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Abstract

This manuscript describes the participation of the UMSNH NLP Team in the Sarcasm Identification of Dravidian
Languages: Tamil & Malayalam task at FIRE 2024. Our approach combines bag-of-words and deep learning models,
solving the task independently. We then construct a new feature space by leveraging the decision functions of
the individual models. This new feature space is fed into an XGBoost classifier to make a final prediction. The
generic text categorization system, FastText, achieves the best performance for the Tamil-based task with a macro
F1-score of 0.74. However, our combined model improves upon individual performances for the Malayalam task
with a macro F1-score of 0.76.
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1. Introduction

Recent achievements in natural language processing, especially in generative models, have obscured
many details about human communications. Analyzing the emotional load in written sentences is not
only about identifying patterns; there are complex dependencies on the social and cultural context,
educational level, and many other subjective aspects. The set of tasks related to identifying emotions
in written/spoken communication is called Sentiment Analysis; this task ranges from identifying if a
text/comment has a positive, negative, or neutral to more complex tasks like identifying its level of
humor.

In the same line, sarcasm identification is one of the most complex sentiment analysis tasks. Usually,
sarcasm is expressed as ironic comments that pretend to convey the opposite of its real meaning. The
latter implies that identifying a sarcastic phrase is practically impossible without the appropriate context.
Furthermore, due to globalization, it is becoming more common to use slang and terminology from
other languages (mainly English). This last point increases the complexity of context identification.
Working with mixed languages is denominated as Code-Mixed.
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2. Task description

The task Sarcasm Identification of Dravidian Languages Tamil &Malayalam aims to identify sarcasm and
sentiment polarity in code-mixed YouTube comments/posts written in Tamil-English and Malayalam-
English. Each corpus entry is annotated as Sarcastic, Non-Sarcastic. More details about corpus creation
and labeling can be seen at references [1, 2, 3, 4, 5].

For the task, organizers provide two datasets per language: one labeled dataset for training and an
unlabeled one for evaluation. Furthermore, the training set of each language is split into a smaller
validation set and a larger training set. Table 2 shows the composition of the training and testing sets.

Language Dataset Total Instances Non-sarcastic Sarcastic

Malayalam
Train 16014 12994 3020
Test 2826 No labels available

Tamil
Train 35906 26370 9536
Test 6338 No labels available

Table 1
Dataset description for the Sarcasm detection task in Tamil and Malayalam.

3. Related Work

Transformers, introduced by Vaswani et al. [6], revolutionized natural language processing by relying
on a self-attention mechanism to capture long-range dependencies in text. Since their introduction,
transformers have been successfully applied to various tasks, such asmachine translation as implemented
through BERT [7] and text generation through GPT-2 [8], demonstrating state-of-the-art performance
across multiple domains.

As of recent, transformer based models have also been widely used for text classification as well, which
can be observed in the past edition of the Sarcasm Identification of Dravidian Languages task from the
Forum for Information Retrieval Evaluation 2023 [1]. Amongst these, the best performing system for
the Tamil-English language was achieved by Bhaumik and Das [9] through the use of MuRIL [10], with
which they also achieved second place in the Malayalam-English language.

However, not all participants chose to employ these transformer based models. The work presented
by Krishnan et al. [11] saw the use of simpler classification methods; MLPs, Random Forests, KNN
and SVMs, along with count and frequency based methods for feature extraction, as opposed to word
embeddings used in transformers. This implementation proved to be effective as it placed the authors in
first place for the Malayalam-English language, demonstrating the continued value of shallow-learning
approaches.

FastText, introduced by Joulin et al. proposed an approach to text classification which can be considered
a modification of the popular Word2Vec algorithm [12]. Instead of using a Continuous Bag of Words
model to train word embeddings to predict surrounding words, it trains them to predict the predefined
labels directly. From [12], it has been shown to perform competitively in sentiment analysis tasks.

XGBoost is an optimized gradient boosting framework that has become highly popular in machine
learning due to its efficiency and performance in predictive modeling [13]. XGBoost has achieved
state-of-the-art results in various structured data tasks, such as the classification of fake news [14].

Ensembles from stacking outputs of different classifiers have been used in [15, 16]. In [15], the authors
used this method to classify sarcastic tweets that did not contain the string “#sarcasm”. The approach
in [16] sought to enhance the performance of individual classifiers and showed competitive results.



Nevertheless, performance seemed to be affected by the use of sub-sets from the original database for
model training due to computational limitations. The latter is addressed in this work.

4. Our approach

Roughly, our approach consists of first applying text pre-processing. The processed text is used to train
and optimize multiple text classification models 𝐿𝑀. Then, the decision function 𝑓𝐿𝑀 values are stacked
to produce a new feature space, which is used to train an XGBoost instance; this flow is depicted by the
orange line in the Figure 1. For the prediction phase, after performing the pre-processing, the stacked
space is created by using the prediction made for each model 𝐿𝑀𝑖 and finally fed to the XGBoost to
perform the final decision; this phase is indicated by the blue line in Figure 1.
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Figure 1: Proposed pipeline for ensemble of text classifiers

The rest of the document is organized as follows: Section 4.1 explains the pre-preprocessing details.
The basis of the different evaluated classifiers is described in Section 4.2. Experimental setup and results
are presented in Section 5. Finally, in Section 6, some conclusions derived from the results are given.

4.1. Pre-processing

One pre-processing approach is to transliterate a language into a specific alphabet, such as theMalayalam
script or Latin script. This method, while less robust, offers a high level of accuracy, lower computational
cost, and superior consistency for this task.

Text to Tamil/Malayalam script means transliterating the text into the Tamil/Malayalam alphabet, Text
to Latin Script means transliterating the text from the Tamil/Malayalam alphabet to Latin, Raw text
means no pre-processing was done. Text normalization means the text was treated even further, such
as removing punctuation marks, URLs, or lower casing.

4.1.1. Tamil/Malayalam Script

The primary objective of this pre-processing task is to identify the alphabet in which the phrase is
written and, if needed, transliterate it to the desired alphabet. This is to ensure that the entire data set,
in both Malayalam and Tamil languages, is in a single alphabet, specifically the Latin alphabet.

4.1.2. To Latin Script

This pre-processing task involves translating Malayalam and Tamil texts from their source into the
Latin alphabet. This is to take advantage of the tokenizers of some multilingual BERT models that
require the input in Latin script.



4.1.3. Text Normalization

Text normalization aims to transform raw text into a standardized format easier for machine learning
algorithms to process. It reduces complexities and differences in text, such as spelling, formatting, or
casing. It allows tokenization and model training to focus on patterns in the text rather than noise.

Normalization procedures, such as lower casing, punctuation and special character removal, stemming,
lemmatization, stop word removal, handling of numbers, usernames, or emails, dealing with emojis or
emoticons, and handling spelling mistakes, play a vital role in enhancing the quality of text data for
machine learning.

4.2. Classification Approaches

4.2.1. 𝜇TC

𝜇TC is a text classification framework designed to efficiently find a competitive text classifier by treating
the process as a combinatorial optimization problem [17]. It defines a large configuration space, which
includes text transformation, tokenization, vectorization, and classification functions. Given the vast
number of possible configurations (over 45 million at the time of writing), evaluating all of them
is computationally impractical. To address this, 𝜇TC employs the meta-heuristic search techniques
Random Search and Hill Climbing to navigate the configuration space efficiently.

In this framework, the objective is to maximize the score function, set as the Macro F1-score, but
this setting is customizable. This score evaluates a classifier trained on a given dataset by comparing
predicted labels against true labels.

The optimization process begins with Random Search, which selects a subset of configurations and
finds the best-performing one. Hill Climbing then explores the neighborhood of this best configuration
to find further improvements.

The configuration space includes functions for text transformation (e.g., handling hashtags, URLs, and
emojis), tokenization (e.g., n-word grams, q-character grams), vectorization (e.g., TF, TF-IDF), and
classification (using an unoptimized SVM with a linear kernel). This flexible setup allows 𝜇TC to handle
various text preprocessing and classification tasks.

4.2.2. BERT

BERT (Bidirectional Encoder Representations from Transformers) [7] and RoBERTa (Robustly Opti-
mized BERT Pretraining Approach)[18] are transformer-based text models that have shown excellent
performance at different classification benchmarks like GLUE, RACE and SQuAD, to name a few. Both
RoBERTa and BERT models are designed as bidirectional models that can predict words conditioned
on both the left and right contexts. This feature has shown outstanding results in multiple natural
language processing tasks, such as text classification.

The BERT transformer model is pre-trained using a static MLM (masked language modeling) and NSP
(next-sentence prediction). In the MLM task, about 15% of the words in each sequence are masked, and
the model is trained to predict them. On the other hand, RoBERTa is built on top of BERT and modifies
key hyperparameters. In the pre-training stage, it uses a dynamic MLM where the masked token is
constantly changed. It also completely removes the NSP step.

Fine-tuning

Fine-tuning is the process in which the parameters learned from a previous pre-trained model are then
transferred to a new model that will work as a starting point for a Natural Language task such as text
classification.



Model Pre-training approach Tokenizer

BERT Static MLM, NSP Wordpiece
RoBERTa Dynamic MLM BPE

Table 2
BERT and RoBERTa text models main differences at pretraining approaches and tokenizers utilized.

For the fine-tuning task done in this study, a sequence classification instance using BERT was generated
for each pre-trained BERT or RoBERTa model. These instances contained labels for two categories:”sar-
castic” and ”nonsarcastic”. Data sets were loaded, pre-tokenized, and padded to the max length of the
models (512 tokens). Table 3 shows the different models fine-tuned for the sarcasm detection task.

Model Name Target Language Preprocessing Hyperparameters

robert-malayalam Malayalam Text to Tamil Script
Stock Hyperparameters

bert-malayalam Malayalam Text to Latin Script

l3cube-pune/tamil-bert Tamil Text to Tamil Script
Warm up steps: 500
Learning rate: 1𝑒−5
Epochs: 7

l3cube-pune/malayalam-bert Malayalam Text to Tamil Script
l3cube-pune/tamil-bert Tamil Raw Text
roBERTa XLM Tamil Text to Tamil Script
roBERTa XLM Malayalam Text to Latin Script

Table 3
Preprocessing and hyperparameters for fine-tuning different BERT models. Stock hyperparameters for BERT
for text classification are available in https://huggingface.co/docs/transformers/model_doc/bert#transformers.
BertForSequenceClassification

MuRIL

MuRIL is a BERT-based model pre-trained on 17 Indian languages and their transliterated versions[10].
It has been used in previous text classification competitions with positive results [9]. MuRIL follows a
similar training approach tomultilingual BERT but includes somemodifications; training uses translation
and transliteration segment pairs and applies an upsampling factor of 0.3, enhancing performance
for low-resource languages. It is trained on both monolingual data (Wikipedia and Common Crawl),
translated data (translations of the monolingual data and the PMINDIA dataset), and transliterated
data (transliterations from Wikipedia and the Dakshina dataset). The model was trained using whole
word masking for 1000K steps, with a batch size of 4096 and a sequence length of 512. It focuses on
self-supervised masked language modeling.

4.2.3. FastText

FastText is a library predominantly used for generating word embeddings. It is also effective for text
classification through techniques like bag-of-words and subword information. It includes various
unsupervised and supervised learning algorithms. FastText has pre-trained models for nearly 294
languages, including German, Spanish, French, and Czech. One main characteristic of fastText is its
ability to generate word vectors even for unknown, out-of-vocabulary (OOV) words or concatenation
of different words. This is due to how word vectors are created by joining substrings of characters in
the OOV words.

4.3. Ensemble

The ensemble approach consisted of creating a new Vector Space Model (VSM) by horizontally stacking
the output probabilities and decision functions obtained from the previous classification approaches,

https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification


which were observed to perform relatively well individually. The VSM is then used to fit an XGBoost
classifier optimized through randomized search cross-validation, which performs the final prediction
task. The dimension of the VSM used as input data is given by 𝐶 × 𝑥 × 𝑛𝑚, where 𝐶 is the number of
classes, 𝑥 is the number of samples in the dataset, and 𝑛𝑚 is the number of used outputs or the amount
of selected approaches used to create the VSM. In the case of this task, 𝐶 is always equal to 2 for every
approach, save for the case of 𝜇TC, as the output decision function from its SVM classifier is a positive
number for a sarcastic prediction and a negative number for a non-sarcastic prediction, whereas the
rest of the approaches output a pair of probabilities for a sample being of each class.

In order to obtain the outputs used to train the XGBoost classifiers, as well as to validate them and
get the final predictions from the test set, the models obtained from each approach were used on the
training sets, the validation sets, and the test sets for each language.

4.3.1. XGBoost

XGBoost is an open source machine learning library designed to implement efficient distributed gradient
boosting algorithms [19]. It has been widely used by winning teams in machine learning competitions.
The core concept behind gradient boosting is using weak models, in this case shallow decision trees,
to build a strong decision tree. This building process is done sequentially, until a specified number
of iterations is met. Each new built model tries to correct the errors made by the previous models by
minimizing a specified loss function using gradient descent, the first derivative of the loss function.

Unlike the normal gradient boosting algorithm, XGBoost uses the second derivative of the loss function,
it’s Hessian, as well as the first derivative, essentially turning the gradient descent optimization into
Newton-Raphson optimization. It also uses L1 and L2 regularization to control model complexity,
making it less prone to overfitting by penalizing large trees and overly complex models.

5. Experiments and results

For our experiments, we used only the training and validation sets as provided by the competition
organizers. The compositions of each set are shown in Table 5.

Language Dataset Total Instances Non-sarcastic Sarcastic

Malayalam
Train 13188 10689 2499
Validation 2826 2305 521

Tamil
Train 29570 21740 7830
Validation 6336 4630 1706

Table 4
Dataset split for the Sarcasm detection task in Tamil and Malayalam.

5.1. 𝜇TC

As the 𝜇TC classification pipeline involves a series of text pre-processing steps, the raw datasets were
fed to it as is, specifying the use of 5-fold cross-validation and the space configuration search to take
place in 80 points. A single model was trained per-language. Table 5 shows the parameters obtained for
Malayalam and Tamil after optimization.

5.2. FastText

For the use of FastText, all training and validation sets, as well as the test sets, were preprocessed by
performing the following text normalization procedures using a custom function:



Parameter name Dravidian dialect
Malayalam Tamil

lower-case false true
emojis-handler none none
hashtag-handlers none delete
url-handler delete delete
user-handler group delete
number-handler none delete
diacritic-removal true true
duplication-removal true true
punctuation-removal true false
𝑞-grams 1, 3, 4 1, 2, 3, 5, 9
𝑛-grams 3, 2, 1 3, 2
skip-grams (3,1) none
weighting scheme tfidf tfidf
token-max-filter 1 1
token-min-filter −1 −1

Table 5
𝜇TC best configuration parameters for Malayalam and Tamil texts

• Lower casing
• URL removal
• Removal of usernames
• Removal of non-alphanumerical characters
• Conversion of emojis and emoticons to textual representation

In addition to this, the training and validation sets were transformed to comply with the default required
format for the use FastText. This is to say, the string “__label__𝑐” was placed at the beginning of every
sample in each set, where 𝑐 represents the real label for a given sample.

A single model was trained per-language using both the default FastText parameters and using the
hyperparameter optimization option provided by FastText, setting the time limit to 10 minutes. This
resulted in 2 models per-language.

5.3. BERT

All BERT and RoBERTa models, save for MuRIL andMultilingual, were fine-tuned for a text classification
task. Subsequently, each model was tested across the target languages to evaluate its performance in
detecting sarcasm. This involved the following methodology:

• Both the BERT and RoBERTa models were fine-tuned using the prepared dataset. This process
involved adjusting the pre-trained models with warm-up steps and learning rates for the sarcasm
classification task.

• After fine-tuning, each model was tested on the test sets provided for each target language.
Performance metrics such as accuracy, precision, recall, and F1 score were calculated to select the
most effective models to be later used in the ensemble.

• Once the most effective models were identified, the probability scores for each dataset were
computed. These scores were then used to create the ensemble model, a significant outcome of
our methodology.

In the case of MuRIL and BERT Multilingual, the pre-trained model was used to obtain document
embeddings from each document in every dataset. Instead of using the document embedding provided
by the model, the token embeddings from every token in a given document were summed and averaged;



this averaged embedding was used as the document embedding. These document embeddings were used
in the training process for each language to train a logistic regression classifier for each language with the
use of 5-fold stratified cross-validation, which were then used to make predictions and obtain probability
scores from the training, validation, and test datasets for later use in the ensemble model. It is important
to note that prior to passing the text through MuRIL, it was normalized by performing the following
operations: removing URLs, converting emojis and emoticons to textual descriptions, converting the
text to lowercase, replacing usernames with a placeholder, removing specified punctuation and symbols,
and normalizing whitespace. The text was left in code-mixed format instead of transliterating, as
opposed to the other uses of BERT models. For MuRIL, an experiment was also done with transliterated
text.

5.4. XGBoost

The selected configurations to create the VSMs for use with XGBoost are detailed in table 6. Please
note that a model was created for each language in all configurations, using the output probabilities
from the respective language to build the VSM.

XGBoost Configuration

MuRIL + fastText
MuRIL + fastText + Multilingual BERT
MuRIL + fastText + 𝜇TC + l3cube-pune

MuRIL + fastText + 𝜇TC + l3cube-pune + RoBERTaXLM

Table 6
Configurations used to train XGBoost classifiers

Each XGBoost model was built by randomized search cross-validation using stratified k-folds with five
splits. The parameters with their respective values that were chosen for the random search are detailed
in table 7.

Parameter Values

n_estimators 100, 600, 1000
min_child_weight 1, 5, 10
gamma 0.5, 1, 1.5, 2, 5
learning_rate 0.01, 0.05, 0.1, 0.15, 0.2
subsample 0.6, 0.8, 1.0
colsample_bytree 0.6, 0.8, 1.0
max_depth 3, 4, 5

Table 7
Parameter Grid for Randomized Search in XGBoost

5.5. Results

Table 8 shows the results of all trained models and ensembles for both languages. As seen in Table 8,
the ensemble models perform better in at least one of the metrics than individual models for Malayalam
and exhibit the best F1 performance for Tamil.

As organizers allow three submissions, we decide to submit the results obtained with the models
boldfaced in Table 8. For the Tamil case, the ensemble model was ranked at the top of the contestants,
as shown in Table 9. However, for the Malayalam dialect, the optimized FastText approach was ranked
at the top tied with the other five teams, as shown in Table 10.



Model Name Malayalam Tamil
macro-F1 Accuracy macro-F1 Accuracy

Default fastext+prepocessing 0.69 0.85 0.7 0.78
2gram fastext+prepocessing 0.65 0.85 0.7 0.79
bert-(malayalam/tamil) 0.74 0.86 0.73 0.79
𝜇tc 0.73 0.86 0.75 0.81
l3cube-pune/(malayalam/tamil)-bert 0.73 0.86 0.74 0.80
roBERTa XLM 0.74 0.85 0.74 0.80
optimized_fasttext 0.72 0.85 0.75 0.81
bert_muril_malayalam 0.72 0.86 - -
bert_muril_tamil - - 0.69 0.76

optimized xgboost (bert muril + fasttext) 0.73 0.86 0.75 0.80
optimized xgboost (bert muril + fasttext
+ bert multilingual) 0.73 0.86 0.75 0.81

optimized xgboost (bert muril + fasttext
+ mtc + bert/l3cube-pune) 0.74 0.86 0.76 0.81

optimized xgboost (bert muril + fasttext
+ mtc + bert/l3cube-pune + RoBERTaXLM) 0.74 0.86 0.76 0.81

Table 8
Accuracy and Macro-F1 results on validation set across the different trained models and formed ensembles

Team Name F1-Score Rank

UMSNH_NLP 0.76 1
Awsathama – 2
Codespark – 3
IRLab@IITBHU – 3
Sarcasm_NLP – 4
MUCS – 4
PixelPhrase – 4

Table 9
Final ranking for Malayalam language

Team Name F1-Score Rank

Awsathama – 1
Team_catalysts – 1
Change_makers – 1
MUCS – 1
UMSNH_NLP 0.74 1
IRLab@IITBHU – 1
Sarcasm_NLP – 2

Table 10
Final ranking for Tamil language

6. Conclusions

At this point, there is a rapid and constant rise of new and efficient language models. The latter
provides researchers with a comprehensive variety of tools; integrating them could be challenging. Our
team integrated the knowledge using XGBoost over stacked VSM to take advantage of multiple text
classification approaches. Our approach ranks at the top in both languages. However, even though
ensembles perform consistently better in our validation partition, the ensemble only outperforms other
approaches for the Malayalam task, while in the Tamil task, FastText is the one on rank 1. The latter



suggest that the correct model can depend on the input data, or possible overfitting from the ensemble
model, but more research is needed to rectify this. Also, while this approach proves to be effective, the
setup is relatively complex to implement and computationally intensive. This leaves open the possibility
of further optimizing the process to simplify our implementation.
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