training and dataset augmentation could enhance
the performance of language identification systems for both Tamil and Kannada. Future research
efforts may focus on incorporating additional linguistic features, optimizing model architectures, and
expanding datasets to include more diverse linguistic variations and challenges. In conclusion, this
study underscores the importance of tailored approaches in language identification, particularly in
multilingual settings like India where linguistic diversity is prominent. By advancing the capabilities of
language identification models through innovative methodologies such as GPT-3.5 Turbo via prompting,
we contribute to the broader goal of improving language processing technologies for diverse and
under-resourced languages, fostering more accurate and inclusive natural language understanding
systems. Future work would focus on improving the prompts to improve accuracy on the language
identification task.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT in order to: Drafting content, Grammar
and spelling check, etc. After using this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the publication’s content.

References

[1] T. Jauhiainen, H. Jauhiainen, K. Linden, Automatic language identification using word embeddings
and normalized log probabilities, in: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, 2018, pp. 1146–1153.

[2] A. Mandal, et al., Multilingual language identification based on recurrent neural networks, in:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019,
pp. 3345–3352.

[3] T. B. Brown, Language models are few-shot learners, arXiv preprint ArXiv:2005.14165 (2020).
[4] T. Jauhiainen, H. Jauhiainen, K. Linden, A survey on automatic language identification in written

texts, in: Journal of Artificial Intelligence Research, volume 65, 2019, pp. 675–782.
[5] Y. Muthusamy, R. A. Cole, B. T. Oshika, Automatic language identification: A review/tutorial, in:

IEEE Signal Processing Magazine, volume 11, 1994, pp. 33–41.

[6] J. Tiedemann, News from opus-a collection ofmultilingual parallel corporawith tools and interfaces,
in: Recent advances in natural language processing (vol. 5), 2009, pp. 237–248.

[7] M. Zampieri, B. Gebre, S. Malmasi, A system for tweet normalization and part-of-speech tagging
of non-standard italian, Proceedings of the first workshop on noisy user-generated text (2014)
61–70.

[8] S. Malmasi, M. Dras, Discriminating between similar languages and dialects using crfs and svms,
in: Proceedings of the International Conference Recent Advances in Natural Language Processing,
2015, pp. 140–147.

[9] B. King, S. Abney, Labeling the languages of words in mixed-language documents using weakly
supervised methods, in: Proceedings of the 2013 conference of the North American chapter of the
association for computational linguistics: human language technologies, 1996, pp. 1110–1119.

[10] V. Singh, J. Lal, A. Sharma, et al., Automatic language identification system using machine learning
techniques: A review, Journal of Ambient Intelligence and Humanized Computing 9 (2018)
417–425.

[11] S. Zwarts, P. McNamee, Proceedings of the vardial workshop series on variation of languages in
dialects and varieties, in: Proceedings of the Fourth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), 2017, pp. 9–18.

[12] J. Tiedemann, Automatic identification of cognates and false friends in bilingual wordlists, in:
Proceedings of the tenth conference on European chapter of the Association for Computational
Linguistics-Volume 1, 2003, pp. 116–119.

[13] T. Jauhiainen, H. Jauhiainen, K. Linden, Automatic detection of compound words in multiple
languages, in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 2047–2052.

[14] A. Mandal, A. Das, P. Pakray, Automatic language identification based on lexical and syntactic
features, in: Proceedings of the 6th International Conference on Computer Applications in
Biotechnology, 2015, pp. 213–221.

[15] R. Gamba, A. Das, Comparing the level of code-switching in corpora, in: Proceedings of the 10th
edition of the Language Resources and Evaluation Conference, 2016, pp. 14–20.

[16] B. King, S. Abney, Labeling the languages of words in mixed-language documents using weakly
supervised methods, in: Proceedings of the 2013 conference of the North American chapter of the
association for computational linguistics: human language technologies, 2014, pp. 1110–1119.

[17] P. Molaei, et al., Cross-language identification of dravidian languages using transformer models,
Proceedings of the Workshop on Computational Approaches to Linguistic Code-Switching (2020)
45–52.

[18] M. Zampieri, S. Malmasi, Y. Scherrer, Predicting the language of informal code-switched text, in:
Proceedings of the 6th Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial
2019), 2019, pp. 135–144.

[19] I. Bardaji, et al., Language identification using cross-lingual word embeddings, Natural Language
Engineering 18 (2012) 515–531.

[20] B. R. Chakravarthi, R. Priyadharshini, J. Jose, P. Kumaresan, S. Muralidaran, Findings of the shared
task on sentiment analysis for dravidian languages in code-mixed text, in: Proceedings of the first
workshop on speech and language technologies for Dravidian languages, 2021, pp. 133–139.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language models are unsupervised
multitask learners, in: OpenAI Blog, volume 1, 2019.

[22] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring
the limits of transfer learning with a unified text-to-text transformer, Journal of Machine Learning
Research 21 (2020) 1–67.

[23] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers
for language understanding, in: Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 4171–4186.

[24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,

Roberta: A robustly optimized bert pretraining approach, in: arXiv preprint arXiv:1907.11692,
2019.

[25] W. X. Zhao, K. Zhou, J. Li, X. Tang, J. J. Wang, J. Liu, T. Wang, Y. Bao, J.-R. Wen, A survey of large
language models, in: arXiv preprint arXiv:2303.18223, 2023.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,
Attention is all you need, Advances in neural information processing systems 30 (2017) 5998–6008.

[27] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Fine-tuning gpt-2 for human-like
text generation, in: arXiv preprint arXiv:1907.11692, 2019.

[28] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, Y. Choi, Defending against
neural fake news, in: Advances in Neural Information Processing Systems, volume 32, 2019, pp.
9054–9065.

[29] A. Hegde, M. D. Anusha, S. Coelho, H. L. Shashirekha, B. R. Chakravarthi, Corpus creation for
sentiment analysis in code-mixed tulu text, in: Proceedings of the 1st Annual Meeting of the
ELRA/ISCA Special Interest Group on Under-Resourced Languages, 2022, pp. 33–40.

[30] S. H. Lakshmaiah, F. Balouchzahi, M. D. Anusha, G. Sidorov, Coli-machine learning approaches for
code-mixed language identification at the word level in kannada-english texts, Acta Polytechnica
Hungarica 19 (2022).

[31] A. Hegde, F. Balouchzahi, S. Coelho, S. HL, H. A. Nayel, S. Butt, Coli@ fire2023: Findings of
word-level language identification in code-mixed tulu text, in: Proceedings of the 15th Annual
Meeting of the Forum for Information Retrieval Evaluation, 2023, pp. 25–26.

[32] A. Hegde, F. Balouchzahi, S. Coelho, H. Shashirekha, H. A. Nayel, S. Butt, Overview of coli-tunglish:
Word-level language identification in code-mixed tulu text at fire 2023., in: FIRE (Working Notes),
2023, pp. 179–190.

[33] F. Balouchzahi, S. Butt, A. Hegde, N. Ashraf, H. Shashirekha, G. Sidorov, A. Gelbukh, Overview
of coli-kanglish: Word Level Language Identification in Code-mixed Kannada-English Texts at
Icon 2022, in: Proceedings of the 19th International Conference on Natural Language Processing
(ICON): Shared Task on Word Level Language Identification in Code-mixed Kannada-English
Texts, 2022, pp. 38–45.

[34] A. Hegde, F. Balouchzahi, S. Coelho, S. H L, H. A. Nayel, S. Butt, Coli@fire2023: Findings of
word-level language identification in code-mixed tulu text, FIRE ’23, Association for Computing
Machinery, New York, NY, USA, 2024, p. 25–26. URL: https://doi.org/10.1145/3632754.3633075.
doi:10.1145/3632754.3633075.

[35] S. Hosahalli Lakshmaiah, F. Balouchzahi, A. Mudoor Devadas, G. Sidorov, CoLI-Machine Learning
Approaches for Code-mixed Language Identification at the Word Level in Kannada-English Texts,
acta polytechnica hungarica (2022).

[36] A. Hegde, F. Balouchzahi, S. Butt, S. Coelho, K. G, H. S Kumar, S. D, S. Hosahalli Lakshmaiah,
A. Agrawal, Overview of CoLI-Dravidian: Word-level Code-mixed Language Identification in
Dravidian Languages, in: Forum for Information Retrieval Evaluation FIRE - 2024, 2024.

[37] F. Balouchzahi, S. Butt, A. Hegde, N. Ashraf, S. Hosahalli Lakshmaiah, G. Sidorov, A. Gelbukh,
Overview of CoLI-Kanglish: Word Level Language Identification in Code-mixed Kannada-English
Texts at ICON 2022, in: 19th International Conference onNatural Language Processing Proceedings,
2022.

[38] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing, ACM Computing Surveys 55 (2023)
1–35.

[39] C. Lee, Multilingualism online, Routledge, 2016.
[40] K. Chowdhary, K. Chowdhary, Natural language processing, Fundamentals of artificial intelligence

(2020) 603–649.
[41] G. Takawane, A. Phaltankar, V. Patwardhan, A. Patil, R. Joshi, M. S. Takalikar, Language augmen-

tation approach for code-mixed text classification, Natural Language Processing Journal 5 (2023)
100042.

[42] A. Mangla, R. K. Bansal, S. Bansal, Code-mixing and code-switching on social media text: A brief

https://doi.org/10.1145/3632754.3633075
http://dx.doi.org/10.1145/3632754.3633075

survey, in: 2023 IEEE International Conference on Computer Vision and Machine Intelligence
(CVMI), IEEE, 2023, pp. 1–5.

[43] A. Radford, Improving language understanding by generative pre-training (2018).

	1 Introduction
	2 Related Work
	3 Dataset
	4 Task Definition
	5 Methodology
	5.1 Why Prompting?
	5.2 Prompt Engineering-Based Approach

	6 Results
	7 Conclusion

