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Abstract

Sarcasm, which is frequently characterized by irony or ridicule, is a complicated phenomena in language when
the intended meaning differs from the literal utterance. Sarcasm detection in text poses major hurdles to natural
language processing (NLP), especially in social media situations. In contrast to conventional sentiment analysis,
sarcasm frequently hides its true meaning beneath colloquial language, making it challenging to identify without
taking into account the context and minute changes in meaning.Using transliterated datasets, this study focuses
on sarcasm recognition in Indic languages, particularly Tamil and Malayalam. We improve the text’s accessibility
for machine learning models by transliterating the native scripts into standard forms. The efficacy of four models
in identifying sarcasm was tested: Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), and Logistic Regression (LR). With an F1-score of 0.3710 and accuracy rates of 83.62% for Malayalam and
75.50% for Tamil, Logistic Regression was the model that performed the best overall.Our system demonstrated the
resilience of our method by achieving a noteworthy rank 9 in a competitive sarcasm detection assignment.These
findings highlight how crucial it is to combine customized machine learning models with transliteration in order
to identify sarcasm in regional languages.

Keywords

Sarcasm detection, Transliteration, Natural Language Processing (NLP), Tamil, Malayalam, Code-mixed languages,
Machine Learning, Logistic Regression, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision
Tree (DT)

1. Introduction

The practice of translating a word or phrase from one writing system to another while preserving the
original writing system’s sounds or letters is known as transliteration.When used skillfully, transliter-
ations and code-switching in languages such as Tamil and Malayalam can yield insightful linguistic
information that enhances the ability to recognize sarcasm [1]. Although these components appear to
add more labour to the task at hand, they actually create a more realistic representation of language by
combining phonetic and cultural elements with local linguistic patterns using English script. Transliter-
ations reveal contextual details that would otherwise be lost in translation since they accurately capture
the sound of words in their native language.By incorporating advanced machine learning techniques,
transliterations become a benefit rather than a disadvantage. Transliterations can be recognized and
interpreted by machine learning algorithms, especially those built to handle multilingual data. This
successfully bridges the gap between the original language and its English-script counterpart. These
algorithms are able to identify patterns that disclose the speaker’s intention, even when it is obscured
by sarcastic tones, by examining both the transliterated text and its surface-level content. This is made
possible by the fact that, provided phonetic consistencies are preserved, feature extraction models—like
those trained on English data—can nevertheless extract semantic information from transliterated text.
Text that has been transliterated into the Roman script adheres to a systematic, phonetically consistent
sound mapping. Therefore, despite the script variation, feature extraction algorithms use these phonetic
signals to identify well-known patterns, including sentiment changes or tonal nuances. Models are
taught to identify characteristics such as contextual dependencies, n-grams, and word embeddings in
transliteration cases, which preserve important linguistic elements of the source language. Furthermore,
Both native and transliterated data are used to train embedding methods such as Word2Vec, which
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capture both surface-level features and more profound semantic implications. remove a line from this
and it should stil make sense

2. Literature Review

Sarcasm recognition in Indian languages has been a major focus of research. The study [2] on detecting
sarcasm in Hindi used language-specific methods such as transliteration and tokenisation from the
Indic NLP toolbox. Sarcasm detection

Language nuances and code switching cause problems in Hindi, as they do in other Indian languages.
The study discovered that collecting features from Indic scripts using models like SVM and Random
Forest can improve sarcasm detection by leveraging language-specific characteristics.

The author at [3] investigated a multimodal approach to sarcasm detection, using textual and visual
data. This study discovered that sarcasm is frequently expressed through imagery, emoticons, and social
media replies. By combining text-based characteristics with visual sentiment signals, their technique
outperformed purely text-based models in accuracy. The use of multimodal approaches allows for a
more full investigation of sarcasm, as it captures context that text alone may overlook.

Both the studies by [4, 5] used machine learning models including Decision Trees, SVM, and Neural
Networks to identify sarcasm. The author used these models to anticipate sarcastic intent by analysing
the text’s syntactic and semantic components. In [5], the author applied neural networks to iden-
tify sarcasm across code-mixed languages, highlighting the significance of deep learning in difficult
multilingual contexts.

The author [6] emphasised the role of transliteration in handling Indian scripts such as Tamil.
Transliteration bridges the gap between native scripts and their Romanised counterparts, which is
required for sarcasm detection in code-mixed datasets. Accurate transliteration not only protects
phonetic integrity, but it also improves feature extraction for machine learning models by retaining
important linguistic nuances. This, in turn, enhances the model’s capacity to recognise sophisticated
language elements like sentiment, intent, and sarcasm in multilingual settings. Transliteration also
increases performance on NLP tasks such as named entity recognition (NER), tokenisation, and cross-
lingual transfer learning by providing a consistent representation of words across languages and scripts.
Transliteration has been shown in studies to reduce text ambiguity and improve overall classification
accuracy, especially in code-mixed circumstances where Romanised and local characters are merged.

Finally, the author of [7] emphasised the role of transliteration in managing Indic scripts like Tamil.
Transliteration bridges the gap between native scripts and their Romanised counterparts, which is
required for sarcasm detection in code-mixed datasets. Their findings demonstrate that correct translit-
eration preserves phonetic integrity, allowing for superior feature extraction in machine learning
models.

These researches emphasise the significance of dealing with linguistic diversity, exploiting multimodal
inputs, and using advanced machine learning algorithms. Combining these approaches considerably
increases model robustness and accuracy in identifying sarcasm in Indian languages.

3. Dataset Description

The dataset used in this research features mixed-language utterances that include Tamil-English and
Malayalam-English combinations, categorized as either sarcastic or non-sarcastic. The dataset is
available at: https://codalab.lisn.upsaclay.fr/competitions/19310#participate. Text samples in Malayalam
and Tamil that have been separated into training, validation, and test subsets make up the sarcasm
recognition dataset. There are 21,740 non-sarcastic and 7,830 sarcastic text in the training set and 4,630
non-sarcastic and 1,706 sarcastic text in the validation set for the Tamil dataset. 6,338 text samples make
up the test set, which will be used for label-free evaluation. There are 10,689 non-sarcastic and 2,499
sarcastic text in the training set and 2,305 non-sarcastic and 521 sarcastic text in the validation set of
the Malayalam dataset. The model’s performance on unseen data will also be evaluated using the 2,826
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unlabeled text samples in the test set. This dataset is set up to train and validate models for sarcasm
detection in both languages.The dataset is an extensive collection for sarcasm identification in Tamil
and Malayalam since it spans a wide range of situations and domains, from official writing to social
media posts. The model’s capacity to generalize well to new data is improved by the quantity of the
dataset, which guarantees that it is trained on a variety of samples. Furthermore, a different validation
set makes sure that the models are adjusted to prevent overfitting, which strengthens their resilience.

Train Set Validation Set Train Set Validation Set
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Figure 1: Class distribution for Malayalam text Figure 2: Class distribution for Tamil text

4. Methodology

4.1. Dataset Preprocessing

A thorough preparation pipeline is crucial when working with both native-script and Romanized
Tamil text data. The first step is transliterating Romanized Tamil into native Tamil script using the
indic-transliteration module to ensure a consistent language representation during feature extraction.

Following transliteration, preprocessing is carried out to clean and standardize the data. All text is con-
verted to lowercase to maintain uniformity, and punctuation, special characters, and non-alphabetical
symbols are removed, as they don’t contribute to the text’s semantic meaning. Stopwords, common
words like "and" )"the" and "is" which don’t add significant meaning, are also removed using a spe-
cially compiled Tamil stopwords list, expanded from publicly available sources. This step reduces
dimensionality and allows models to focus on informative words.

Tokenization is performed using the indic_tokenize module, designed to handle the complexities of
Indian languages. The Tfidf Vectorizer then converts each sentence into meaningful tokens or words and
transforms them into numerical features. By giving words that appear frequently within a document
but rarely across the entire corpus higher weights, Tfidf Vectorizer captures the relative importance
of each word. To maintain computational feasibility, the vocabulary is limited to the top 5,000 most
frequent terms.

Four machine learning models are employed for sarcasm detection in Tamil text: K-Nearest Neighbors
(KNN), Support Vector Machines (SVM), Decision Trees (DT), and Logistic Regression (LR). These
models are selected for their ability to handle high-dimensional feature spaces and their efficiency in
text classification tasks.

4.2. Feature engineering and data splitting

Initially, a bigger and more varied dataset was produced by combining the initial training and validation
datasets. In order to improve the model’s ability to generalize, more data was made accessible for
training. Following the datasets’ merger, an 80-20 split was implemented, whereby 20% of the merged
data was set aside for testing and 80% was used for training. This method made it possible to train the
model on a greater range of instances while still offering a distinct test set for assessing how well it
performed on data that wasn’t used for training.

For feature extraction, Tfidf Vectorizer was utilized to convert text into a numerical matrix, evaluating
the significance of words in relation to the entire dataset. Word embeddings were also employed to



[ Load the Sarcasm Dataset J

v

Data Preprocessing

Remove stopwords
Convert to lower
Tokenization

v

Feature Extraction

Word embeddings
N-grams
TF-IDF

Model Training

KNN <
SVM

Logistic Regression
Decision Trees

Test the model with Sarcasm
data

Model Evaluation

Accuracy
Precision/Recall
F1-score

N

Model Trained

v

Predict Sarcasm

Fine tune the model

Figure 3: Workflow of proposed solution

translate words into continuous vector representations, capturing semantic relationships based on
context. To preserve local context and better understand word associations, N-grams, particularly
trigrams, were used. The selection of trigrams was aimed at incorporating patterns involving sequences
of three words, which can provide a deeper understanding of context, especially for capturing nuanced
expressions like sarcasm. The extracted features from these techniques were then used to train and test
the machine learning models.

4.3. Model Selection
4.3.1. Logistic Regression

A popular classification technique for sarcasm detection, even in contexts with mixed language codes,
is logistic regression. The model uses a probability score between [0,1] to determine if a text is sarcastic
or not. Texts that meet a predetermined threshold (e.g., 0.5) are classed as sarcastic. The code-mixed
text’s sentiment scores, word frequencies, and context-based signals are among the features that are
utilized to produce predictions. While LR yields interpretable findings, it is not always able to handle
the delicate, context-dependent nature of sarcasm, particularly in texts with mixed codes. Sarcasm
frequently conveys contradicting or weak feelings that are difficult to define with straightforward linear



bounds. We have obtained an accuracy of 75.49% with F1 score of 0.371 in Tamil dataset and an accuracy
of 83.61% in the Malayalam dataset

Logistic Regression Confusion Matrix (Malayalam) Logistic Regression Confusion Matrix (Tamil)
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Figure 4: LR - Confusion Matrix - Malayalam Figure 5: LR - Confusion Matrix - Tamil

4.3.2. K-Nearest Neignbour(KNN)

By categorizing texts based on their similarity to pre-labeled sarcastic or non-sarcastic samples, the
k-Nearest Neighbors method (KNN) can detect sarcasm without needing complex frameworks. When
applied to code-mixed languages, KNN analyzes features from both languages, such as word frequency,
sentence structure, and contextual patterns, to find the closest matches. The final label is determined by
the majority class of the nearest neighbors.

KNN Confusion Matrix (Malayalam) KNN Confusion Matrix (Tamil)
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Figure 6: KNN - Confusion Matrix Malayalam Figure 7: KNN - Confusion Matrix Tamil

Although simple and easy to implement, KNN struggles to accurately identify sarcasm, especially in
code-mixed texts. Traditional similarity metrics often fail to capture subtle cues like tone, wordplay,
or the context of language switching, which are critical for detecting sarcasm. As a result, KNN’s
effectiveness is limited in these scenarios. On the Tamil dataset, we achieved an accuracy of 73.51%
with an F1 score of 0.238. For the Malayalam dataset, the accuracy reached 76.39%. This shows KNN’s
limitations in identifying sarcasm in complex language settings.

4.3.3. Support Vector Machines(SVM)

When it comes to code-mixed languages like Tamil-English, Support Vector Machines (SVM) are
especially helpful in differentiating between messages that are sarcastic and those that are not. By
converting the text into numerical features, such TF-IDF scores, and extracting linguistic traits unique
to the code-mixed language, SVM finds the ideal hyperplane that divides the two groups. SVM is a good
option since sarcasm in these kinds of writings frequently depends on how both languages interact
with one another and their contextual meanings. It can handle sparsity and high-dimensional feature



spaces well, which makes it appropriate for sarcasm detection in code-mixed, complicated, context-rich
datasets. We have obtained an accuracy of 66.424% with F1 score of 0.321% in Tamil dataset and an
accuracy of 71.019% in the Malayalam dataset
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Figure 8: SVM - Confusion Matrix Malayalam Figure 9: SVM - Confusion Matrix Tamil

4.3.4. Decision Tree

Decision Trees (DT) in sarcasm detection function by recursively segmenting the data according to
the characteristics that most effectively distinguish sarcastic from non-sarcastic occurrences. These
characteristics for texts with mixed codes could be word choice, punctuation, mood changes, and
grammatical patterns in both languages. The feature providing the most information gain is chosen at
each node in the tree, resulting in an organized sequence of choices that establish categorization.

Although DTs are easily interpreted and shown, a basic tree structure may not be able to properly
capture the complex and context-dependent nature of sarcasm in code-mixed language. In these
situations, feature engineering and the incorporation of DTs into ensemble models can enhance their
efficacy in sarcasm detection. We have obtained an accuracy of 69.359% with F1 score of 0.403 in Tamil
dataset and an accuracy of 77.17% in the Malayalam dataset.
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Figure 10: DT - Confusion Matrix - Malayalam Figure 11: DT - Confusion Matrix - Tamil

5. Conclusion

The methodology involved comparing the actual results published on the website with the outcomes
produced by each model. This approach facilitated a comprehensive assessment of the models’ perfor-
mance relative to established benchmarks.Identification of sarcasm is essential, with Logistic Regression
(LR) achieving the highest accuracies of 75.50% for Tamil and 83.62% for Malayalam. Despite its
straightforward nature, LR effectively handled code-mixed data, delivering consistent performance



Table 1
Classification Report for Malayalam language using Machine Learning models (Non - Sarcastic)

Model F1 Score Precision Recall Support
Decision Tree 0.8635 0.8461 0.8816 2314
KNN 0.8648 0.8144 0.9218 2314
Logistic Regression 0.9084 0.8379 0.9918 2314
SVM 0.8157 0.8511 0.7831 2314

Table 2

Classification Report for Malayalam language using Machine Learning models (Sarcastic)
Model F1 Score Precision Recall Support
Decision Tree 0.3042 0.3398 0.2754 512
KNN 0.0723 0.1256 0.0508 512
Logistic Regression 0.2270 0.7816 0.1328 512
SVM 0.3226 0.2798 0.3809 512

Table 3

Classification Report for Tamil language using Machine Learning models (Non-sarcastic)
Model F1 Score Precision Recall Support
Decision Tree 0.7938 0.7792 0.8089 4621
KNN 0.8397 0.7515 0.9513 4621
Logistic Regression 0.8478 0.7746 0.9364 4621
SVM 0.7769 0.7535 0.8018 4621

Table 4

Classification Report for Tamil language using Machine Learning models (Sarcastic)
Model F1 Score Precision Recall Support
Decision Tree 0.4039 0.4270 0.3832 1717
KNN 0.2385 0.5389 0.1532 1717
Logistic Regression 0.3710 0.6090 0.2667 1717
SVM 0.3219 0.3554 0.2941 1717

across both languages. In comparison, K-Nearest Neighbors (KNN) struggled with context identifi-
cation in code-switching scenarios, resulting in lower accuracies of 73.51% for Tamil and 76.39% for
Malayalam. Decision Trees (DT) outperformed KNN in capturing context-based signals, while Support
Vector Machines (SVM) demonstrated satisfactory performance with high-dimensional data, although
both models faced difficulties in grasping the nuances of sarcasm. Ultimately, the incorporation of
transliteration-based techniques and tailored machine learning models contributed to improved system
accuracy, highlighting the potential for enhanced sarcasm detection across multilingual datasets.

Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT in order to: drafting content, grammar
and spelling check, etc. After using this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the publication’s content.
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