
Assessing the Utility of C Comments with SVM and Naïve
Bayes Classifier
Anamitra Mukhopadhyay1,*

1Indian Institute of Technology, Kharagpur (IIT-KGP), West Bengal-721302, India

Abstract
The flow of code development greatly benefits from comments. As code becomes more prevalent in daily life,
novice programmers frequently ignore commenting to be a necessary step in the development process. This
generally lowers the quality of comments, and such programs contain a significant number of pointless comments.
In these experiments, the Naïve Bayes Classifier and Support Vector Machine (SVM) are used to assess the
usefulness of C comments. The outcomes establish a baseline for future study that may yield superior findings.
These results can be used to develop more sophisticated and complex machine learning models that increase the
accuracy attained when completing the task at hand.

Keywords
Machine Learning, Natural Language Processing, SVM, Naïve Bayes Classifier

1. Introduction

In order to improve code readability, comments are crucial to the development process and take up a lot
of time. Not every comment, though, assists the above objective. As coding becomes more widespread,
inexperienced programmers often neglect the art of commenting, which results in a decline in the
quantity and quality of comments. A lot of comments end up being useless, and it can be annoying and
time-consuming to sort through long comments only to find that they are pointless.

The quantity of comments can be boosted by a variety of deep learning-based automatic commenting
models. Unfortunately, the problem of comment quality has not received enough attention in the
literature. However, current initiatives are tackling these issues by creating machine learning models
that can recognize and classify comments according to their utility.

The author has explored a range of Machine Learning (ML) models in an attempt to find solutions
to this problem. This paper aims to answer critical questions as part of the Information Retrieval in
Software Engineering (IRSE) shared task at the Forum for Information Retrieval Evaluation (FIRE) 2024 :

• What level of complexity is necessary for a Machine Learning model to reliably distinguish useful
comments from useless ones?

• How do well-known general-purpose models like SVM and Naïve Bayes Classifier perform in
this context, even if they are not built for this particular scenario?

The purpose of this research is to show that models like SVM or Naïve Bayes Classifier can be used
as good starting points to address the problem. These foundations can be used to build more intricate
models while taking overfitting risk into account.

Apart from the above described goals, this work additionally addresses the topic of whether data
generated by large language models, like GPT-3.5, can be used to augment the dataset for the learning
task. This aspect is crucial when investigating the possibilities of using artificial intelligence to enhance
the evaluation of comment quality. The study intends to clarify the advantages and difficulties of
incorporating sophisticated language models into the machine learning pipeline by assessing the effects
of augmenting the dataset with AI-generated data. This question, which highlights the intersection of

Forum for Information Retrieval Evaluation, December 12-15, 2024, India
*Corresponding author.
$ anamitra137@gmail.com (A. Mukhopadhyay)
� https://cse.iitkgp.ac.in/~anamitra.mukhopadhyay/ (A. Mukhopadhyay)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:anamitra137@gmail.com
https://cse.iitkgp.ac.in/~anamitra.mukhopadhyay/
https://creativecommons.org/licenses/by/4.0/deed.en


human-written and AI-generated content in the context of comment quality evaluation, is a substantial
portion of the research.

2. Related Work

Software metadata is essential to code maintenance and subsequent comprehension. Many tools have
been created to help with knowledge extraction from software metadata, such as code structure and
runtime traces [1, 2, 3, 4, 5, 6].

Numerous authors have studied the topic of mining code comments and evaluating their quality.
By using methods like Levenshtein distance and comment length to measure word similarity in code-
comment pairs, Steidl et al. [7] successfully weed out irrelevant and uninformative comments. By using
characteristics found in a survey of Microsoft developers, Rahman et al. [8] concentrate on differentiating
between code review comments that are helpful and those that are not in review portals [9]. Using
concepts essential to code comprehension, Majumdar et al. [10, 11, 12, 13] have presented a framework
for assessing comments. Their method uses a knowledge network to semantically evaluate the data in
comments by developing textual and code correlation characteristics. In the end, these methods aid in
the process of cleaning codebases by utilising both semantic and structural information to solve the
prediction problem of differentiating between helpful and useless comments.

The development of huge language models, like GPT-3.5 or llama, makes it essential to evaluate
code comments’ quality and contrast them with human interpretation. The methodology introduced
in a previous work [10] is expanded upon in the IRSE track at FIRE 2023 [14]. Particularly in relation
to their function in understanding code, it explores several vector space models [15] and features for
binary classification and evaluation of comments. Additionally, this track compares the performance
of the prediction model with GPT-generated code and comment quality labels that were taken from
open-source software.

3. Task and Dataset Description

In this section, a description of the task at hand and the dataset provided are given. A binary code
comment quality classification model needs to be augmented with generated code and comment pairs that
can improve the accuracy of the model.
The corresponding dataset was split into two:

• The training dataset with 8048 entries, and
• The testing dataset with 1000 entries.

The training dataset was shuffled, and split into 70% for training the models, and 30% for cross-validation.
The data was labelled as follows:

• Useful: Comments that are useful for code comprehension
• Not Useful: Comments that are not useful for code comprehension

Table 1
Description of the Dataset for the Task

Label Example

Useful /*not interested in the downloaded bytes, return the size*/
Useful /*Fill in the file upload part*/

Not Useful /*The following works both in 1.5.4 and earlier versions:*/
Not Useful /*lock_time*/



4. Augmentation

To enhance the current dataset, data produced by the potent language model GPT-3.5-turbo was included
as part of the dataset augmentation process. To increase the dataset’s diversity and size, more comment
data was produced by utilizing GPT-3.5-turbo’s natural language generation capabilities. The goal of
this augmentation technique was to include comments that covered a wider range of writing styles,
formats, and subject matter. In order to evaluate its potential for improving the training of machine
learning models for comment quality evaluation, GPT-generated data was incorporated. This method
made it possible to investigate how AI-generated content might enhance human-written data, creating
a more complete and reliable dataset that would enhance model performance.

5. System Description

5.1. Text Preprocessing

First, all stop words, punctuation, digits, and links are eliminated. Next, every word with a POS tag
that isn’t a noun, verb, adverb, or adjective is eliminated. Lemmatization is the process of combining
a word’s several forms into a single term. For lemmatization, NLTK wordnet is utilized. The same
preparation procedures are used for the training and testing datasets.

5.2. Feature Extraction

TfidfVectorizer is used for converting the text into numerical features. Tokenizer by Keras library is
used, along with TfidfVectorizer that was used from SciKit-Learn library.

5.3. Machine Learning Models

Two models have been used for the task: one using Support Vector Machine (SVM) model, and another
with Naïve Bayes classifer model. We have used the SciKit-Learn library for both of the models, with
the parameters for the SVM model as follows:

• C: (regularization parameter) = 1
• kernel: (kernel type) = ’linear’

6. Findings

6.1. Without Augmentations

With these parameters set for the SVM model, the validation set gives a 77.27% accuracy score, along
with an F1 score of 0.786.
Also, with the Naïve Bayes Classifier, the validation set gives a 60.99% accuracy score, along with an F1
score of 0.699.

Table 2
Results of Classifier Runs

Run Macro F1 Score Macro Precision Macro Recall Accuracy%

SVM 0.771 0.785 0.758 77.27
Naïve Bayes 0.686 0.736 0.642 60.99



6.2. With Augmentation

With these parameters set for the SVM model, the validation set gives a 77.65% accuracy score, along
with an F1 score of 0.783.
Also, with the Naïve Bayes Classifier, the validation set gives a 64.03% accuracy score, along with an F1
score of 0.695.

Table 3
Results of Classifier Runs

Run Macro F1 Score Macro Precision Macro Recall Accuracy%

SVM 0.778 0.791 0.765 77.65
Naïve Bayes 0.730 0.736 0.652 64.03

7. Conclusion

Basic machine learning models such as SVM and the Naïve Bayes Classifier were used to complete
the tasks. The SVM classifier’s results show that there is potential for improvement, allowing for
the creation of more complex models that better fit the issue statement and produce better outcomes.
Notably, Srijoni Majumdar et al. [16] have already used neural networks to produce excellent outcomes,
and the author expects these findings to continue to improve over time.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT in order to: Grammar and spelling
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.

Acknowledgments

Thanks to the creators of IRSE FIRE for giving this wonderful opportunity to work on such a project,
and their constant technical support throughout the timespan.

References

[1] L. Tan, D. Yuan, Y. Zhou, Hotcomments: how to make program comments more useful?, in:
Conference on Programming language design and implementation (SIGPLAN), ACM, 2007, pp.
20–27.

[2] S. Majumdar, S. Papdeja, P. P. Das, S. K. Ghosh, Smartkt: a search framework to assist program
comprehension using smart knowledge transfer, in: 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), IEEE, 2019, pp. 97–108.

[3] N. Chatterjee, S. Majumdar, S. R. Sahoo, P. P. Das, Debugging multi-threaded applications using
pin-augmented gdb (pgdb), in: International conference on software engineering research and
practice (SERP). Springer, 2015, pp. 109–115.

[4] S. Majumdar, N. Chatterjee, S. R. Sahoo, P. P. Das, D-cube: tool for dynamic design discovery
from multi-threaded applications using pin, in: 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS), IEEE, 2016, pp. 25–32.

[5] S. Majumdar, N. Chatterjee, P. P. Das, A. Chakrabarti, A mathematical framework for design
discovery from multi-threaded applications using neural sequence solvers, Innovations in Systems
and Software Engineering 17 (2021) 289–307.



[6] S. Majumdar, N. Chatterjee, P. Pratim Das, A. Chakrabarti, Dcube_ nn d cube nn: Tool for dynamic
design discovery from multi-threaded applications using neural sequence models, Advanced
Computing and Systems for Security: Volume 14 (2021) 75–92.

[7] D. Steidl, B. Hummel, E. Juergens, Quality analysis of source code comments, International
Conference on Program Comprehension (ICPC), IEEE, 2013, pp. 83–92.

[8] M. M. Rahman, C. K. Roy, R. G. Kula, Predicting usefulness of code review comments using textual
features and developer experience, International Conference on Mining Software Repositories
(MSR), IEEE, 2017, pp. 215–226.

[9] A. Bosu, M. Greiler, C. Bird, Characteristics of useful code reviews: An empirical study at microsoft,
Working Conference on Mining Software Repositories, IEEE, 2015, pp. 146–156.

[10] S. Majumdar, A. Bansal, P. P. Das, P. D. Clough, K. Datta, S. K. Ghosh, Automated evaluation of
comments to aid software maintenance, Journal of Software: Evolution and Process 34 (2022)
e2463.

[11] S. Majumdar, S. Papdeja, P. P. Das, S. K. Ghosh, Comment-mine—a semantic search approach to
program comprehension from code comments, in: Advanced Computing and Systems for Security,
Springer, 2020, pp. 29–42.

[12] S. Majumdar, A. Bandyopadhyay, S. Chattopadhyay, P. P. Das, P. D. Clough, P. Majumder, Overview
of the irse track at fire 2022: Information retrieval in software engineering, in: Forum for
Information Retrieval Evaluation, ACM, 2022.

[13] S. Majumdar, A. Bandyopadhyay, P. P. Das, P. Clough, S. Chattopadhyay, P. Majumder, Can
we predict useful comments in source codes?-analysis of findings from information retrieval in
software engineering track@ fire 2022, in: Proceedings of the 14th Annual Meeting of the Forum
for Information Retrieval Evaluation, 2022, pp. 15–17.

[14] S. Majumdar, S. Paul, D. Paul, A. Bandyopadhyay, B. Dave, S. Chattopadhyay, P. P. Das, P. D.
Clough, P. Majumder, Generative ai for software metadata: Overview of the information retrieval
in software engineering track at fire 2023, in: Forum for Information Retrieval Evaluation, ACM,
2023.

[15] S. Majumdar, A. Varshney, P. P. Das, P. D. Clough, S. Chattopadhyay, An effective low-dimensional
software code representation using bert and elmo, in: 2022 IEEE 22nd International Conference
on Software Quality, Reliability and Security (QRS), IEEE, 2022, pp. 763–774.

[16] S. Majumdar, A. Bansal, P. P. Das, P. D. Clough, K. Datta, S. K. Ghosh, Au-
tomated evaluation of comments to aid software maintenance, Journal of
Software: Evolution and Process 34 (2022) e2463. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/smr.2463. doi:https://doi.org/10.1002/smr.2463.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2463.

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2463
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2463
http://dx.doi.org/https://doi.org/10.1002/smr.2463
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2463

	1 Introduction
	2 Related Work
	3 Task and Dataset Description
	4 Augmentation
	5 System Description
	5.1 Text Preprocessing
	5.2 Feature Extraction
	5.3 Machine Learning Models

	6 Findings
	6.1 Without Augmentations
	6.2 With Augmentation

	7 Conclusion

