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Abstract
The Software Engineering Information Retrieval (IRSE) track focuses on developing automated methods to
evaluate code comments using a machine learning framework. This year, the track featured two key tasks: (i)
predicting the usefulness of code comments and (ii) estimating code quality. The first task focuses on distinguishing
code comments as either useful or not useful. The dataset comprises 9,048 pairs of code comments sourced from
open-source C-based projects on GitHub, along with an additional dataset generated by teams utilizing large
language models (LLMs). A total of 12 teams from various universities contributed to this effort, conducting
experiments that were evaluated using both quantitative and qualitative metrics. Notably, while labels generated
by large language models introduce bias into the prediction model, they also contribute to reducing overfitting,
leading to more generalizable results. The sub-track pertaining to code quality estimation was introduced this
year. Given a problem description, and a list of large language model (LLM) generated software code, the objective
of the task is to automatically estimate the functional correctness of each generated code. For the purpose of
evaluation, each problem-solution pair is then ranked by these estimated probabilities of functional correctness,
the quality of which is then reported with standard ranking performance measures.
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1. Introduction

Evaluating the quality of comments is essential for optimizing codebases and improving code maintain-
ability. Clear and well-organized comments can greatly enhance the readability and understanding of
the code as long as they are consistent and informative.

Perceptions of comment quality, especially regarding their "usefulness," are context-dependent and
can vary across different situations. Bosu et al. [1] sought to evaluate code review comments from a
separate tool, focusing on their effectiveness in helping developers write better code. This evaluation
was based on a comprehensive survey conducted at Microsoft. However, there is a need for a similar
quality assessment model specifically designed to analyze source code comments that are crucial for
routine maintenance tasks.

Majumdar et al. [2] developed a framework for evaluating comment quality, classifying comments
as "useful," "partially useful," or "not useful" based on their ability to enhance the understandability of
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nearby code snippets. The authors utilize a machine learning framework to assess comments, focusing
on concepts that support code comprehension and identifying redundancies or inconsistencies in
relation to the code. These concepts were informed by exploratory studies involving developers from
seven companies and insights gathered from the broader community through crowd-sourcing.

In the first iteration of the IRSE track at FIRE 2022, the research in [2] was expanded to include
an empirical investigation into comment quality, employing a broader range of machine learning
techniques and features. In 2023, the IRSE track advanced further by introducing a challenge that
focuses on evaluating the feasibility of incorporating silver standard quality labels generated by Large
Language Models (LLMs). This year also, the task is to extend the dataset using LLM-generated data.
The goal is to determine how this addition enhances the predictive capabilities of the classification
model. Establishing a gold industry standard for assessing the usefulness of comments that facilitate
understanding of code, particularly in legacy systems, is a challenging and time-consuming endeavor.
Nonetheless, generating a larger dataset is essential for broadening the model’s applicability across
different programming languages, which is being pursued through the use of large language models.

The performance of these models, especially in understanding the relationships between code and
comments, can provide valuable insights into the quality of the generated data and its potential for scaling
the existing classification model. Additionally, this approach can be generalized to any classification
model based on software metadata.

In addition to the core track of comment usefulness detection, this year - as a pilot track, we introduced
a new sub-track pertaining to quality estimation of large language model (LLM)-generated code. More
precisely speaking, given a problem description comprised of a natural language description of a
programming task along with a partially written code, e.g., the function prototype, a common practice
is to employ generative AI models (instruction tuned LLMs specifically fine-tuned on software code,
e.g., CodeLlama, Codestral etc.) to automatically generate code to solve the given task. Given a pair
comprised of a problem description along with an LLM-generated solution the objective is to estimate
the likelihood that the code is functionally correct, i.e., it provides a correct solution to the problem.
As analogy, this task is somewhat similar to the task of query performance prediction (QPP) [3, 4] in
IR, where the objective is to estimate the quality of a retrieved list of documents in terms of relevance
(which is substituted by the notion of ‘functional correctness’ in the context of our problem).

2. Related Work

Software metadata is essential for code maintenance and understanding. Numerous tools [5, 6, 7, 8, 9, 10]
have been developed to facilitate the extraction of knowledge from software metadata, such as runtime
traces and structural attributes of code.

In the context of mining code comments and assessing their quality, authors [11, 12, 13] analyze
the similarity of words in code-comment pairs using Levenshtein distance and comment length to
filter out trivial and non-informative comments. Rahman et al. [14] identify useful and non-useful
code review comments in logged review portals based on attributes identified through a survey of
Microsoft developers [1]. Majumdar et al. [2, 15] proposed a framework for evaluating comments
based on concepts relevant to code comprehension. They developed textual and code correlation
features utilizing a knowledge graph for semantic interpretation of the information in comments. These
approaches leverage semantic and structural features to establish a prediction framework for classifying
comments as "useful" or "not useful," which can then be integrated into efforts to declutter codebases.

With the rise of large language models [16], it is crucial to compare the quality assessment of code
comments generated by standard models like GPT-3.5 or LLaMA with human interpretations. The IRSE
track at FIRE 2023 builds on the approach proposed in [2] to investigate various vector space models [17]
and features for the binary classification and evaluation of comments in the context of understanding
code. This track also evaluates the performance of the prediction model with the inclusion of GPT-
generated labels for the quality of code and comment snippets sourced from open-source software.



Table 1
Test data predictions of the submitted systems.

Seed Seed + LLM-augmented

Affiliation P R F1 P R F1

IIT KGP 1 0.8426 0.8576 0.8428 0.8462 0.8582 0.8573
IIT KGP 2 0.8100 0.8600 0.7923 0.8221 0.8241 0.8164
IIT KGP 3 0.7738 0.7233 0.7863 0.7900 0.7802 0.8046
IIT KGP 4 0.8100 0.8103 0.8212 0.8321 0.8121 0.8195
IIT KGP 5 0.7916 0.8446 0.8172 0.7886 0.8470 0.8167
IIT Goa 1 0.7901 0.8043 0.7942 0.7976 0.8017 0.7987
IIT Goa 2 0.8621 0.8750 0.8530 0.8900 0.8940 0.8920
IIT Goa 3 0.8350 0.8520 0.8340 0.8730 0.8710 0.8800
IIT Goa 4 0.7983 0.8040 0.7841 0.7922 0.8086 0.7985
IIT Goa 5 0.8283 0.8040 0.8141 0.8178 0.7906 0.8013
SRM Chennai 1 0.8120 0.7930 0.8000 0.8231 0.8500 0.8320
SRM Chennai 2 0.8143 0.8231 0.8000 0.8213 0.8423 0.8287

3. Task and Datasets

We now describe the task and the dataset details of the two sub-tracks (ST) for IRSE.

3.1. ST-1: Comment Usefulness Prediction

Comment Classification : The task involves binary classification of source code comments as either
Useful or Not Useful given a comment and its associated code snippet as input. The output is based
on whether the information contained in the comment is relevant, and would help comprehend the
surrounding code, i.e., it is useful.

• Useful Comments have sufficient software development concept → Comment is Relevant, and these
concepts are not primarily present in the surrounding code → Comment is not Redundant.

• Not Useful Comments have sufficient software development concept → Comment is Relevant, and
these concepts are mostly present in the surrounding code → Comment is Redundant.

Dataset: For the IRSE track, we use a set of 9048 comments (from Github) with comment text,
surrounding code snippets, and a label that specifies whether the comment is useful or not.

3.2. ST-2: Code Quality Estimation

Task and Evaluation Measures We scope the code quality estimation task to estimate the functional
correctness of code snippets generated via LLMs in response to a prompt specifying a programming
task. In particular, we make use of the HumanEval1 dataset for this task, which constitutes of 161
programming problem descriptions.

Given a programming task description 𝑃 , and a list of 𝑚 solutions 𝒮𝑃 = {𝑆𝑃
1 , . . . , 𝑆

𝑃
𝑚} generated

by an LLM, a predictor model 𝜃 should estimate a likelihood score of the functional correctness of each
solution, i.e., 𝜃 : 𝑃,𝒮 ↦→ R𝑚.

An effective model should estimate a high likelihood value for a functionally correct solution (the
ground-truth being computed via a set of test-cases), which means that a standard evaluation metric for
a ranking task may also be applied here - the only difference being the notion of ‘relevance’ replaced
with that of ‘functional correctness’ (𝑃 being analogous to a query and 𝒮𝑃 to that of a set of top-𝑚
retrieved documents). Motivated by this analogy, we report nDCG@𝑚 (in our setting, 𝑚 = 10, i.e., 10
solutions are generated for each problem) as an evaluation measure.
1https://huggingface.co/datasets/openai/openai_humaneval

https://huggingface.co/datasets/openai/openai_humaneval


Table 2
Characterizations of the LLM Generated datasets

Team name Total entry Useful entry Not useful entry
IIT KGP 1 431 412 19
IIT KGP 2 1228 730 497
IIT KGP 3 1510 24 1486
IIT KGP 4 202 185 17
IIT KGP 5 738 80 658
IIT Goa 1 236 93 143
IIT Goa 2 8598 4649 3949
IIT Goa 3 335 314 21
IIT Goa 4 334 309 25
IIT Goa 5 237 186 51
SRM Chennai 1 263 130 133
SRM Chennai 2 150 65 85

Additionally, we also report a global ranking effectiveness measure to compare across the performance
over all problem tasks. Specifically, we use the predicted likelihoods to rank all the 𝑃, 𝑆𝑃

𝑖 pairs for
each 𝑃 ∈ 𝒫 (the set of all problem tasks in a benchmark), and compute the nDCG value of this set, i.e.,
nDCG@(𝑚|𝒫|).

To differentiate the two measures, we call the former local nDCG (l-nDCG) and the latter global nDCG
(g-nDCG). More precisely speaking, to calculate l-nDCG, we rank 𝑃, 𝑆𝑃

𝑖 pairs for each problem 𝑃 ,
calculate nDCG and then calculate the average of nDCG values for all 𝑃 ∈ 𝒫 (i.e.,

∑︀|𝒫|
𝑗=1(𝑛𝐷𝐶𝐺𝑗/|𝒫|)),

whereas to calculate g-nDCG, we rank all 𝑚|𝒫| pairs of 𝑃, 𝑆𝑃
𝑖 for all 𝑃 ∈ 𝒫 and then calculate the

nDCG value.

4. Participation and Evaluation

4.1. ST-1: Comment Usefulness Prediction

IRSE 2024 received a total of 12 experiments from 12 teams for the two tasks. As this track is related to
software maintenance, we received participation from several research labs of educational institutes.

The various teams with the details of their submissions are characterized in Table 1. The dataset
provided was balanced and had 4015 useful comments and 4033 not useful comments. The participants
used various pre-trained embeddings such as one hot encoding, TF-IDF vectorizer, word2vec, or context-
aware like ELM or BERT to generate vectors for the word sequence. Teams have used several machine
learning models like support vector machine, logistic regression, and deep-learning based models such
as BERT, Recurrent neural network, and so on.

Some participants were observed to achieve a slight increase in test accuracy when the model was
trained with the addition of an LLM-generated dataset (Table 2). However, in many cases, the accuracy
reduces (2%-4%). This behavior is due to the incorporation of silver standard data that reduces the
over-fitting of the models.

4.2. ST-2: Code Quality Estimation

A team from IIT-KGP participated in this task. Similar to the methodology proposed in [18], they
employed GPT-3.5 Turbo zero-shot inference on a problem description and a solution pair to estimate
how likely is the solution to be functionally correct. They submitted three runs with three different
temperature (𝜏 ) settings for the GPT decoder (specifically, 𝜏 = 0.7, 𝜏 = 0.8 and 𝜏 = 0.9). The prompt
used by the participating team is shown in Figure 1.

To set a reference point for comparison purposes, we employed a relatively simple heuristic baseline
which given a problem description and a list of solutions measures the variance across the semantic



Given the problem {Problem} and the solution {Solution}, generate a likelihood score between 0 and 1
indicating how relevant the solution is to the problem. Only state the score.

Figure 1: Prompt used by the participating team for the code quality estimation task via GPT-3.5 0-shot inference.

Evaluation Metrics

Participant Method l-nDCG g-nDCG

IIT KGP
GPT-3.5 (𝜏 = 0.7) 0.6595 0.9108
GPT-3.5 (𝜏 = 0.8) 0.6616 0.9109
GPT-3.5 (𝜏 = 0.9) 0.6602 0.9107

CodeBERT-CLS CodeBERT CLS 0.6401 0.9036

Table 3
Evaluation of the submitted runs for three different temperature settings and the in-house baseline of CodeBERT-
based embedding similarities.

similarities between each solution pair. For measuring the semantic similarity between a pairs of code
solutions, we use the CLS embeddings obtained from CodeBERT [19], a BERT model fine-tuned on
large volumes of source code data.

The assumption of using the variance across generated code solutions as an estimate is that topical
diversity of the solutions may indicate lack of consistency in the solutions being generated, which could
be be associated with a risk of the solutions being incorrect. Making this assumption is appropriate
since HumanEval dataset contains the method signature for each problem. Although there can be
different ways to provide solution 𝑆 (i.e., implement code) for a problem 𝑃 (e.g., by using different data
structures or implementing a recursive algorithm instead of an iterative one, the method signature
limits the way one can provide a solution 𝑆 for a given problem 𝑃 .

Table 3 shows that the GPT-based 0-shot inference produced better results than the in-house heuristic-
based baseline of estimating code quality as a measure of the topical diversity between the LLM-
generated solutions.

5. Conclusions

The first sub-task of the IRSE track focused on exploring various automated approaches for evaluating
comment quality. The assessment criteria were based on whether a comment provided useful information
that enhanced the comprehension of the surrounding code. A total of 12 teams participated, employing
diverse machine learning models, embedding techniques, feature sets, and LLM-generated data. The
highest F1-score achieved was 0.853, with a notable improvement to 0.892 when incorporating LLM-
generated data. The inclusion of LLM-generated labels not only mitigated overfitting in classification
models but also enhanced performance. Furthermore, when combining data from all participants with
gold standard labels from industry practitioners, the overall F1-score improved, demonstrating the
effectiveness of data augmentation through LLM-generated annotations.

The second sub-task of the IRSE track focused on assessing the effectiveness of predictive models in
estimating the functional correctness of LLM-generated code. The evaluation revealed that LLM-based
approaches for code quality estimation outperformed embedding-based baselines, demonstrating their
superior ability to capture contextual and functional correctness aspects of generated code.
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