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Abstract

Information retrieval (IR) in software engineering is a critical area that focuses on the effective extraction,
organization, and utilization of information from diverse software artifacts, including source code, documentation,
and issue tracking systems. As software systems grow in complexity and volume, traditional search methodologies
struggle to meet the demands of developers and engineers seeking relevant information. The task is, given a
prompt (which includes a problem definition along with an incomplete code snippet) and ten corresponding
solutions for each problem, we need to assign a predicted likelihood score to each (problem, solution) pair to
indicate how likely the solution is to effectively address the problem. This paper explores GPT-3.5 Turbo via
prompting to assign scores to solutions for programming tasks describing how good the solution is wrt to the
problem. We experiment by differing the temperature values. Submission 2 scores the highest amongst the three
submission runs with local nDCG of 0.6615 and Global nDCG of 0.9109.
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1. Introduction

Information retrieval (IR) in software engineering has emerged as an essential discipline in addressing
the challenges posed by the vast and complex landscape of software artifacts [1]. With the rapid
growth of software systems, developers and engineers are inundated with an overwhelming amount of
information, including source code, technical documentation, and issue tracking data [2]. The ability to
effectively extract, organize, and utilize this information is paramount for enhancing productivity and
fostering innovation in software development [3].

Traditional search methodologies often fall short in meeting the nuanced needs of software profession-
als, who require not just relevant information, but also contextual understanding and evaluative insights
into potential solutions [4]. This gap in capability highlights the necessity for more sophisticated IR
techniques that can provide a deeper analysis of programming tasks and solutions [5].

In this paper, we explore the application of GPT-3.5 Turbo [6] as a powerful tool for improving
IR in software engineering. Specifically, we investigate how this advanced language model can be
prompted to assign scores to various programming solutions based on their relevance and effectiveness
concerning specific problems. By leveraging the model’s natural language processing capabilities, we
aim to enhance the retrieval process, enabling developers to quickly identify the most suitable solutions
and streamline their workflow. This research not only contributes to the ongoing discourse on IR
in software engineering but also proposes practical methodologies for integrating Al-driven insights
into everyday software development practices. We experiment by differing the temperature values.
Submission 2 scores the highest amongst the three submission runs with local nDCG of 0.6615 and
Global nDCG of 0.9109.

CEUR-WS.org/Vol-4054/T9-15.pdf

Forum for Information Retrieval Evaluation, December 12-15, 2024, India

*Corresponding author.

& roydanik18@kgpian.iitkgp.ac.in (A. Deroy); subhankar.ai@kgpian.iitkgp.ac.in (S. Maity)
® 0000-0001-7190-5040 (A. Deroy); 0009-0001-1358-9534 (S. Maity)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings


mailto:roydanik18@kgpian.iitkgp.ac.in
mailto:subhankar.ai@kgpian.iitkgp.ac.in
https://orcid.org/0000-0001-7190-5040
https://orcid.org/0009-0001-1358-9534
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related Work

The field of Information Retrieval (IR) in software engineering has gained significant traction as
researchers and practitioners strive to manage the increasing complexity and volume of software artifacts
[7]. Various studies have highlighted the challenges developers face in navigating vast repositories
of source code, documentation, and issue tracking systems, underscoring the need for advanced IR
techniques tailored to the unique characteristics of software engineering [8, 9, 10].

Traditional IR Techniques: Early approaches to IR in software engineering predominantly utilized
keyword-based search methodologies, akin to traditional text retrieval systems [9, 11]. These methods,
while straightforward, often fell short of addressing the nuanced queries posed by software developers.
The limitations of Boolean searches and keyword matching have been well-documented, with studies
showing that developers frequently struggle to find relevant information quickly, leading to decreased
productivity and increased cognitive load [12]. As a response, researchers have advocated for context-
aware retrieval systems that leverage semantic understanding, such as those incorporating domain-
specific ontologies [13].

Semantic and Contextual IR: Recent advances in semantic search techniques have sought to bridge
this gap by incorporating contextual information and understanding user intent [14]. For instance,
techniques leveraging formal representations of code, such as abstract syntax trees (ASTs) and program
dependence graphs, have been explored to enhance the retrieval process [15]. These methods facilitate
more precise querying capabilities, allowing for improved matching of developer needs with relevant
artifacts.

Natural Language Processing in Software Engineering: The intersection of natural language
processing (NLP) and software engineering has garnered increasing attention, particularly with the
advent of deep learning models [16]. Research has demonstrated that NLP can enhance code summa-
rization, documentation generation, and even automated bug fixing [17, 18, 19, 20]. The application of
transformer-based models, such as BERT and GPT, has shown promising results in understanding code
semantics and providing contextualized retrieval solutions [21].

Al-Driven Insights for Enhanced IR: As Al technologies continue to evolve, researchers have
begun to explore their potential in improving IR processes in software engineering [22]. Notably,
studies have shown how machine learning algorithms can learn from past developer interactions to
predict relevant solutions and provide personalized recommendations [23]. This trend aligns with
our exploration of GPT-3.5 Turbo, where we investigate its ability to score programming solutions
based on relevance and effectiveness, building on the foundational work of Al-assisted development
environments.

Integrating Al in Development Workflows: The integration of Al-driven tools into software
development practices represents a significant shift towards enhancing developer productivity [24].
Tools such as Codex and other Al pair programmers have demonstrated the potential for real-time
assistance and contextual recommendations, addressing the challenges of information overload [25].
Our research seeks to expand on these capabilities by providing a structured approach to IR, enabling
developers to leverage Al insights in their decision-making processes effectively.

In summary, while traditional IR methodologies have provided a foundation for information retrieval
in software engineering, the rapid advancement of Al and NLP technologies presents an opportunity to
redefine these approaches. By leveraging models like GPT-3.5 Turbo, this research aims to contribute
to the evolution of IR techniques that not only retrieve relevant information but also offer actionable
insights, ultimately fostering innovation and efficiency in software development practices.

3. Dataset

There are 164 queries in the test set along with 10 solutions corresponding to every query.



4. Task Definition

The task is, given a prompt (which includes a problem definition along with an incomplete code snippet)
and ten corresponding solutions for each problem, we need to assign a predicted likelihood score to
each (problem, solution) pair to indicate how likely the solution is to effectively address the problem.

5. Methodology

5.1. Why Prompting?

Prompting [26] is used for the following reasons:

+ Structured Context: By providing a clear problem definition and an incomplete code snip-
pet, prompting establishes a structured context that helps the model understand the specific
requirements and nuances of the task at hand [27].

+ Guided Responses: Prompts help guide the model in generating relevant and focused responses,
ensuring that the solutions provided align closely with the problem described [28]. This helps
mitigate ambiguity and enhances the quality of the output.

« Efficiency: Effective prompting can streamline the information retrieval process by enabling
the model to quickly hone in on relevant solutions, reducing the time developers and engineers
spend searching for pertinent information [29].

+ Assessment Framework: Prompting sets up a framework for evaluating solutions based on the
likelihood scores, making it easier to analyze how well each solution addresses the problem [30].

« Complexity Management: Given the increasing complexity of software systems, prompting
allows the model to better handle diverse artifacts and contexts by providing specific cues that
focus its attention on relevant aspects of the problem and potential solutions [31].

« Scalability: As software projects grow, the ability to use prompting to efficiently evaluate
multiple solutions against specific problems scales well, accommodating the demands of larger
teams and more complex systems [32].

« Enhanced Learning: Using prompts enables the model to draw on previous knowledge and learn-
ing from similar problems, allowing for more nuanced scoring and better-informed predictions
[33].

« Flexibility: Prompts can be adapted to different types of programming tasks or domains, making
the approach versatile and applicable to a wide range of software engineering challenges [34].

Overall, prompting enhances the effectiveness of information retrieval in software engineering by
providing clarity, structure, and guidance, ultimately improving the relevance and accuracy of the
solutions generated.

5.2. Prompt Engineering-Based Approach

We used the GPT-3.5 Turbo model via prompting to solve the code quality estimation problem in
Zero-shot mode. We now summarize the internal steps in the prompting approach of GPT-3.5 Turbo:

(i) Input Reception: The model receives a text input (the prompt) from the user.

(ii) Tokenization: The input text is broken down into smaller units called tokens. This process
involves converting words and punctuation into numerical representations that the model can
understand.

(iii) Context Encoding: The model takes the sequence of tokens and encodes them into a contextual
representation. This involves capturing the relationships and meanings between the tokens based
on the model’s training.



(iv) Attention Mechanism: Using an attention mechanism, the model weighs the importance of
different tokens relative to each other. This allows it to focus on relevant parts of the input when
generating a response.

(v) Decoding: The model generates a response by predicting the next token in the sequence, based
on the encoded input and its learned patterns. It continues to generate tokens until it reaches a
specified length or an end condition.

(vi) Detokenization: The generated tokens are converted back into human-readable text.

(vii) Output Delivery: The final text response is presented to the user.

An overview of GPT-3.5 Turbo to generate likelihood scores in Figure 1.
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Figure 1: An Overview of GPT-3.5 Turbo for predicting likelihood scores.

We used GPT-3.5 Turbo in zero-shot mode at temperatures 0.7,0.8, and 0.9 with the following prompt:
"Given the problem <Problem> and the solution <Solution> generate a likelihood score between 0 and 1
stating how relevant is the solution wrt the problem. Only state the score".

6. Results
Run ‘ Local nDCG ‘ Global nDCG
Submission 1 | 06595 |  0.9108
Submission2 | 0.6615 | 0.9109
Submission3 | 0.6602 |  0.9107
Table 1

Results for Task-2 of Information retrieval in software engineering Track

Table 1 shows the result for Task-2 of Information retrieval in software engineering Track. Results for
Submission-2 of Information retrieval in software engineering Track is better than that of Submission-1
and Submission-3 for both local nDCG and Global nDCG.

7. Conclusion

This research highlights the critical role of advanced Information Retrieval (IR) techniques in software
engineering, addressing the increasing complexity and volume of software artifacts developers face



daily. Traditional search methods often lack the contextual depth required by software professionals,
underscoring the need for more refined IR solutions capable of delivering relevant, evaluative insights.
Our study demonstrates the potential of GPT-3.5 Turbo as a valuable tool in this domain, showcasing
how its language processing capabilities can be used to enhance the relevance and effectiveness of
retrieved programming solutions.

By experimenting with different model parameters, such as temperature, we observed that Submission
2 consistently scored the highest, achieving a local nDCG of 0.6615 and a global nDCG of 0.9109.
These results suggest that leveraging Al-driven models like GPT-3.5 Turbo not only improves retrieval
accuracy but also supports software engineers in navigating complex development tasks more efficiently.
This research contributes practical methods for integrating Al into software development workflows,
enhancing productivity, and supporting innovation in the field.

Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT in order to: Drafting content, Grammar
and spelling check, etc. After using this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the publication’s content.
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