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Abstract

In software development, the quality of code comments can greatly impact how well developers understand
the code. This study focuses on improving the classification of code comments into categories of usefulness by
combining real, manually labeled examples with synthetic data. We used the GPT-3.5-turbo language model
to generate additional comment examples, enriching our dataset for better analysis. Our baseline classification
model was built using random forests. Interestingly, although we introduced synthetic data to enhance model
performance, the F1 score remained stable at around 0.79 before and after augmentation. This research highlights
both the potential and the challenges of using synthetic data to improve the classification of source code comments,
laying the groundwork for further investigation in this field.
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1. Introduction

Software developers often face tight deadlines, leading to improper coding practices. As software
evolves, related documentation can become outdated, and the original developers may be unavailable
for guidance. This creates a need for methods like automated program comprehension to maintain and
improve existing code [1].

Among the primary sources of information in a codebase are code comments, which provide valuable
insights into the logic and decisions behind the code. However, not all comments are equally helpful,
making it necessary to develop automated methods to classify the usefulness of comments effectively.

A major challenge in this task is the lack of large, annotated datasets representing diverse code
comments across different contexts. This paper addresses this issue by augmenting a manually annotated
dataset with synthetic data generated by GPT-3.5-turbo, a state-of-the-art language model. We propose a
binary classification task to categorize C language code comments as either "useful” or "not useful." Using
random forests as a baseline model, we find that the synthetic data did not improve the performance
significantly, with the F1 score remaining stable at 0.79.

This study contributes to the understanding of how manual annotation and synthetic data augmenta-
tion interact in the task of code comment usefulness classification, offering new perspectives for future
research in this domain.

The remainder of the paper is organized as follows: Section 2 reviews related work. Section 3
describes the task and dataset. Section 4 explains our methodology. Results are presented in Section 5,
and conclusions are drawn in Section 6.
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2. Related Work

Code comments are an essential aspect of software maintenance and understanding. Numerous tools [2,
3,4, 5, 6, 7] have been developed to extract and analyze metadata from source code [8], such as runtime
traces and structural code attributes.

Several studies [9, 10, 11, 12, 13, 14] have explored methods for filtering and assessing the quality of
code comments. For example, Rahman et al. [15] identified useful and non-useful code review comments

Forum for Information Retrieval Evaluation, December 12-15, 2024, India
*Corresponding author.
& atharvakeny.0812.2004@gmail.com (A. Keny)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings


mailto:atharvakeny.0812.2004@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en

based on developer surveys at Microsoft [16]. More recently, large language models [17] have been
employed to evaluate comments and their relevance to code [18, 19].

This work builds on these efforts by exploring the impact of synthetic data generated by GPT-3.5 on
comment classification models.

3. Task and Dataset Description

In this section, we outline the task addressed in this paper. Our goal is to implement a binary classification
system that categorizes source code comments into two distinct classes: useful and not useful. The
system takes a code comment along with its corresponding lines of code as input and generates a
label indicating whether the comment is useful or not useful. This classification aids developers in
understanding the associated code more effectively. We utilize traditional machine learning algorithms,
such as random forests, to build the classification model. The two categories of source code comments
are defined as follows:

« Useful - The comment is pertinent to the associated source code.

+ Not Useful - The comment does not provide relevant information about the associated source
code.

Our study employs a dataset containing over 11,000 pairs of code comments and corresponding C
language code snippets. Each data instance comprises the comment text, a related code snippet, and a
label that indicates whether the comment is considered useful. This dataset was sourced from GitHub
and annotated by a team of 14 annotators. A sample instance of this data is presented in Table 1.

In addition to the primary dataset, we created a similar dataset for this research. This secondary
dataset was generated by extracting code-comment pairs from GitHub, with labels of useful or not
useful assigned by GPT. The structure of this dataset closely resembles that of the original dataset and
is intended to augment the original dataset in subsequent analyses.

4. Methodology

We implemented a binary classification system using random forests, which operates by training an
ensemble of decision trees. The model takes both the comment and surrounding code as input, which
are converted into embeddings using a pre-trained Universal Sentence Encoder.

4.1. Random Forest

In this study, Random Forest (RF) is employed for binary comment classification, utilizing an ensemble
of decision trees to enhance predictive accuracy and mitigate overfitting. The core idea behind Random
Forest is to generate multiple decision trees during training and predict the class that is the mode of the
individual tree predictions during the inference phase.

The construction of each tree in the Random Forest follows these steps:

1. A bootstrap sample is drawn from the training data (sampling with replacement).

2. At each node, a random subset of features is selected.

3. The best split for the node is determined based on a criterion (such as Gini impurity or entropy)
to partition the data.

4. Steps 2 and 3 are repeated recursively at each node until the tree is fully grown.

The final classification is determined by aggregating the predictions from all trees in the forest
through majority voting:
RF(x) = majority ({Ti() }iL,) 1)
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Table 1
Example of a data instance

where T;(x) represents the prediction of the i-th tree for the input vector x, and n is the total number
of trees in the forest. A default threshold of 0.5 is typically used for binary classification, though this
can be adjusted to bias the model towards the "useful” comment class, similar to threshold adjustment
techniques in Random Forest.

Random Forest can effectively handle multi-dimensional feature spaces without requiring feature
scaling. It addresses missing values by selecting splits that minimize impurity among non-missing
values, and imputes missing values based on the majority class or mean/mode as applicable.

During training, the out-of-bag (OOB) error, computed from data not included in the bootstrap
samples, provides an unbiased estimate of the model’s generalization error and can be used for hyper-
parameter tuning.

5. Results

We trained our Random Forest model on both the original dataset and the augmented dataset. The
original dataset consisted of 11,452 samples, while the GPT-generated data added 233 samples. In the



first experiment, we used only the original dataset, yielding the following performance metrics.
After incorporating the GPT-generated data to augment the original dataset, we observed the follow-
ing results:

Accuracy | Precision | Recall | F1 Score
Original Dataset 81.06% 0.7902 0.8016 | 0.7949
Augmented Dataset | 81.00% 0.7908 0.8014 | 0.7952

Table 2
Performance metrics for binary classification using both datasets

The minimal variation in the results across all metrics indicates that the GPT-generated data closely
mirrored the original dataset in terms of quality, demonstrating the effectiveness of synthetic data
augmentation.

6. Conclusion

This paper presents a binary classification system for code comment usefulness in C programs, using
random forests as the primary model. Our experiments showed that synthetic data generated by
GPT-3.5-turbo performs similarly to manually annotated data. This demonstrates the value of synthetic
data augmentation in machine learning tasks, particularly for expanding training datasets in resource-
constrained settings.
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