
Categorizing Code Comments based on its Relevance for
Code Readability
Om Joshi1,*

1Indian Institute of Technology, Goa, India - 403401

Abstract
In software engineering, the value of code comments is often variable, underscoring the need for systematic
approaches to assess their relevance effectively. This study explores the enhancement of code comment usefulness
classification by combining a manually labeled dataset with synthetic data generated through advanced augmen-
tation methods. Leveraging GPT-3.5-turbo, a powerful language model, we generated additional labeled comment
samples to expand the training dataset. A baseline classification model was implemented using Logistic Regression
and Random Forest techniques. Notably, the performance metrics, including an F1 score of approximately 0.79,
remained steady across experiments with and without synthetic data integration. These findings illuminate
the strengths and limitations of using synthetic data augmentation in refining the accuracy of code comment
usefulness evaluation.

Keywords
Large Language Models, GPT-3.5, Random Forests, Data Augmentation, Comment Classification, Qualitative
Analysis

1. Introduction

In the realm of software engineering, code serves as the backbone for many sectors, spanning finance,
healthcare, and infrastructure. As software systems evolve to meet new demands, the complexity of
their codebases grows, necessitating effective maintenance strategies to ensure functionality and quality
over time. Often, rapid development timelines require swift code modifications and bug fixes, which
can lead to inconsistent or outdated documentation. As a result, code comments become one of the
most reliable sources of information for developers and automated tools, encapsulating the intent and
logic behind code segments.

However, the quality and clarity of comments vary widely, creating a need for automated methods to
assess their usefulness accurately. Addressing this challenge, our study introduces an approach that
augments a manually labeled dataset of C-language code comments with synthetic examples generated
by GPT-3.5-turbo, a state-of-the-art language model. This augmented dataset enables us to explore the
impact of synthetic data on the accuracy of comment usefulness classification. Using a baseline Random
Forest model for binary classification, we observed stable F1 scores of approximately 0.80 across both
the original and enhanced datasets, indicating that synthetic data generation can complement manually
annotated data without significantly altering model performance.

This work contributes to the field by evaluating the interaction between manual annotations and
language model-generated data, offering insights into the practicalities of synthetic data augmentation
for improving comment classification in ever-evolving software environments. The structure of this
paper proceeds as follows: Section 2 reviews related work; Section 3 introduces the task and dataset;
Section 4 details the methodology; results are discussed in Section 5; and Section 6 provides concluding
insights.

Forum for Information Retrieval Evaluation, December 12-15, 2024, India
*Corresponding author.
$ joshi.om.23033@iitgoa.ac.in (O. Joshi)
� 0009-0009-3290-7292 (O. Joshi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:joshi.om.23033@iitgoa.ac.in
https://orcid.org/0009-0009-3290-7292
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related Work

Automated program understanding is a recognized research area among professionals in the software
domain. Various tools have been developed to facilitate the extraction of knowledge from software
metadata, encompassing components such as runtime traces and structural attributes of code [1, 2, 3, 4,
5, 6, 7, 8]. Researchers have developed various methods to mine and evaluate code comments, focusing
on analyzing comment quality through code-comment pair comparisons. In assessing code comment
quality, authors [9, 10, 11, 12, 13, 14, 15, 16] employ techniques such as word similarity measures (e.g.,
Levenshtein distance) and comment length analysis to filter out trivial and non-informative comments.
Rahman et al. [17] detect useful and non-useful code review comments (logged-in review portals) based
on attributes identified from a survey conducted with developers of Microsoft [18].

New programmers often rely on existing comments to comprehend code flow. However, not all
comments contribute effectively to program comprehension, necessitating a relevancy assessment
of source code comments prior to their use. Numerous researchers have focused on the automatic
classification of source code comments in terms of quality evaluation. For instance, Omal et al. [19] noted
that factors influencing software maintainability can be organized into hierarchical structures. The
authors defined measurable attributes in the form of metrics for each factor, enabling the assessment of
software characteristics, which can then be consolidated into a single index of software maintainability.
Fluri et al.[20] examined whether the source code and associated comments are changed together along
the multiple versions. They investigated three open source systems, such as ArgoUML, Azureus, and
JDT Core, and found that 97% of the comment changes are done in the same revision as the associated
source code changes. Yu Hai et al.[21] classified source code comments into four classes - unqualified,
qualified, good, and excellent. The aggregation of basic classification algorithms further improved
the classification result. Another work published in [22] in which author proposed an automatic
classification mechanism "CommentProbe" for quality evaluation of code comments of C codebases.
We see that people worked on source code comments with different aspects[22, 23, 13, 12, 15, 16], but
still, automatic quality evaluation of source code comments is an important area and demands more
research.

With the advent of large language models [24], it is important to compare the quality assessment of
code comments by the standard models like GPT 3.5 or llama with the human interpretation. The IRSE
track at FIRE 2024 [25, 26] builds upon the methodologies proposed in [22, 27, 28, 12] to investigate
various vector space models [29] and features for binary classification and evaluation of comments
in relation to code comprehension. This track also assesses the performance of the predictive model
by incorporating GPT-generated labels for the quality of code and comment snippets extracted from
open-source software.

3. Task and Dataset Description

This research focuses on developing a binary classification model to label source code comments as
either useful or not useful. The classification system takes a code comment along with its associated
lines of code as input and outputs a label indicating the comment’s relevance to the corresponding
code, which assists developers in code understanding. Traditional machine learning algorithms, such as
logistic regression, can be applied to construct this classification model. The two label categories for
source code comments are defined as follows:

• Useful - The comment provides meaningful information related to the source code.
• Not Useful - The comment is deemed irrelevant to the associated source code.

The dataset used for this study comprises over 11,000 code-comment pairs extracted from open-
source projects, primarily in C language. Each pair contains a code snippet and its corresponding
comment, along with a label identifying its usefulness or lack thereof. This dataset was meticulously
curated from GitHub and annotated by a team of 14 professionals. To further enrich the dataset, an

Comment Code Label

1 /*test 529*/

-10. int res = 0;
-9. CURL *curl = NULL;
-8. FILE *hd_src = NULL;
-7. int hd;
-6. struct_stat file_info;
-5. CURLM *m = NULL;
-4. int running;
-3. start_test_timing();
-2. if(!libtest_arg2) {
-1. #ifdef LIB529
/*test 529*/
1. fprin

Not Useful

2 /*cr to cr,nul*/

-1. else
/*cr to cr,nul*/
1. newline = 0;
2. }
3. else {
4. if(test->rcount) {
5. c = test->rptr[0];
6. test->rptr++;
7. test->rcount–;
8. }
9. else
10. break;

Not Useful

3
/*convert minor status code
(underlying routine error) to text*/

-10. break;
-9. }
-8. gss_release_buffer(&min_stat, &status_string);
-7. }
-6. if(sizeof(buf) > len + 3) {
-5. strcpy(buf + len, ".\n");
-4. len += 2;
-3. }
-2. msg_ctx = 0;
-1. while(!msg_ctx) {
/*con

Useful

Table 1
Example of a data instance

additional synthetic dataset was generated by using the GPT-3.5-turbo language model to create new
code-comment pairs. The synthetic comments were manually validated to ensure accuracy, contributing
over 200 additional labeled samples that mirror the structure of the original dataset.

4. Methodology

Our approach to classifying code comments into useful and not useful involves several structured steps.
Initially, during Dataset Preparation, we compile a dataset with over 11,000 labeled code-comment
pairs, further enhancing it with synthetic comments generated by GPT-3.5-turbo to increase data variety.
In Feature Engineering, we identify key features such as comment length, specific keyword presence,
and semantic analysis to capture the relevance of comments to their associated code. For Model
Training, logistic regression is used due to its efficiency in binary classification tasks, and we train the
model on both the original and augmented datasets. To measure the model’s performance, we employ
Evaluation metrics, including accuracy, precision, recall, and F1 score, assessing the effectiveness of
our classification model.

The logistic regression model works by applying a logistic function to constrain the output between 0
and 1. This process starts with the formula𝑍 = 𝐴𝑥+𝐵 (Equation ??) for calculating a linear combination
of input features, followed by the application of the logistic function 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑍) = 1

1+exp(−𝑍) (Equation
??) to produce a probability score. A threshold of 0.6 is set to favor predictions toward the useful comment
category. Each training example is represented with a three-dimensional feature vector, and the Cross-
Entropy loss function is used to optimize hyperparameters. In training, 80% of the dataset is utilized,
with the remaining 20% reserved for testing.

5. Results

Our Random Forest model was trained separately on the original dataset and on an augmented version
that included additional data generated by GPT. The original dataset comprised 11,452 labeled samples,
with an additional 233 samples sourced from GPT augmentation. In the initial experiment, only the
original dataset was used, and the resulting performance metrics are shown below.

Upon augmenting the original dataset with the GPT-generated samples, the following outcomes were
observed:

Accuracy Precision Recall F1 Score
Original Dataset 81.05679% 0.7913 0.8035 0.7967
Augmented Dataset 81.53476% 0.7945 0.8078 0.7913

Table 2
Performance metrics for binary classification using both datasets

The small changes in metrics across both datasets suggest that the GPT-generated samples effectively
resemble the original data in quality, supporting the efficacy of synthetic data augmentation in this
context.

6. Conclusion

This paper introduces a binary classification model to assess the usefulness of code comments, using
a Random Forest model as the core algorithm. Our findings highlight that GPT-3.5-turbo-generated
synthetic data closely approximates the quality of manually labeled data. This underscores the potential
of synthetic data augmentation for broadening training datasets, especially when resources are limited.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT in order to: Grammar and spelling
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.

References

[1] S. C. B. de Souza, N. Anquetil, K. M. de Oliveira, A study of the documentation essential to software
maintenance, Conference on Design of communication, ACM, 2005, pp. 68–75.

[2] S. Majumdar, S. Papdeja, P. P. Das, S. K. Ghosh, Smartkt: a search framework to assist program
comprehension using smart knowledge transfer, in: 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), IEEE, 2019, pp. 97–108.

[3] N. Chatterjee, S. Majumdar, S. R. Sahoo, P. P. Das, Debugging multi-threaded applications using
pin-augmented gdb (pgdb), in: International conference on software engineering research and
practice (SERP). Springer, 2015, pp. 109–115.

[4] S. Majumdar, N. Chatterjee, S. R. Sahoo, P. P. Das, D-cube: tool for dynamic design discovery
from multi-threaded applications using pin, in: 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS), IEEE, 2016, pp. 25–32.

[5] S. Majumdar, N. Chatterjee, P. P. Das, A. Chakrabarti, A mathematical framework for design
discovery from multi-threaded applications using neural sequence solvers, Innovations in Systems
and Software Engineering 17 (2021) 289–307.

[6] S. Majumdar, N. Chatterjee, P. Pratim Das, A. Chakrabarti, Dcube_ nn d cube nn: Tool for dynamic
design discovery from multi-threaded applications using neural sequence models, Advanced
Computing and Systems for Security: Volume 14 (2021) 75–92.

[7] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner, A. Begel, A. Bethmann,
A. Brechmann, Measuring neural efficiency of program comprehension, in: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 140–150.

[8] N. Chatterjee, S. Majumdar, P. P. Das, A. Chakrabarti, Parallelc-assist: Productivity accelerator
suite based on dynamic instrumentation, IEEE Access (2023).

[9] L. Tan, D. Yuan, Y. Zhou, Hotcomments: how to make program comments more useful?, in:
Conference on Programming language design and implementation (SIGPLAN), ACM, 2007, pp.
20–27.

[10] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, S. C. Hoi, Codet5+: Open code large language
models for code understanding and generation, arXiv preprint arXiv:2305.07922 (2023).

[11] D. Steidl, B. Hummel, E. Juergens, Quality analysis of source code comments, International
Conference on Program Comprehension (ICPC), IEEE, 2013, pp. 83–92.

[12] S. Majumdar, A. Bandyopadhyay, P. P. Das, P. Clough, S. Chattopadhyay, P. Majumder, Can
we predict useful comments in source codes?-analysis of findings from information retrieval in
software engineering track@ fire 2022, in: Proceedings of the 14th Annual Meeting of the Forum
for Information Retrieval Evaluation, 2022, pp. 15–17.

[13] S. Majumdar, A. Bandyopadhyay, S. Chattopadhyay, P. P. Das, P. D. Clough, P. Majumder, Overview
of the irse track at fire 2022: Information retrieval in software engineering., in: FIRE (Working
Notes), 2022, pp. 1–9.

[14] J. L. Freitas, D. da Cruz, P. R. Henriques, A comment analysis approach for program comprehension,
Annual Software Engineering Workshop (SEW), IEEE, 2012, pp. 11–20.

[15] S. Majumdar, P. P. Das, Smart knowledge transfer using google-like search, arXiv preprint
arXiv:2308.06653 (2023).

[16] P. Chakraborty, S. Dutta, D. K. Sanyal, S. Majumdar, P. P. Das, Bringing order to chaos: Con-
ceptualizing a personal research knowledge graph for scientists., IEEE Data Eng. Bull. 46 (2023)
43–56.

[17] M. M. Rahman, C. K. Roy, R. G. Kula, Predicting usefulness of code review comments using textual
features and developer experience, International Conference on Mining Software Repositories
(MSR), IEEE, 2017, pp. 215–226.

[18] A. Bosu, M. Greiler, C. Bird, Characteristics of useful code reviews: An empirical study at microsoft,
Working Conference on Mining Software Repositories, IEEE, 2015, pp. 146–156.

[19] P. Oman, J. Hagemeister, Metrics for assessing a software system’s maintainability, in: Proceedings
Conference on Software Maintenance 1992, IEEE Computer Society, 1992, pp. 337–338.

[20] B. Fluri, M. Wursch, H. C. Gall, Do code and comments co-evolve? on the relation between source
code and comment changes, in: 14th Working Conference on Reverse Engineering (WCRE 2007),
IEEE, 2007, pp. 70–79.

[21] H. Yu, B. Li, P. Wang, D. Jia, Y. Wang, Source code comments quality assessment method based on
aggregation of classification algorithms, Journal of Computer Applications 36 (2016) 3448.

[22] S. Majumdar, A. Bansal, P. P. Das, P. D. Clough, K. Datta, S. K. Ghosh, Automated evaluation of
comments to aid software maintenance, Journal of Software: Evolution and Process 34 (2022)
e2463.

[23] S. Majumdar, S. Papdeja, P. P. Das, S. K. Ghosh, Comment-mine—a semantic search approach to
program comprehension from code comments, in: Advanced Computing and Systems for Security,

Springer, 2020, pp. 29–42.
[24] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in neural information
processing systems 33 (2020) 1877–1901.

[25] S. Paul, S. Majumdar, R. Shah, S. Das, M. Ghosh, D. Ganguly, G. Calikli, D. Sanyal, P. P. Das,
P. D Clough, A. Bandyopadhyay, S. Chattopadhyay, Generative ai for code metadata quality
assessment, in: Proceedings of the 16th Annual Meeting of the Forum for Information Retrieval
Evaluation, 2024.

[26] S. Paul, S. Majumdar, R. Shah, S. Das, M. Ghosh, D. Ganguly, G. Calikli, D. Sanyal, P. P. Das,
P. D Clough, A. Bandyopadhyay, S. Chattopadhyay, Overview of the irse track at fire 2024:
Information retrieval in software engineering, in: FIRE (Working Notes), 2024.

[27] S. Paul, S. Majumdar, A. Bandyopadhyay, B. Dave, S. Chattopadhyay, P. Das, P. D. Clough, P. Ma-
jumder, Efficiency of large language models to scale up ground truth: Overview of the irse track
at forum for information retrieval 2023, in: Proceedings of the 15th Annual Meeting of the Forum
for Information Retrieval Evaluation, 2023, pp. 16–18.

[28] S. Majumdar, S. Paul, D. Paul, A. Bandyopadhyay, S. Chattopadhyay, P. P. Das, P. D. Clough,
P. Majumder, Generative ai for software metadata: Overview of the information retrieval in
software engineering track at fire 2023, arXiv preprint arXiv:2311.03374 (2023).

[29] S. Majumdar, A. Varshney, P. P. Das, P. D. Clough, S. Chattopadhyay, An effective low-dimensional
software code representation using bert and elmo, in: 2022 IEEE 22nd International Conference
on Software Quality, Reliability and Security (QRS), IEEE, 2022, pp. 763–774.

	1 Introduction
	2 Related Work
	3 Task and Dataset Description
	4 Methodology
	5 Results
	6 Conclusion

