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Abstract
Language Identification (LI) is essential for many NLP tasks, particularly in multilingual and code-mixed contexts
like social media in India. Dravidian languages, widely spoken in southern India, present unique challenges for LI
due to their rich morphology and the frequent use of Roman or hybrid scripts. This report details our approach
to addressing word-level LI in Kannada, Tamil, Malayalam, and Tulu as part of a shared task. We fine-tuned
MuRIL, a BERT based model from Google, which is trained on transliterated and translated Indian Languages. It
performed significantly better than mBERT on multi-lingual benchmarks like XNLI and XTREME, making it a
suitable choice for the task. Our models performed exceptionally well, securing 1𝑠𝑡 place in Kannada, 2𝑛𝑑 in Tulu,
3𝑟𝑑 in Tamil, and 2𝑛𝑑 in Malayalam (with the latter submitted late). Our results demonstrate the effectiveness of
our approach in tackling the complexities of LID in Dravidian languages.
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1. Introduction

Language Identification (LI) is a natural language processing (NLP) research problem that aims to
determine the language(s) in which a given text is written. It can be applied at various levels: document,
sentence, word, or sub-word level. In multilingual environments, LI is crucial for applications like
machine translation, information retrieval, and sentiment analysis. LI becomes more complex in cases
of code-mixed text, where multiple languages are used within the same sentence or word. This is
particularly common in social media or informal communication in multilingual regions. In India we
have regionally enriched diverse languages, leading to serious concern in how to deal with them. This
can be greatly solved by Language Identification.

LI in multilingual and code-mixed contexts, particularly within Dravidian languages, has emerged as
a critical area of research. This is driven by the increasing importance of code-mixed texts in social
media, where local languages like Tamil, Kannada, Malayalam, and Tulu are intermixed with English.
Such mixing occurs at various levels, including within individual words, posing significant challenges
for conventional LI models.

Recent studies have highlighted the complexities associated with Dravidian languages, which, despite
their rich morphological structures, are under-resourced in terms of linguistic resources and technolog-
ical tools. For instance, Chakravarthi et al. [1] emphasize the difficulties in handling offensive language
detection in code-mixed texts, showing that traditional machine learning models like Naive Bayes and
Logistic Regression outperformed more advanced models like BERT in specific scenarios involving
Dravidian languages. This suggests that tailored approaches may be necessary for effective language
identification in these contexts.

The ongoing challenges have given rise to initiatives like the CoLI-Dravidian@FIRE 2024 shared task
[2, 3, 4, 5, 6], which will lead to advance word-level LI models for these languages. By providing curated
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datasets and fostering competition, such tasks aim to push the boundaries of current LI methodologies
and improve the handling of under-resourced languages in code-mixed scenarios.

This research is vital for applications across various domains, including sentiment analysis, machine
translation, and social media monitoring, where accurate language identification is foundational.

Declaration of Generative AI

The Author(s) have not employed any Generative AI tools.

2. Related Works

The study from Hegde et al. [7] focuses on identifying the language of individual words in sentences
containing a mix of Tulu, Kannada, and English. This task is crucial for processing code-mixed texts,
especially for under-resourced languages like Tulu, which lack annotated data. The authors introduced
an open-source dataset and organized a shared task where participants categorized words into predefined
classes like Tulu, Kannada, English, Mixed, Name, Location, and Other. Machine learning models using
TF-IDF of character n-grams were commonly employed, with the best model achieving a weighted
F1 score of 0.89 and a macro F1 score of 0.81. This work lays the groundwork for future language
identification tools for under-resourced languages.

The research work from E. Ojo et al. [8] tackles the challenge of word-level language identification
in code-mixed texts, particularly focusing on Kannada-English (Kn-En) language pairs. The study
addresses the complexities of code-mixing, where languages can be intermingled at the sentence, word,
or sub-word level. By employing a combination of machine learning and deep neural networks, the
authors utilized both character-based and word-based text features. The dataset, comprising YouTube
video comments, was pre-processed and categorized into classes such as "Kannada," "English," "Mixed-
Language," "Name," "Location," and "Other." Their CK-Keras model, enhanced with pre-trained Word2Vec
embeddings, demonstrated superior performance, achieving the highest F1 scores among the evaluated
methods. This work contributes significantly to the development of language identification models for
code-mixed languages, showcasing the effectiveness of combining traditional machine learning with
deep learning techniques.

3. Dataset and pre-processing

The dataset was derived from two pivotal works done in Dravidian code-mixed text. The first one being,
the work from Hegde et al. [9], where work was done to promote sentiment analysis in code-mixed
YouTube comments, especially for low-resource languages like Tulu, which could be very challenging.
The second work which contributed to the dataset was the code-mixed Kannada-English dataset from
Shashirekha et al. [10]. For 4 different Dravidian languages, the details of each of these datasets is listed
in the Table 1. The main categories of tags in the data are listed below:

• Dravidian Language
• English
• Mixed Language(Dravidian language + English mixed terms)
• Name
• Location(Name of places)
• Other

The distribution of word-level tags(labels) across different languages is shown in Fig. 1. Tokens “.”
and “*” having ‘SYM’ or ‘sym’ tags were excluded from the dataset, before training our models. The
words tagged as their respective language tag, are code-mixed words, words written in roman script.



Table 1
Details of datasets

Language No. of Tokens in Train/Valid/Test No. of Categories

Tulu 29523/3006/3283 6
Kannada 30015/2484/2502 6

Tamil 13556/1984/2024 6
Malayalam 24995/2504/2401 7

Figure 1: Tag distribution across different languages

The mixed words are usually english words merged with other language extensions, making it a mixed
word, written in Roman script.

In the pre-processing stage, we handle tokenization and label alignment for inputs where words may
be split into subwords. Here’s a general approach:

3.1. Tokenization with Subword Splitting:

Input data is tokenized, with each word potentially being split into multiple subword tokens. This is
necessary for models like BERT, which use subword tokenization. Handling Special Tokens and Label
Alignment:

• The tokenizer introduces special tokens (e.g., [CLS], [SEP]) that do not correspond to any label.
We assign a label of -100 to these tokens so they are ignored during training.

• For words that split into multiple subword tokens, only the first token retains the original label.
Subsequent subword tokens are also assigned a label of -100.

• Realigning Tokens and Labels:
We map each token back to its original word using the tokenizer’s word ids method. Labels are
realigned accordingly, ensuring that only meaningful token-label pairs are retained.



Table 2
Evaluation of MuRIL and mBERT on XTREME(IN) benchmarks

Model
PANX UDPOS XNLI Tatoeba XQuAD MLQA TyDiQA-GoldP

Avg.
F 1 F1 Acc. Āce. F1/EM F1/𝐸M F1/EM

mBERT 58.0 71.2 66.8 18.4 71.2/58.2 65.3/51.2 63.1/51.7 59.1
MuRIL 77.6 75.0 74.1 25.2 79.1/65.6 73.8/58.8 75.4/59.3 68.6

• Batch Processing and Dynamic Padding:
The dataset is pre-processed in batches to improve efficiency. During batching, sequences are
dynamically padded to the length of the longest sequence in the batch, optimizing memory usage
and computational efficiency. This process ensures that the input data is correctly formatted for
training, with proper handling of subword tokenization and label alignment.

4. Methodology

The research problem demands to classify word-level entities into different language classes as well
as names of people and location. This problem clearly encompasses two types of task in one, the first
being language identification and second one is Named Entity Recognition (NER) task. So we address
this task as a Token classification problem. We use AutoModelForTokenClassification1 from
transformers [11] to use particularly the token classification configuration of pre-trained BERT-based
models along with the task-oriented layers. We experimented with various multilingual transformer
models, which is discussed below.

4.1. Model used

MuRIL’s (Khanuja et al. [12]) unique training approach involves the use of translated and transliterated
data, which enhances its ability to handle multilingual text, especially for Indian languages. Unlike
mBERT (Devlin et al. [13]), which only uses monolingual corpora, MuRIL incorporates cross-lingual
translation tasks to improve understanding of code-mixed and transliterated content.

Due to its different pre-training approach, MuRIL outperforms mBERT on the XTREME (Hu et al.
[14]) benchmark, specifically excelling in XNLI (Conneau et al. [15], ,cross-lingual natural language
inference), NER, and question-answering tasks. We can see their performances on the benchmarks in
Table 2, where we can see MuRIL outperforming mBERT by a reasonable margin, leading to our choice
for fine-tuning on the problem task.

MuRIL-base-cased has been used for all languages except for Malayalam where MuRIL-large-case
has been used.

4.2. Training process

We primarily used muril-base-cased model, for finetuning on each language task, which was used to
make predictions on the test dataset. The details of fine-tuning are given below as per each language:

4.2.1. Tulu

For the Tulu language model, we fine-tuned the base model for 30 epochs with a learning rate of 2e-5
and a weight decay of 0.001. Both the training and evaluation were conducted with a batch size of 16.
During this process, we monitored the validation loss to identify the best-performing model. After the
single training run, the model with the lowest validation loss was selected as the final model for this
language.

1https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#transformers.AutoModelForTokenClassification

https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#transformers.AutoModelForTokenClassification


Table 3
Result across different languages

Language MF1 MPr MRe WF1 WPr WRe/Acc

Tulu 0.85852938 0.89882938 0.82815216 0.91790522 0.91913179 0.91867195
Kannada 0.92936992 0.92419394 0.93591665 0.96689675 0.96709914 0.96682654

Tamil 0.72329027 0.71897978 0.72901181 0.93381769 0.93215274 0.93577075
Malayalam 0.87637428 0.90565098 0.85539625 0.93395478 0.93500179 0.93722511

4.2.2. Kannada

We used similar hyperparameters as above for this language as well: a learning rate of 2e-5, a weight
decay of 0.001, and batch sizes of 16 for both training and evaluation. The model was trained for
20 epochs, and to ensure robustness, we trained the model three times. Each time, we evaluated the
model on the validation set and selected the model with the lowest evaluation loss as the final model.
Additionally, we enabled the load-best-model-at-end as True parameter to ensure that the best model
checkpoint was restored at the end of training. This avoids over-fitting on the training data.

4.2.3. Tamil

We initially fine-tuned the model for 20 epochs with a learning rate of 2e-5, a weight decay of 0.001,
and a batch size of 16. However, the initial results were not satisfactory, indicating that further training
could improve performance. Therefore, the output model from the first round of fine-tuning was further
trained for an additional 20 epochs using the same hyper-parameters. Among the models generated,
the one with the best macro F1 score on the validation set was selected as the final model for Tamil.

4.2.4. Malayalam

In case of malayalam we particularly experimented and tried the "muril-large-cased" model, which is
much larger than the base version. The model was fine-tuned for 15 epochs with a learning rate of
1.2e-5, a smaller learning rate compared to other language training. The other parameters were kept
the same as the above 3 training setups.

5. Result and Discussion

From table 3, we observe outstanding result in case of Kannada language, compared to all other
languages. This can be attributed to the fact that we have a lot of words belonging from english
language making the task much easier( refer to fig 1 ). Tamil was the language on which our models did
not performed quite upto the mark. The reason being Tamil’s smallest training dataset, which caused
a fall in performance for the fine-tuned model’s performance. For Tulu language, the performance
deteriorate was due to the fact that it is a low-resource language, hence no models were pre-trained
on the language. While for other Languages Muril performed reasonably good, owing to its special
pre-training on transliterated text and its counter-part. Also constant monitoring of validation loss on
validation data for each fine-tuning process helped us to obtain the model checkpoint which is not
over-fitted, even though we trained model for so many epochs.

6. Additional Experiments

6.1. Seq2Seq Modelling

In this additional experiment, we explored the use of Flan-T5-Small(Chung et al. 16) for this language
identification (LID) and named entity recognition (NER) task. We fine-tuned the Flan-T5-Small model



Table 4
Result from Flan-T5 small

Technique Language MF1 MPr MRe WF1 WPr WRe/Acc

Seq2Seq Tamil 0.72812546 0.73125305 0.72545729 0.93779794 0.93746167 0.93853074
Token Classifier Tamil 0.57876845 0.57198737 0.58707348 0.91158505 0.91422529 0.91004997

using a prefix-based approach where each input was preceded by the prompt "Do LID:". The model was
trained for 10 epochs with a learning rate of 5e-4, a batch size of 8 for training, and 2 for evaluation.
The training was designed to maximize performance on word-level classification tasks. The model was
evaluated using the validation dataset, and the epoch with the lowest validation loss was selected for
inference.

During inference, we encountered two major issues that impacted the performance:

• Omitted Words Issue: In some cases, the number of words predicted by the model did not
match the actual number of words in the input sentence. This discrepancy led to the omission of
certain words from the prediction output. For instance, in the sentence:
“Super star na adhu rajini sir mattum tha vera yarunaalayum antha patta tha vanga muditadhu da”
, the output using the model was:
{‘Super’: ‘en’, ‘star’: ‘en’, ‘na’: ‘tm’, ‘adhu’: ‘tm’, ‘rajini’: ‘name’, ‘sir’: ‘en’, ‘mattum’: ‘tm’, ‘tha’: ‘tm’,
‘vera’: ‘tm’, ‘yarunaalayum’: ‘tm’, ‘antha’: ‘tm’, ‘vanga’: ‘tm’, ‘muditadhu’: ‘tm’, ‘da’: ‘tm’}
While the output is in correct format, some of the words (‘patta’, ‘tha’) from within have been
omitted. Though, for the predicted language for the remaining words is correct. In total, 39
sentences from the validation dataset had to be omitted due to this mismatch.

• Inappropriate Substitution Issue: The second issue was the inappropriate substitution of
certain words with unrelated terms. For example, in the sentence “Irudhiyil ivarum MGR labellil
dhaan Avar Cinemavil Herovoda Vaazhkaiyai ottuvaara”, the word “Cinemavil” (which should
have been tagged as a code-mixed word ’tmen’) was substituted by “Movievil” and incorrectly
tagged as ‘en’ (English) in the output.

Despite these issues, the model achieved a weighted F1-score of 0.9378 and an accuracy of 0.9385 on the
remaining 144 sentences. The macro F1-score was 0.7281, indicating a relatively balanced performance
across the different classes. However, these problems with word omission and inappropriate substitutions
suggest areas where further refinement of the model or preprocessing steps could improve accuracy,
especially in complex code-mixed scenarios.

These findings highlight the challenges in using a general-purpose model like Flan-T5-Small for
specialized tasks involving code-mixed language and suggest the need for more tailored approaches or
enhanced training data to handle such cases effectively.

6.2. Flan-T5 as token classifier:

We also fine-tuned the pre-trained ’google/flan-t5-small’ model for token classification, using AutoMod-
elForTokenClassification from transfomers library of HuggingFace. The model was trained with a learning
rate of 2e-5, with a batch size of 16 for both training and evaluation. The training process consisted of
30 epochs, with a weight decay of 0.001 to regularize the model. To manage model checkpoints, we set
the save_total_limit to 5, retaining only the most recent five model saves. This training configuration
was executed three times to ensure reliability and consistency of the results. The final result is mention
in Table 4
Due to the aforementioned problems in this method, we discontinued the use after Tamil, and did not
fine-tune it for other languages.



7. Conclusion

For this task of LID in Code-Mixed text, we fine-tuned a seq2seq (encoder-decoder) model Flan-T5-small
and MuRIL, a BERT-based encoder-only model. We found that FLan-T5-small is not suitable for this
task, while on the other hand MuRIL which has also been pre-trained on the roman text of the many
Dravidian languages performed quite well, with having 0.9294 Macro-F1 score for Kannada. We also
found that there is a correlation between the size of training dataset and the Macro-F1 score. We
attributed the score of Tulu being average despite a large dataset to the pre-training of the model (as
Tulu is low-resource language).

8. Future Directions

Other highly accurate and heavy large language models like XLM-RoBERTa(large and base) were not
fine-tuned and tested in this report. Their performance can also give us crucial insights on the research
problem. Apart from just fine-tuning a LLM, we can use techniques like data augmentation using
synthetic data obtained from SOTA models like Llama-3 , GPT and so on. The Augmented data can train
models on a much more diverse representations, which in turn can lead to even better performances.
Furthermore we can try to understand how LI can help in other NLP tasks in code-mixed text paradigm
like sentiment analysis, bias detection, fake news, etc.
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