Exploring Usefulness of C Comments with Silver-Standard
Machine Learning Models

Aritra Mitra®™

'Indian Institute of Technology, Kharagpur (IIT-KGP), West Bengal-721302, India

Abstract

Comments are very useful to the flow of code development. With the increasing use of code in commonplace life,
commenting the codes becomes a hassle for rookie coders, and often they do not even think commenting as a
part of the development process. This in general causes the quality of comments to degrade, and a considerable
amount of useless comments are found in such codes. In these experiments, the usefulness of C comments are
evaluated using LLM-generated silver standard machine learning models. The results of the experiments create
a baseline for better results that can be found in the future through more research. Based on these findings,
more complex and accurate machine learning models can be created that can improve the accuracy achieved in
performing said task.

Keywords

Machine Learning, Natural Language Processing, Model Generation, Large Language Model,

1. Introduction

Comments add useful information to codebases, making maintenance of such codebases easier. But
on the other hand, a comment can add bloat to the storage front if it is not succinct, or useless. As
programming becomes increasingly prevalent, inexperienced coders often neglect the practice of
commenting, resulting in a decline in both the quality and quantity of comments [1]. Numerous
comments prove to be useless, and combing through useless comments while trying to maintain an old
codebase is ineffective and possible futile.

Numerous deep learning-based automatic commenting algorithms can cull the number of comments
[2]. Unfortunately, there has been inadequate research focused on the problem of comment quality.
Recent initiatives are tackling these difficulties by using machine learning models that can discover and
classify comments according to their use.

The author has examined different machine learning (ML) models to address this issue. This paper
seeks to address essential inquiries within the framework of the Information Retrieval in Software
Engineering (IRSE) shared task at the Forum for Information Retrieval Evaluation (FIRE) 2024.

« What degree of complexity is required for a Machine Learning model to consistently differentiate
between valuable and worthless comments?

« As large language models become more and more capable of solving tasks, can these models be
used for our task?

CEUR-WS.org/Vol-4054/T9-14.pdf

This research intends to illustrate that models generated by LLMs might function as viable initial
approaches for addressing this issue. More intricate models may be developed upon these foundations,
while also accounting for the risk of overfitting.

This work additionally examines the critical issue of whether the dataset for the learning job may
be enhanced with data produced by large language models, such as GPT-3. This factor is crucial in
examining the prospect of utilizing artificial intelligence to enhance comment quality evaluation. This
study evaluates the effects of incorporating Al-generated data into the dataset, aiming to elucidate

Forum for Information Retrieval Evaluation, December 12-15, 2024, India
*Corresponding author.
& aritramitra2002@gmail.com (A. Mitra)

PN

&7 https://cse.iitkgp.ac.in/~aritra.mitra/ (A. Mitra)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

CEUR
E Workshop
Proceedings

mailto:aritramitra2002@gmail.com
https://cse.iitkgp.ac.in/~aritra.mitra/
https://creativecommons.org/licenses/by/4.0/deed.en

the advantages and problems of integrating advanced language models into the machine learning
pipeline. This inquiry constitutes a crucial element of the research, highlighting the convergence of
human-authored and Al-generated content in the realm of comment quality assessment.

2. Related Work

Software metadata [3] is essential for code maintenance and comprehension. A variety of tools have
been created to facilitate the extraction of knowledge from software metadata, encompassing runtime
traces and structural characteristics of code [4, 5, 6, 7, 8, 9, 10, 11, 12]. Numerous researchers have
investigated the quality of code comments in the context of mining. Steidl et al. [13] utilize methods
like Levenshtein distance and comment length to assess the similarity of words in code-comment pairs,
thereby successfully eliminating trivial and non-informative comments. Rahman et al. [14] concentrate
on differentiating valuable from inconsequential code review comments in review portals, utilizing
insights derived from attributes recognized in a survey done with Microsoft developers [15]. Majumdar
et al. [16, 17, 18, 19] have proposed a framework for assessing comments based on concepts essential for
code understanding. Their methodology entails the creation of textual and code correlation attributes,
employing a knowledge graph to semantically analyze the information contained in comments. These
methodologies utilize both semantic and structural characteristics to tackle the predictive challenge of
differentiating valuable comments from unhelpful ones, hence aiding in the cleaning of codebases.
Given the advent of huge language models, such as GPT-3.5 or LLaMA, it is essential to evaluate the
quality of code comments and juxtapose them with human interpretation. The IRSE track at FIRE 2024
builds upon the methodology introduced in a previous study [16]. This study investigates diverse vector
space models and features for binary categorization and assessment of comments, particularly for their
significance in understanding code. This study performs a comparative investigation of the prediction
model’s performance when incorporating GPT-generated labels for code and comment quality derived
from open-source software.

3. Description of Task and Dataset

This section presents a description of the task and the associated dataset. The assignment at IRSE, FIRE
2024 was as follows:

A binary code comment quality classification model requires enhancement through the incorporation of
generated code and comment pairs to elevate its accuracy.

The associated dataset was divided into two parts:

The training dataset comprises 8,048 items.
The testing dataset comprises 1,000 entries.

The training dataset was randomized and divided into 70% for model training and 30% for cross-validation.
The data was categorized as follows:

+ Useful: Comments that enhance understanding of the code
+ Not Useful: Comments that do not contribute to code understanding

4. Augmentation

The dataset augentation was performed using GPT-40-mini and GPT-3.5-Turbo. The augmented dataset
was then fed to CodeT5, GPT-40-mini, GPT-3.5-Turbo and Code-LLaMA to create labels for the data.
three different types of prompting techniques were used for this tasks, the description of which are as
follows:

Table 1
Description of the Dataset for the Task

Label Example
Useful /*not interested in the downloaded bytes, return the size*/
Useful /*Fill in the file upload part*/
Not Useful /*The following works both in 1.5.4 and earlier versions:*/
Not Useful /*lock_time*/

I/0 Prompting: In this case, we ask the LLM to perform the labelling as well as the data generation
using a roleplay-based method, where the LLM provides us with only the label or the generated
data without any additional burden in the response.

Chain of Thoughts (CoT) Prompting: [20] In this situation, the LLM is asked to generate the sought
output, as well as to provide the thought process through which the answer was reached. This
makes the LLM provide more sensible data, but requires processing of the response.

Tree of Thoughts (ToT) Prompting: [21, 22] Here, the LLM is allowed to output multiple different
responses for a task, and then based on those responses, further questions are asked. This creates
a tree of thoughts, and the best response can be selected from the leaves. This results in a further
increase in the accuracy, but requires high amounts of processing afterwards.

5. System Description

5.1. Text Preprocessing

All links, punctuation, numerals, and stop words had been eliminated. Subsequently, all words possessing
a POS tag other than a Noun, Verb, Adverb, or Adjective were eliminated. Lemmatization was employed
to consolidate several versions of a word into a singular term. NLTK WordNet [23] was utilized for
lemmatization. The training and testing datasets employ identical preparation procedures.

5.2. Feature Extraction

The Tfidf Vectorizer [24] had been employed to transform text into numerical characteristics. The Keras
library’s Tokenizer was utilized in conjunction with the Tfidf Vectorizer from the SciKit-Learn package.

5.3. Machine Learning Models
Three models were used for this task, the description of which are as follows:

SilverCodeBERT: This model uses a CodeBERT-base model to create embeddings for the Natural
Language (NL) comment as well as the Programming Language (PL) code context. The inference
is based on the resultant embedding, using a Multi-Layer Perceptron (MLP).

SilverDoubleBERT: This model uses a BERT-base-uncased model to create embeddings for the
Natural Language (NL) comment, and a CodeBERT-base model for the Programming Language
(PL) code context. The inference is based on the resultant embedding, using a Multi-Layer
Perceptron (MLP).

SilverLSTM: This model uses a GRU model to create embeddings for the Natural Language (NL)
comment as well as for the Programming Language (PL) code context. The inference is based on
the resultant embedding, using a Support Vector Machine (SVM) classifier.

NOTE that these models, however generated by LLMs, had to be slightly modified to be syntactically
correct. These were then finetuned on the original as well as the augmented dataset.

6. Findings

6.1. Without Augmentation

Table 2
Results of Classifier Runs
Run Macro F1 Score Macro Precision Macro Recall Accuracy%
SilverCodeBERT 0.802 0.813 0.772 78.05
SilverDoubleBERT 0.813 0.819 0.788 79.11
SilverLSTM 0.794 0.790 0.767 77.25

6.2. With Augmentation

Table 3
Result of Classifier Runs
Run Macro F1 Score Macro Precision Macro Recall Accuracy%
SilverCodeBERT 0.812 0.821 0.794 79.35
SilverDoubleBERT 0.825 0.829 0.804 81.31
SilverLSTM 0.800 0.781 0.803 78.52

7. Conclusion

The tasks were executed using machine learning models. The findings from the SilverDoubleBERT
classifier suggest potential for improvement, facilitating the creation of more complex models that cor-
respond more effectively with the problem description and produce better outcomes. Srijoni Majumdar
et al. [25] have attained exceptional outcomes utilizing ELMo and BERT-based models, and the author
expects further enhancement of these results in the future.

Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT in order to: Grammar and spelling
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.

Acknowledgments

Thanks to the creators of IRSE FIRE for giving this wonderful opportunity to work on such a project,
and their constant technical support throughout the timespan.

References

[1] J. Raskin, Comments are more important than code, ACM Queue 3 (2005) 64—-. doi:10.1145/
1053331.1053354.

(2] E. Wong, J. Yang, L. Tan, Autocomment: Mining question and answer sites for automatic comment
generation, in: 2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2013, pp. 562-567. d0i:10.1109/ASE.2013.6693113.

http://dx.doi.org/10.1145/1053331.1053354
http://dx.doi.org/10.1145/1053331.1053354
http://dx.doi.org/10.1109/ASE.2013.6693113

(3]
(4]

(5]

(9]

[10]

[11]

S. C.B. de Souza, N. Anquetil, K. M. de Oliveira, A study of the documentation essential to software
maintenance, 2005.

L. Tan, D. Yuan, Y. Zhou, Hotcomments: how to make program comments more useful?, in:
Conference on Programming language design and implementation (SIGPLAN), ACM, 2007, pp.
20-27.

S. Majumdar, S. Papdeja, P. P. Das, S. K. Ghosh, Smartkt: a search framework to assist program
comprehension using smart knowledge transfer, in: 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), IEEE, 2019, pp. 97-108.

N. Chatterjee, S. Majumdar, S. R. Sahoo, P. P. Das, Debugging multi-threaded applications using
pin-augmented gdb (pgdb), in: International conference on software engineering research and
practice (SERP). Springer, 2015, pp. 109-115.

S. Majumdar, N. Chatterjee, S. R. Sahoo, P. P. Das, D-cube: tool for dynamic design discovery
from multi-threaded applications using pin, in: 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS), IEEE, 2016, pp. 25-32.

S. Majumdar, N. Chatterjee, P. P. Das, A. Chakrabarti, A mathematical framework for design
discovery from multi-threaded applications using neural sequence solvers, Innovations in Systems
and Software Engineering 17 (2021) 289-307.

S. Majumdar, N. Chatterjee, P. Pratim Das, A. Chakrabarti, Dcube_ NN D cube NN: Tool for
Dynamic Design Discovery from Multi-threaded Applications Using Neural Sequence Models,
Advanced Computing and Systems for Security: Volume 14 (2021) 75-92.

J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kastner, A. Begel, A. Bethmann,
A. Brechmann, Measuring neural efficiency of program comprehension, in: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 140-150.

Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, S. C. Hoi, Codet5+: Open code large language
models for code understanding and generation, arXiv preprint arXiv:2305.07922 (2023).

[12] J.L.Freitas, D. da Cruz, P. R. Henriques, A comment analysis approach for program comprehension,

[18]

[19]

2012.

D. Steidl, B. Hummel, E. Juergens, Quality analysis of source code comments, 2013.

M. M. Rahman, C. K. Roy, R. G. Kula, Predicting usefulness of code review comments using textual
features and developer experience, 2017.

A.Bosu, M. Greiler, C. Bird, Characteristics of useful code reviews: An empirical study at microsoft,
2015.

S. Majumdar, A. Bansal, P. P. Das, P. D. Clough, K. Datta, S. K. Ghosh, Automated evaluation of
comments to aid software maintenance, Journal of Software: Evolution and Process 34 (2022)
€2463.

S. Majumdar, S. Papdeja, P. P. Das, S. K. Ghosh, Comment-mine—a semantic search approach to
program comprehension from code comments, in: Advanced Computing and Systems for Security,
Springer, 2020, pp. 29-42.

S. Majumdar, A. Bandyopadhyay, S. Chattopadhyay, P. P. Das, P. D. Clough, P. Majumder, Overview
of the irse track at fire 2022: Information retrieval in software engineering, 2022.

S. Majumdar, A. Bandyopadhyay, P. P. Das, P. Clough, S. Chattopadhyay, P. Majumder, Can
we predict useful comments in source codes?-analysis of findings from information retrieval in
software engineering track@ fire 2022, in: Proceedings of the 14th Annual Meeting of the Forum
for Information Retrieval Evaluation, 2022, pp. 15-17.

[20] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, D. Zhou, Chain-of-thought

[21]

prompting elicits reasoning in large language models, 2023. URL: https://arxiv.org/abs/2201.11903.
arXiv:2201.11903.
S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, K. Narasimhan, Tree of Thoughts: Deliber-
ate Problem Solving with Large Language Models, 2023. URL: https://arxiv.org/abs/2305.10601.
arXiv:2305.10601.

[22] J. Long, Large Language Model Guided Tree-of-Thought, 2023. URL: https://arxiv.org/abs/2305.

08291. arXiv:2305.08291.

https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.08291
https://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2305.08291

[23]

[24]

[25]

E. Loper, S. Bird, Nltk: The natural language toolkit, 2002. URL: https://arxiv.org/abs/cs/0205028.
doi:10.48550/ARXIV.CS/0205028.
V. Kumar, B. Subba, A tfidfvectorizer and svm based sentiment analysis framework for text data

corpus, in: 2020 National Conference on Communications (NCC), 2020, pp. 1-6. doi:10.1109/
NCC48643.2020.9056085.

S. Majumdar, A. Bansal, P. P. Das, P. D. Clough, K. Datta, S. K. Ghosh, Au-
tomated evaluation of comments to aid software maintenance, Journal of
Software: Evolution and Process 34 (2022) e2463. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/smr.2463. doi:https://doi.org/10.1002/smr.2463.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2463.

https://arxiv.org/abs/cs/0205028
http://dx.doi.org/10.48550/ARXIV.CS/0205028
http://dx.doi.org/10.1109/NCC48643.2020.9056085
http://dx.doi.org/10.1109/NCC48643.2020.9056085
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2463
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2463
http://dx.doi.org/https://doi.org/10.1002/smr.2463
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2463

	1 Introduction
	2 Related Work
	3 Description of Task and Dataset
	4 Augmentation
	5 System Description
	5.1 Text Preprocessing
	5.2 Feature Extraction
	5.3 Machine Learning Models

	6 Findings
	6.1 Without Augmentation
	6.2 With Augmentation

	7 Conclusion

