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Abstract
This paper describes the participation of the NLPnorth team at the CoLI-Dravidian shared task hosted at
FIRE2024 [1]. Detecting language on the word level of noisy social media data is still an open challenge.
Specifically, for Dravidian languages it is common to code-switch with English in online communication, posing
challenges for automatic processing of texts. Starting from a standard language model finetuning, we propose
a wide variety of approaches to increase performance on word-level language identification. Our results show
that the choice of language model has a large effect on performance, and other methods can lead to even further
performance improvements. We experiment with a CRF layer, training on multiple datasets, and language
modeling, where each of the methods show different trends across languages/datasets.1
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1. Introduction

High performance has been reported for language classification on the sentence level [e.g., 2, 3, 4],
especially for canonical language (e.g. Wikipedia, bible). However, in a globalizing world using multiple
languages within one utterance is becoming more common, and this is more challenging to detect [e.g.,
5, 6, 7, 8]. The “Word-level Code-Mixed Language Identification in Dravidian Languages” shared task
targets Dravidian language specifically. Although these languages are originally written in non-latin
scripts, due to globalization it became popular to code-switch with English, and use romanization (i.e.
latin script) for these languages.
The shared task organizers of the CoLI-Dravidian shared task [1] provided us with data for four

Dravidian languages scraped from online platforms: Kannada [9, 10], Tulu [11], Malayalam, and Tamil.1

As can be seen in an example sentence taken from the data shown in Figure 1, the labels also include
symbols, and named entities (in this case ‘Banal’, which refers to a movie).
As a starting point, we use a standard discriminative transformer-based language model, which we

finetune for the task at hand. We compare a wide variety of pre-trained language models. We also
propose a variety of approaches to improve performance: 1) train on multiple, related datasets 2) use of
a CRF layer 3) task-adaptive pre-training 4) continuous language modeling.
Our findings are:

• Finding the best language model has more influence than any of our proposed modeling improve-
ments.

• The effect of potential improvements is wildly different for different language models and datasets,
indicating that we should be careful with conclusions of comparisons done on a single language
model.

1Code and predictions are available on https://bitbucket.org/robvanderg/coli-dravidian
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Figure 1: Example from the Malayalam training split, including labels, literal transliteration, and free translation.

Text Banal trash Panavum nashtam samayavum nashtam .
Labels OTHER ENGLISH MALAYALAM MALAYALAM MALAYALAM MALAYALAM SYM
Translation Banal trash money loss time loss .
Free transl. Banal is trash, a loss of money and time.

Table 1
Statistics for the included languages (including English). AES level 5: not endangered AES level 4: endangered [15],
resource level 1: The Scraping-Bys, resource level 3: The Rising Stars, resource level 5: The Winners [14].

Language ISO639-3 #Speakers #Wiki articles Main Script AES Resource

Kannada kan 43,644,310 31,216 knda 5 1
Malayalam mal 37,231,970 85,263 mlym 5 1
Tamil tam 77,456,100 162,659 taml 5 3
Tulu tcy 1,850,000 2,021 knda 4 1

English eng 369,935,930 6,780,443 latn 5 5

• Multi-lingual models outperform mono-lingual models in our setups, but this is likely an effect of
scale (multi-lingual models are larger, and are trained on more data).

2. Data

We first compare all included languages (the four Dravidian languages and English) from a statistical
perspective; we collected their number of speakers [12], number of Wikipedia articles,2 commonly
used scripts, AES endangered status (1-5, 5 is not-endangered) from Glottolog [13], and their resource
status according to Joshi et al. [14]. Results in Table 1 show that there are quite many speakers for all
languages, and the included languages are mostly not endangered, but are also in the lowest resource
level (1: The Scraping-Bys) as defined by Joshi et al. [14].

Since the original data had different labels across the different languages, I first designed a mapping
to standardize the labels across languages,3 which eases the training of multi-dataset models, and
simplifies evaluation. Furthermore, the data was originally tokenized on the word level, but sentence
boundaries were not annotated. I separated the data on occurrences of ‘*’ and ‘.’ to have shorter chunks
of inputs that can more easily be used in length-constrained language models.
After the pre-processing, the resulting label distribution ( Table 2) shows that the English label is

relatively frequent across all datasets, and that the named entity labels and the mixed labels (a combina-
tion of languages within a single word, mostly due to compounds and inflections upon inspection) are
more scarce. It should also be noted that the SYM label was much more common in the original data,
but it was pre-processed away during the “sentence splitting” (and re-inserted before uploading the test
predictions). The only dataset with mixing across Dravidian languages is the Kannada Dataset, which
includes a words in Tulu.

3. Methods

We use the MaChAmp toolkit [16] with default hyperparameters for all our experiments (except the
statistical baseline). This means we train for 20 epochs, use the adam optimizer with a learning rate of
0.0001, a slanted triangular learning rate [17], and a batch size of 32. MaChAmp uses a language model

2https://en.wikipedia.org/wiki/List_of_Wikipedias
3Since detailed annotation guidelines were not available the mapping is based on manual inspection of occurrences of labels
in the data.

https://en.wikipedia.org/wiki/List_of_Wikipedias
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Figure 2: Distribution of the mapped labels for all 4 datasets.

as an encoder, and then adds a feedforward layer on top for classification, and finetunes all weights
during training.

3.1. Statistical Baseline

We use character-based profiles as used in textcat [18]. textcat builds character n-gram profiles of texts
(which are frequency-ranked lists), which it then uses to compare a new input text to all profiles of the
training classes. Since textcat is usually used for sentences and we are classifying on the word level,
we re-tuned the hyperparameters where the range of minimum n-gram size is [1,2,3], the maximum
[3,4,5,6], and the top-n most frequent n-grams to take into account is [500, 1,000, 10,000, 20,000]. We
found that a character n-gram range of 1-6 and the top-n of 20,000 led to the best performance.

3.2. Language models

As a first step, we evaluate a variety of transformer based language models. We use only discriminative
language models, and they should be trained on at least one of the included languages. We use the
huggingface portal with the language filters and the “fill-mask” task. We excluded language models
for which training did not fit on our 40gb GPU’s. We pick the best 5 language model based on the
average scores, and also the single best language model for each language for further investigations.
The following methods are only evaluated on this sub-selection of language models.

3.3. CRF-layer

Upon inspection of the outputs of the initial models, we noticed that many of the cases where the model
made an error there was a single label surrounded by other labels. Hence, we add a CRF-layer [19] that
incorporates surrounding predictions and models the likelihood of transitioning from a certain label to
another label. We also adopt BIO-labels for this setup (and disallow illegal transitions like B-mal ↦
I-eng), as the MaChAmp toolkit enforces this when adding a CRF layer.

3.4. Multi-dataset training

Because the languages are related and annotations are similar, we also attempt to use multi-dataset
learning. We first train a single model for all datasets, where we experiment with a separate decoder
for each dataset as well as a combined decoder.
Based on this joint model, we also do re-training on each target language. The intuition here is to

benefit from all the data while avoiding parameter sharing. For this setup, we also experiment with a



lower learning rate (i.e. *0.1), because the models should have already learned the tasks, and can now
focus on learning the more detailed peculiarities of the target language/dataset.
We looked into adding other datasets (for other tasks), but all annotated datasets for the target

languages that we could find were in the native (non-Latin) scripts.

3.5. Language modeling

As the larger-sized datasets we could find were all in other scripts than the one used in the shared task,
we opted for task-adaptive pretraining [20]. This means that we do language modeling on the training
data that is also annotated for the downstream evaluation task. We evaluate the difference between
doing language modeling in a sequential setup (first language modeling, then language identification),
or in a joint setup (learn both tasks simultaneously). We also evaluate if it is beneficial to see the
data only once, or use multiple iterations (up to 20). Note that we keep the amount of epochs and the
learning rate stable in the last experiment (i.e. if we see the data only once, the epochs are 20 times
smaller), and we use model selection based on the perplexity on the dev set to avoid overfitting.

4. Results

The official metrics for the shared task are macro F1 and weighted F1. Since the task is language
identification, and many of the small labels do not refer to languages (i.e. named entities, numbers, and
symbols, see Table 1), we use weighted F1 for our evaluations (macro F1 gives equal weight to all labels,
so mistakes on smaller labels have a relatively large impact). All reported results (except on the test
data) are the average over three seeds.

4.1. Language Model

Table 2 shows the performance of each language model for each dataset. Note that we train a single
model for each dataset in this experiment. Interestingly, the mono-lingual models underperform
compared to the multi-lingual models, this is probably an effect of the data being romanized, and
multilingual models having a larger training data, more training time, and more weights.

4.2. Improvement strategies

We have the exact numbers for all strategies summarized in Appendix A. In this subsection, we will
summarize findings for each category of improvements.

CRF-layer The results with an added CRF layer in Figure 3 show that the effect of this differ per
language. For Kannada (kan) effects are positive, for Malayalam (mal) negative, and for the other two
languages mixed (depending on the language model). Overall, especially when taking into account the
standard deviations, differences in performance are relatively small.

Multi-dataset training When training on all datasets simultaneously, the drawback of weight
sharing seems to outweigh the benefits of increased training data size as performance is usually lower
with higher standard deviations ( Figure 4). After re-training on the target dataset/language, we see
again that the results differ per language: For Kannadian, this is beneficial for most language models,
for Malayalam and Tamil it is negative, whereas for Tulu results are mixed. The lower learning rate has
no clear positive effect over the normal re-training. The results of our experiments with a combined
decoder classification head showed lower performance for all language models, the scores can be found
in Appendix A.



Table 2
Results of our statistical baseline and language models in our baseline setup for all 4 datasets and the average.
The language models selected for further experiments are highlighted in bold.

Model Citation # weights Vocab. size #langs kan mal tam tcy Avg.

textcat [18] 80,000 80,000 4 84.96 83.71 80.99 77.02 81.67

bernice [21] 277,747,200 250,000 66 96.59 93.32 94.95 90.14 93.75
bert-base-multilingual-cased [22] 177,853,440 119,547 103 96.23 92.18 93.92 89.79 93.03
bert-base-multilingual-uncased [22] 167,356,416 105,879 101 96.31 92.64 94.62 90.29 93.47
byt5-small [23] 299,072,512 256 101 92.37 88.01 89.79 84.14 88.58
byt5-base [23] 581,063,424 256 101 94.32 90.64 91.24 87.67 90.97
byt5-large [23] 1,227,593,728 256 101 94.40 89.62 91.37 87.95 90.83
canine-c [24] 132,082,944 1,114,112 103 88.94 85.04 83.70 81.45 84.78
canine-s [24] 132,082,944 1,114,112 103 93.03 88.47 88.49 84.76 88.69
distilbert-base-multilingual-cased [25] 134,734,080 119,547 103 95.76 91.30 93.72 89.62 92.60
glot500-base [26] 394,121,472 401,145 511 96.17 93.31 94.66 90.07 93.55
infoxlm-base [27] 278,043,648 250,002 94 96.04 93.22 94.29 89.62 93.29
infoxlm-large [27] 559,890,432 250,002 94 96.79 93.52 95.14 90.74 94.05
kannada-bert [28] 237,556,224 197,285 1 96.99 93.20 94.80 90.00 93.74
kannada-bert-scratch [28] 125,977,344 52,000 1 95.02 91.93 92.42 89.17 92.13
KanBERTo [29] 83,450,880 52,000 1 92.18 87.51 86.21 84.55 87.61
KooBERT [30] 184,050,432 128,000 12 69.48 55.34 53.85 59.35 59.50
LaBSE [31] 470,926,848 501,153 109 96.07 92.32 93.44 89.79 92.90
malayalam-bert [28] 237,556,224 197,285 1 96.81 92.93 94.80 90.06 93.65
malayalam-bert-scratch [28] 125,977,344 52,000 1 95.31 92.98 92.71 89.05 92.51
mdeberta-v3-base [32] 278,218,752 250,101 15 96.84 92.91 94.76 90.33 93.71
mluke-base [33] 585,839,104 250,002 24 96.58 92.03 94.67 89.78 93.26
mluke-base-lite [33] 278,639,872 250,002 24 96.58 92.03 94.67 89.78 93.26
mluke-large [33] 867,884,288 250,002 24 97.32 93.45 95.46 90.25 94.12
mluke-large-lite [33] 560,685,056 250,002 24 96.84 93.43 95.41 90.49 94.04
multilingual-e5-large [34] 559,890,432 250,002 93 96.54 93.49 94.95 91.04 94.00
muril-adapted-local [35] 237,556,224 197,285 17 90.16 83.88 79.79 82.70 84.13
rembert [36] 575,920,384 250,300 103 96.62 92.85 94.34 84.62 92.11
sealion-bert-base [37] 282,649,344 256,000 11 92.94 86.35 85.02 84.57 87.22
tamil-bert [28] 237,556,224 197,285 1 96.18 92.38 94.48 89.56 93.15
twhin-bert-large [38] 561,460,736 250,002 89 97.12 93.28 95.60 87.72 93.43
twitter-xlm-roberta-base [39] 278,043,648 250,002 1 96.68 92.64 94.81 90.23 93.59
varta-bert [40] 184,345,344 128,000 15 35.11 55.75 53.30 59.71 50.97
xlm-mlm-100-1280 [41] 571,496,960 200,000 96 95.66 91.67 93.96 88.23 92.38
xlm-roberta-base [42] 278,043,648 250,002 93 96.37 92.50 95.17 89.88 93.48
xlm-roberta-large [42] 559,890,432 250,002 93 96.76 93.63 95.45 90.69 94.13
xlm-roberta-longformer-base-4096 [43] 280,796,160 250,002 1 95.95 93.00 94.83 89.93 93.43
xlm-v-base [44] 778,493,184 901,629 93 96.47 93.03 95.28 89.90 93.67

Language modeling For the language modeling experiments we only plot the sequential strategy,
as the joint results are consistently substantially lower (Table 5). The remaining results ( Figure 5)
show that results are mainly positive for Kannadian and Malayam. Also, training on the data 20 times
(mlm-20) is not beneficial (in fact, for most models, performance on the dev set was highest in epoch
5-10, so that model was used). Results for twhin-bert-large are worse compared to the other models,
probably because its pertaining strategy is the most different compared to standard masked language
modeling.

4.3. Results on test data

On the test data, we selected the best 4 models on the average scores over all languages (based on indi-
vidual seeds), and also submitted the single best models for each language. One interesting observation
is that there is a wide variety on what the best five models are, depending on the dataset/language (i.e.
the bold numbers in Table 5 do not show clear trends.). This leads us to conclude that we should be
careful when claiming generalized findings across different language models in these types of setups.
Results ( Table 3) show that our best models performed highly competitively on most languages,

except Tamil, which surprisingly was the 2nd highest ranking dataset in our own experiments. It should
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Figure 3: Results of standard MaChAmp model and an added CRF layer, black lines indicate standard deviation.
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Figure 4: Results of training on all datasets simultaneously (all), and also when re-training on the combined
model for individual datasets with the default learning rate (retrain) and a lower learning rate (retrain-low).
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Figure 5: Results when first doing masked language modeling on the original training data for 1 or 20 iterations.

be noted that the official ranking is based on Macro-F1, which I do not report in my paper. Performances
are much higher compared to previous shared tasks on Kannada [45] where the winning team achieved
weighted F1 of 86, and Tulu [46] where the winning team achieved a macro F1 of 81.3 (our best model
has 86.7). However, it is unclear which amount of this change can be ascribed to differences in the data.
It can also be seen that performance is slightly lower on the test data compared to the dev data for most



Table 3
Results on the test data, we report the scores of the best run on the test data (we used a total of 5 runs for each
dataset).

Rank Best model Dev weighted F1 Test weighted F1

Kannada 2/10 xlm-roberta-large mlm-20 97.15 96.06
Malayalam 1/10 infoxlm-large mlm-20 94.06 93.89
Tamil 4/10 Twitter-twhin-bert-large 95.33 93.55
Tulu 1/9 Twitter-twhin-bert-large 91.16 91.68

Table 4
Pearson correlations of properties of the models and the performance (weighted F1), averaged over all languages.
# weights: number of weights in the language model. Vocab size: number of subwords in the vocabulary of the
language model. # languages: the number of languages included in the pre-training of the language model. %
used: the percentage of subwords in the vocabulary that is used in the datasets. Avg. word len: the average
number of subwords per word in the datasets.

Variable Pearson

# weights 0.2559
Vocab size 0.0693
# languages 0.1668
% used -0.0153
Avg. word len -0.1703

languages. This can be due to overfitting, or the test set being more challenging, (dev) results from
other teams participating in the shared task might shed more light on this.

5. Analysis

5.1. How to pick the right language model?

Because the choice of language model is an important factor for final performance, we perform a
correlation study of different properties of the language models against the final performance. From
each model we extract: the number of weights, the size of the vocabulary, the percentage of the
vocabulary that is used in a dataset, and the average length of a word (in subwords). We initially also
extracted the coverage of the vocabulary for each dataset, but that was almost always 100%, so no usable
correlation could be calculated. Results (Table 4) show that none of the weights have a very strong
correlation. None of the p-values were < .05. Perhaps surprisingly, the percentage of the vocabulary
used and the average word length have a negative correlation, although they intuitively could be an
indicator of having a better vocabulary. However, this can be explained with the mixed effect to the
number of weights; these two variables have a significant (𝑝 < 0.05) Pearson correlation between 35-36
for all languages.

5.2. What are remaining errors?

To investigate what the remaining errors are, we took the best performing model for each development
set, plot a confusion matrix of all combined errors ( Figure 6), and manually inspect the errors. It should
be noted that this is all done by the first author, who is not speaker of any of the target languages.

Kannada and Tulu are commonly confused, as they occur in the same dataset (the Tulu dataset), some
of the cases of confusion are for words that occur in both languages, in other cases it are mostly the
context or the individual subwords that occur in the other language that mislead the model. the other
main confusion is underprediction of the misc category. As the name suggest, this is likely because it is
a less clearly defined category. Upon inspection, we found that for English this is commonly because
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Figure 6: Confusion matrix of frequency of errors by raw counts

standard words are used as part of a name. The eng label also has quite some errors, in both directions
(over-prediction and under-prediction). Errors are made here because of interjections (like ah, hahha,
which are annotated as eng), typos and slang (Tha is labeled as Tulu by our models) and there seems to
be some annotation for the English class which is incorrect (e.g. padike, Bakrid). Finally, the mixed
language labels are commonly confused with the dataset languages, in almost all cases this is where
only the inflection is done in English, which only leads to 1-2 characters that are different compared to
the word in the Dravidian language, hence it is easy for the model to make mistakes.

6. Conclusion

The choice of language model is the most important compared to the other strategies we tested, including
a CRF layer, multi-dataset training, and various strategies for including masked language modeling in
training. The remaining strategies lead to improved results in certain setups, however, the trends are
different across language models and across datasets/languages. Hence, we conclude that future work
should be careful with generalizing claims when reporting gains with a limited amount of datasets,
languages and/or language models. In our setup, multi-lingual models outperform the mono-lingual
models, probably because they are also larger in scale. We evaluated the effect of model size, vocabulary
size, vocabulary utility, and average word length with respect to final model performance. Our results
show the strongest correlation for model size, and negative correlations for vocabulary utility, but this
is probably because of the model size confounder (with an even stronger correlation). An analysis of
the errors showed that the remaining cases are often ambiguous words (i.e. their surface form can be
used in the annotated and predicted class) or subwords, and interpretation of context is thus still an
open challenge.
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Table 5
Weighted F1 scores on the dev split for all our evaluated setups.

kn mal tamil tulu avg.

textcat 84.96 83.71 80.99 77.02 81.67

twhin-bert-large
single 97.19 93.14 95.33 91.16 94.20
all 97.20 93.33 95.11 90.89 94.13
all-combined 95.88 91.75 93.16 89.68 92.61
retrain 97.27 93.37 94.98 91.24 94.22
retrain-lowLR 97.08 93.17 95.30 90.98 94.13
bio 97.31 92.95 95.27 90.66 94.05
mlm-20.seq 96.44 93.43 94.73 90.85 93.86
mlm-1.seq 96.23 93.18 94.96 90.75 93.78
mlm-20.joint 94.66 91.63 94.57 88.43 92.32
mlm-1.joint 96.72 92.87 94.74 90.36 93.67
infoxlm-large
single 96.68 93.66 95.12 90.66 94.03
all 96.74 93.04 94.94 90.46 93.79
all-combined 95.25 92.47 92.84 89.99 92.64
retrain 97.09 93.56 95.02 90.64 94.08
retrain-lowLR 96.96 93.30 95.12 90.49 93.97
bio 96.96 93.53 95.17 90.61 94.07
mlm-20.seq 96.80 94.06 95.40 90.62 94.22
mlm-1.seq 97.01 93.67 94.71 90.55 93.99
mlm-20.joint 95.16 92.91 95.00 89.84 93.23
mlm-1.joint 96.98 93.22 94.97 90.36 93.88
mluke-large
single 97.06 93.43 95.39 90.13 94.00
all 96.89 93.24 94.81 90.69 93.91
all-combined 96.46 92.43 92.83 90.31 93.01
retrain 97.25 93.40 94.77 90.60 94.01
retrain-lowLR 96.99 93.07 94.85 90.62 93.88
bio 97.08 93.27 95.30 90.55 94.05
mlm-20.seq 96.89 93.60 95.55 90.37 94.10
mlm-1.seq 96.90 93.02 94.64 90.32 93.72
mlm-20.joint 94.66 92.27 94.86 89.17 92.74
mlm-1.joint 96.81 92.97 94.80 90.48 93.76
mluke-large-lite
single 96.90 93.42 95.37 90.21 93.98
all 96.86 93.08 94.82 90.68 93.86
all-combined 96.40 92.50 92.67 90.40 92.99
retrain 97.21 93.33 94.68 90.70 93.98
retrain-lowLR 97.21 93.10 94.79 90.61 93.93
bio 97.08 93.27 95.30 90.55 94.05
mlm-20.seq 97.10 93.45 95.36 90.58 94.12
mlm-1.seq 96.97 93.10 94.52 90.41 93.75
mlm-20.joint 95.08 92.28 95.17 88.95 92.87
mlm-1.joint 97.01 92.99 94.79 90.18 93.74
xlm-roberta-large
single 96.87 93.49 95.40 90.54 94.07
all 96.77 93.28 94.98 90.70 93.93
all-combined 96.44 92.01 92.94 90.85 93.06
retrain 97.32 93.42 95.01 90.97 94.18
retrain-lowLR 97.15 93.23 95.22 90.70 94.07
bio 96.91 93.64 95.28 90.70 94.13
mlm-20.seq 97.15 93.72 95.31 90.64 94.21
mlm-1.seq 97.09 93.40 95.14 90.79 94.10
mlm-20.joint 95.10 93.11 94.88 89.39 93.12
mlm-1.joint 96.95 93.65 95.22 90.61 94.11
multilingual-e5-large
single 96.91 93.41 94.94 90.77 94.01
all 96.94 92.93 94.67 90.55 93.77
all-combined 96.46 92.90 93.02 91.01 93.35
retrain 97.07 93.35 94.85 90.91 94.04
retrain-lowLR 97.07 93.02 94.68 90.74 93.88
bio 96.99 93.36 95.01 90.77 94.03
mlm-20.seq 97.20 93.39 94.81 90.75 94.04
mlm-1.seq 96.90 93.20 94.79 90.72 93.90
mlm-20.joint 96.07 93.11 94.94 90.10 93.55
mlm-1.joint 96.73 93.35 94.78 90.70 93.89
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