CEUR-WS.org/Vol-4055/icaiw_waai_5.pdf

C

CEUR

Workshop
Proceedings

Enhancing Contextual Memory in LLMs for Software
Engineering via Ontology-based Inference

David Araya’, Catalina Valle!, Hernan Astudillo’, Pablo Ormefio? and Carla Taramasco’

"Universidad Andrés Bello, Vifia del Mar, Chile
2Universidad de Vifia del Mar, Viia del Mar, Chile

Abstract

The application of large language models (LLMs) in software engineering has expanded rapidly, supporting tasks
such as code generation, system design, error correction, and documentation. However, LLMs face persistent
challenges in multi-step development workflows, where accumulated design decisions, dependencies, and con-
straints require a structured, persistent memory. Existing approaches, including extended context windows and
retrieval-augmented generation, rely on statistical similarity between text fragments and lack explicit, formal
representations of the evolving system state, limiting their ability to maintain semantic coherence across de-
velopment stages. We propose an architecture that integrates a dynamically evolving ontology, represented in
OWL (Web Ontology Language), as a structured knowledge base, maintained automatically to reflect changes in
the codebase and user interactions. OWL is a standard language for formal knowledge representation, allowing
the explicit modeling of entities, relationships, and constraints in a machine-readable way. A secondary LLM
(LLM2) functions as a context manager, querying the ontology using OWLready?2 to retrieve structured informa-
tion about entities, classes, methods, and associated constraints. This context is provided to the primary LLM
(LLM1), which directly interacts with the user to generate code that adheres to both current requirements and
historical design decisions. This hybrid approach combines symbolic knowledge representation with generative
capabilities, enabling context-aware, semantically coherent, and explainable code generation. We validated the
approach through a proof-of-concept implementation in a multi-stage object-oriented development scenario.
Comparative evaluation using the same base model, with and without the ontology layer, showed that the
ontology-enhanced configuration improved adherence to prior decisions, maintained semantic consistency across
stages, and produced outputs that were more interpretable and reliable. These results demonstrate the potential
of ontology-supported LLMs to facilitate long-term, semantically grounded software development.

Keywords

Large language models, Code generation, Semantic retrieval, Software engineering, Ontologies

1. Introduction

Large language models (LLMs) have become essential tools in software engineering, supporting tasks
such as system design, code development, debugging, and documentation generation from natural
language descriptions [1, 2, 3]. Their ability to process unstructured input and produce syntactically cor-
rect code has accelerated rapid prototyping and iterative development. Nevertheless, their effectiveness
is often limited by the absence of persistent memory mechanisms capable of maintaining contextual
coherence across extended development cycles [1, 3, 4].

In typical software projects, development is incremental: high-level architectural definitions are
established first and subsequently refined with additional components, constraints, and implementation
details. This iterative process produces a growing set of decisions, dependencies, and design rules that
must be preserved and referenced to maintain semantic consistency. Current LLMs, however, frequently
lose track of evolving context, leading to outputs that contradict or ignore earlier specifications [1].
For example, after defining a class with specific attributes and methods, an LLM may later introduce a

ICAIW 2025: Workshops at the 8th International Conference on Applied Informatics 2025, October 8-11, 2025, Ben Guerir, Morocco
*Corresponding author.

& david.araya@unab.cl (D. Araya); cvalleribe@gmail.com (C. Valle); hernan.astudillo@unab.cl (H. Astudillo);
pormen@gmail.com (P. Ormefio); carla.taramasco@unab.cl (C. Taramasco)

@ 0009-0006-6254-4339 (D. Araya); 0009-0009-3192-8120 (C. Valle); 0000-0002-6487-5813 (H. Astudillo); 0000-0001-5591-3518
(P. Ormeiio); 0000-0001-8318-4201 (C. Taramasco)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

45

mailto:david.araya@unab.cl
mailto:cvalleribe@gmail.com
mailto:hernan.astudillo@unab.cl
mailto:pormen@gmail.com
mailto:carla.taramasco@unab.cl
https://orcid.org/0009-0006-6254-4339
https://orcid.org/0009-0009-3192-8120
https://orcid.org/0000-0002-6487-5813
https://orcid.org/0000-0001-5591-3518
https://orcid.org/0000-0001-8318-4201
https://creativecommons.org/licenses/by/4.0/deed.en

David Araya et al. CEUR Workshop Proceedings 45-54

function without recognizing its membership in that class, redundantly redefine variables, or overlook
established constraints, thereby undermining design integrity and increasing refactoring overhead.

To address these limitations, we propose an architecture that integrates a structured and dynamically
evolving knowledge base in the form of an OWL ontology [5]. This ontology provides an explicit and
queryable representation of the system at multiple abstraction levels, capturing entities, relationships,
and constraints relevant to the target domain. For example, the ontology can capture knowledge
about different frameworks, technology stacks, or software architectures, enabling the documentation
of design choices, the enforcement of compatibility requirements, and the preservation of decisions
made in earlier stages. In the software engineering scenario used for this study, these entities include
modules, classes, methods, attributes, and associated constraints. The ontology is continuously and
automatically updated to reflect changes in the codebase and user interactions, ensuring alignment
with the evolving system state. By maintaining a persistent memory of domain-specific elements and
their interconnections, the ontology enables formal reasoning about dependencies, prevents redundant
definitions, and preserves semantic integrity.

Our approach combines the generative capabilities of LLMs with a dynamically updated ontology that
captures the evolving state of the system. This structured memory provides domain-specific context to
guide code generation, ensuring semantic consistency and alignment with prior design decisions.

By combining symbolic knowledge representation with generative capabilities, this architecture sup-
ports explainable, context-aware, and semantically coherent code generation. Comparative evaluations
using the same base model, with and without the ontology layer, demonstrate that the ontology-
enhanced configuration significantly improves adherence to prior design decisions and reduces incon-
sistencies in generated outputs, effectively bridging the gap between natural language interaction and
formal software design rigor.

2. Related Work

Large language models (LLMs) have transformed software engineering, establishing themselves as
effective assistants in tasks such as code synthesis, system design, debugging, and documentation
generation from natural language [1, 6, 7]. However, their application in real-world environments
still faces significant challenges. Several reviews have highlighted that the lack of robust memory
mechanisms hinders the maintenance of semantic coherence in multi-step workflows, where decisions,
constraints, and dependencies evolve progressively [8]. Models such as Codex have demonstrated
strong performance in individual functions on benchmarks such as HumanEval and MBPP [1], but their
effectiveness diminishes in more complex settings such as SWE-bench or RepoBench, which require
coordination across multiple files and the preservation of invariants [9, 10]. These limitations are
associated with phenomena such as positional bias and context loss, documented in studies on extended
context windows [11]. Although techniques such as explicit planning or adjustments to attention
mechanisms have shown isolated improvements [12, 13], semantic inconsistencies persist, affecting
reliability in real-world development scenarios. In automatic debugging, models such as RepairLLaMA
outperform traditional approaches on specific benchmarks, but their generalization capability remains
limited [14].

Complementarily, the literature has explored the use of ontologies to formally represent software
artifacts, relationships, and constraints, providing benefits in contextual reasoning, traceability, and
semantic coherence. For example, the OntoTrace V2.0 ontology allows the inference of links between
artifacts via SPARQL (SPARQL Protocol and RDF Query Language), yielding empirical improvements in
precision and speed for traceability tasks [15]. In model-driven engineering, the ReApp project employs
ontological descriptions of ROS components, facilitating their reuse and ensuring semantic consistency
in automatic code generation [16]. Similarly, the Knowledge Discovery Metamodel (KDM) of the
Object Management Group defines an ontological representation of software architectures, enabling
traceability between artifacts, flows, and source code [17].

In parallel, multi-agent architectures have emerged that separate code generation from contextual

46

David Araya et al. CEUR Workshop Proceedings 45-54

knowledge management. Configurations such as AutoGen and MetaGPT assign specific roles to different
agents to generate, review, and validate code in sequential stages, integrating external tools and retrieval-
augmented methods [18, 19, 20]. Other approaches, such as SWE-agent [21] or RepoCoder [22] combine
iterative generation with repository exploration, improving completion rates and issue resolution
metrics [21].

Although current approaches have advanced context management through retrieval-augmented
generation or multi-agent architectures, a fundamental limitation remains: the absence of a structured
memory that explicitly, persistently, and dynamically represents the evolving state of the system. None
of the reviewed works integrates a dynamic ontology that is automatically updated during development
and serves as a formal knowledge source to guide code generation. Our proposal addresses this gap
by integrating an OWL ontology, maintained by a secondary language model, which models system
entities, relationships, and constraints, enabling semantic reasoning over past decisions. This explicit
symbolic memory complements the generative capabilities of the primary LLM, promoting sustained
semantic coherence, traceability, and alignment throughout the entire development cycle, an aspect not
previously explored at the intersection of LLMs and software engineering.

3. Methods

This section describes the architecture, implementation, and evaluation of the ontology-based contextual
code generation system.

3.1. Overall System Design and Rationale

The motivation for the modular architecture stems from two common limitations in LLM-based code
generation: first, the models’ tendency to produce code that is syntactically valid but semantically
inconsistent with the target domain; and second, the challenge of injecting evolving domain knowledge
into a conversational flow without retraining the model. By decoupling the generative component
(LLM1) from the semantic control component (LLM2), we aimed to mitigate both issues.

The architecture was deliberately designed so that LLM1 never directly queries the ontology. Instead,
it always obtains the relevant semantic context from LLM2, which is responsible for maintaining an
accurate, up-to-date representation of the domain. This enforces a clean separation of concerns and
allows for easy replacement or upgrade of either LLM without disrupting the pipeline.

The ontology itself serves as a persistent, machine-readable memory of the project domain. It actively
participates in generation: its constraints influence prompt construction, and its structure adapts
dynamically to new user requests. This bidirectional relationship between generation and knowledge
representation is one of the key novelties of the method.

To further clarify the interaction flow, Figure 1 shows the step-by-step process from user request
to final code generation, including context retrieval, code generation, ontology updates, and optional
error handling.

The ontology builder extracts modules, classes, methods, attributes, and relationships directly from
the codebase, operating independently of file naming conventions. This makes the approach agnostic
to project structures, so different entry points (e.g., main.py or app.py) can be handled without errors.

3.2. LLM1: Code Assistant

LLM1 was implemented in Python using the LangChain [23] orchestration library. Python was selected
due to its strong ecosystem for ontology management (e.g., OWLready?), its wide adoption in Al
research, and community support for semantic reasoning tools. The underlying model was gpt-4o,
accessed via the LangChain ChatOpenAl interface. Its role was to take the user’s request, enrich it
with semantic context from LLM2, and produce outputs that were syntactically correct, semantically
aligned, and readable.

47

David Araya et al. CEUR Workshop Proceedings 45-54

LLM1 LLM2 Ontology

User (Code Assistant) (Contextualizer) (OWLready2)

1 Submit code request

| 2 Request semantic context

| 5 Retrieve entities/classes/methods |
(using OWLready2 API) i

:‘ 4 Return structured ontology data

5 Provide enriched context

<

| ~ Generate code considering ontology |
' 7 constraints and formatting rules

:_(7 Deliver generated code |

I

User LLM1 LLM2 Ontology
I (Code Assistant) (Contextualizer) (OWLready2)

Figure 1: Sequence diagram illustrating the flow of interactions between the user, LLM1 (Code Assistant), LLM2
(Contextualizer), and the ontology.

Prompts to LLM1 were structured in three sections: (1) the user’s original request verbatim; (2)
a context block summarizing ontology facts, often in tabular or key-value format; and (3) explicit
formatting instructions for code syntax, inline comments, and docstring style. This format allowed for
deterministic outputs while keeping flexibility for natural language variations.

LLM1 also implements an internal validation step to check semantic consistency against the ontology-
enriched context. If inconsistencies are detected, LLM1 generates a warning or requests additional
context from LLM2 before finalizing the code. This mechanism ensures that generated outputs adhere
to domain constraints.

3.3. LLM2: Contextualizer

LLM2 acts as the intermediary between the ontology and LLM1. It uses gpt-4o to interpret user requests
and code analysis results, generating precise OWLready2 update commands. LLM2 retrieves relevant
ontology knowledge to inject into LLM1’s prompts and updates the ontology when new entities,
relationships, or constraints are detected.

Future implementations may incorporate SPARQL-based queries for more advanced retrieval, but the
current system relies on direct OWLready2 API calls. Retrieval is optimized to select only the relevant
subset of ontology data, reducing prompt size and avoiding overload during inference.

3.4. Ontology Representation and Semantics

The ontology was implemented in OWL using OWLready2, encapsulating core object-oriented pro-
gramming concepts: modules, classes, attributes, methods, parameters, and return types. Each entity is
enriched with datatype and relational constraints, including cardinality restrictions and domain-range
specifications, to ensure semantic integrity and enable consistent reasoning over the model. Once stored,
information in the ontology is preserved across updates, ensuring persistence of memory throughout
the development process.

At initialization, the ontology begins as an empty schema that defines only the fundamental structures
mentioned above. These classes serve as predefined containers that are gradually populated as the
system analyzes the evolving codebase. In practice, LLM2 generates precise instructions for OWLready2
to insert new entities such as modules, classes, methods, or attributes whenever they are detected,
as well as to modify or remove elements when changes occur in the source code. This incremental

48

David Araya et al. CEUR Workshop Proceedings 45-54

population process guarantees that the ontology remains synchronized with the actual state of the
project at all times. Furthermore, because the ontology is serialized and stored as an OWL file on disk,
it can be reloaded in subsequent sessions, ensuring that accumulated knowledge is never lost across
executions and that memory persists independently of runtime constraints.

Incremental updates are continuously orchestrated by LLM2, which monitors the evolving codebase
and triggers ontology modifications whenever new entities or relationships appear. Newly instan-
tiated entities are linked through well-defined object properties, maintaining referential integrity,
avoiding inconsistencies, and supporting full traceability between code artifacts and their semantic
representations.

Although the current implementation relies on OWLready2 for direct API-driven access, future
extensions will incorporate SPARQL queries to enable more sophisticated semantic searches and
reasoning across entities. This will provide enhanced contextual awareness for code generation,
facilitate automated refactoring, and open the door to more advanced reasoning strategies in large-scale
projects.

Overall, this ontology-driven approach ensures that the LLM-generated code is not only syntactically
correct but also semantically aligned with the underlying conceptual model. By combining persistence,
incremental synchronization, and semantic reasoning, the system improves maintainability, traceability,
and overall software quality, while laying the foundations for scalable and explainable Al-assisted
software engineering.

Class

He St
A3 LAY

4]
[o

[Parameter ‘ Return

Figure 2: Ontology schema illustrating relationships between modules, classes, attributes, methods, parameters,
and return types. Low-level elements may be omitted in visualizations for clarity.

3.5. Experimental Setup

The experiments were orchestrated using LangChain, which enables systematic control over prompt
execution and context management across multiple LLM agents. The primary objective of the setup
was to evaluate the effect of ontology-enriched context on code generation quality while minimizing
variability due to stochastic sampling. Accordingly, the model temperature was set to 0.3 to favor
determinism, while other parameters were maintained at their default values, ensuring a controlled
baseline for comparison.

49

David Araya et al. CEUR Workshop Proceedings 45-54

Parameter Value
Model gpt-4o
Temperature 0.3

Top-p default
Frequency penalty default
Presence penalty default
Max tokens default
Framework LangChain
API OpenAl Chat API
Python version 3.11

Table 1
Parameters and execution environment used in the LLM experiments.

Figure 3 illustrates the ontology generated for Example 3 code. Only modules and classes with their
methods are displayed for clarity; attributes, parameters, and return types are omitted to reduce visual
complexity. This representation demonstrates the structured semantic mapping that informs LLM code
generation.

* @ _init__Projec
tLoader_ejemplo..

* & validate_projec
t_name_Projectl ...
!
v - i
P
= + Projectl oader_e -
jemplo3

*'# group_requireme
nts_Reguirement...
o e * # generate_module
~. s_ArchitectureD.
* & RequirementAnal = - v
] yzer_ejemplod # ArchitectureDes
T # _init__Requir = | igner_sjemplo3
DI ‘; ve o~
/ -~

-~
ementAnalyzer_e...

’ extract_requin: ectureDesigner_.
tecture_Archite.

* @ load_projects_P
- rojectLoader_gj...

Figure 3: Ontology generated for Example 3 code. Example 3 corresponds to the module ejemplo3.py, a
simplified object-oriented system used as a running case study in our evaluation. For clarity, only the module
and its classes with methods are shown; attributes, parameters, and return types are omitted.

The proof-of-concept implementation and sample datasets are available at https://github.com/
daraya78/LLM_Ontology_Mem_WAAI2025

4. Results

To assess the feasibility of the proposed approach, we implemented a proof-of-concept system and
evaluated it using a controlled software engineering scenario. The task involved the progressive
development of a simplified object-oriented system for managing software project architectures. The
development was divided into three sequential stages: project loading, requirement analysis, and
architecture design. This progression was chosen to reflect a realistic software engineering workflow
while maintaining manageable complexity for controlled experimentation.

The initial codebase, contained in a module named ejemplo3.py, was parsed and ana-
lyzed by the ontology builder. The parser successfully extracted structural elements and
mapped them to ontological entities, ensuring that the representation was both machine-
interpretable and aligned with the domain semantics. The system instantiated the following
classes within the ontology: ProjectLoader_ejemplo3, RequirementAnalyzer_ejemplo3, and

50

https://github.com/daraya78/LLM_Ontology_Mem_WAAI2025
https://github.com/daraya78/LLM_Ontology_Mem_WAAI2025

David Araya et al. CEUR Workshop Proceedings 45-54

ArchitectureDesigner_ejemplo3. Each class was populated with its corresponding methods,
along with metadata such as visibility, parameter types, return types, and textual descriptions derived
from docstrings or inferred from naming conventions.

For example, the class ProjectLoader_ejemplo3 was associated with three public meth-
ods: __init__(source_path), load_projects(), and validate_project_name(name). The
method load_projects() included a descriptive annotation indicating its purpose: "Loads projects
from the specified source path". Similarly, RequirementAnalyzer_ejemplo3 defined methods for
extracting and grouping requirements, while ArchitectureDesigner ejemplo3 encapsulated logic
for generating and summarizing architectural modules.

The populated ontology was serialized and stored in an OWL file (ontologia.owl). This persisted
representation served as the authoritative source of truth for subsequent development stages. Leveraging
this internal state, the system could generate structured queries, which in turn enabled the retrieval of
highly relevant development information. This structured context was then automatically integrated
into prompts sent to LLM1, ensuring that the generated code was consistent with previously defined
structures.

A preliminary qualitative evaluation was conducted by Hernan Astudillo (software architect) who
examined whether the ontology-supported configuration preserved a coherent internal representation
of the system across stages. The evaluation confirmed that the approach enabled the identification of
previously defined elements, supported traceable and explainable code generation, and facilitated a
structured interface for visualizing system components. As part of the visualization process, a high-
level system diagram was generated directly from the ontology, highlighting the interaction between
components and their associated methods (see Figure 1).

These initial results confirm the viability of using dynamic ontologies to maintain context and
support structured reasoning in code generation tasks involving LLMs. While quantitative performance
measures were not computed at this stage, the qualitative findings provide strong preliminary evidence
of the approach’s promise.

5. Discussion

The results obtained from the proof-of-concept system confirm the feasibility of using a dynamically
evolving ontology to support code generation tasks involving large language models (LLMs). The
system demonstrated the ability to maintain semantic consistency across multiple development stages,
validating the core hypothesis of this work: that a structured, external knowledge base can guide
generative models in a traceable and coherent manner. This observation is consistent with evidence that
coupling LLMs with external structured knowledge via retrieval, augmented generation, or knowledge
graphs improves factuality, controllability, and provenance [24].

One of the main strengths of the approach lies in the use of a formal OWL ontology to capture
and persist the evolving design context. By storing classes, methods, attributes, and their associated
constraints, the ontology acts as an explicit long-term memory that complements the inherently limited
context window of current LLMs. This enables the system to recall previously defined elements and
enforce design consistency without relying solely on prompt engineering or repeated manual input.

Another notable advantage is the interpretability of the generated outputs. In contrast to typical
LLM-based code assistants, whose internal reasoning is opaque, our architecture makes each decision
step explainable through direct references to ontological entities. The inclusion of semantic annotations,
method signatures, and preconditions allows users to trace the rationale behind generated code, aligning
the approach with explainable Al principles and making it more suitable for critical or regulated domains.

Nonetheless, there are limitations to consider. The evaluation conducted was qualitative and restricted
to a simplified scenario, meaning that results may not generalize directly to large-scale, real-world
projects. Additionally, the LLM parameters used were temperature = 0.3, top-p = default, frequency
penalty = default, presence penalty = default, max tokens = default, which may have influenced output
variability. While much of the workflow is automated, some tasks, particularly prompt validation and

51

David Araya et al. CEUR Workshop Proceedings 45-54

semantic accuracy checks, still require human oversight. This limits full automation and could be a
bottleneck in larger deployments.

Future work should address scalability, as larger ontologies will require efficient reasoning strategies
and possibly modular decomposition to maintain performance. Another promising direction is the
integration of automated ontology validation tools to reduce human intervention. Furthermore, deeper
coupling between the LLM and the ontology, whether through specialized prompting strategies, fine-
tuning, or symbolic-neural hybrid methods, could enhance robustness and reduce ambiguity in context
interpretation. Similar directions have been highlighted by recent studies that couple LLMs with
structured knowledge sources, suggesting that hybrid symbolic-neural methods are a promising avenue
for long-term consistency (Edge et al., 2025; [25, 26]. Another important direction for future work is the
evaluation of the approach in a real-world business software project. Such a scenario would allow us to
examine whether the ontology-based memory can persist across multiple iterations of software updates,
capturing design decisions over time and validating its usefulness beyond controlled proof-of-concept
settings. An additional direction for future work is the integration of software quality evaluation into
the proposed framework. While our current focus was on maintaining semantic consistency and design
coherence, incorporating metrics such as PEP8 compliance, code readability, or maintainability indices
would allow us to assess whether the ontology layer also contributes to enforcing good coding practices.
This extension would strengthen the evidence that ontology-based memory not only preserves design
decisions but also improves the overall quality of the generated software.

In conclusion, the proposed architecture demonstrates the potential of combining LLMs with dynamic
ontologies to enable structured, explainable, and context-aware code generation. These findings lay the
groundwork for developing Al-assisted software engineering tools capable of maintaining long-term
semantic consistency, supporting human oversight, and adapting to evolving project requirements.

Acknowledgments

The authors acknowledge the support provided by the National Fund for Scientific and Technological
Development (FONDECYT), Chile, through project No. 1251519 “Continual learning for recognizing
abnormal activity patterns related to dementia in the elderly,” led by Prof. Carla Andrea Taramasco
Toro (Universidad Andrés Bello).

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,]. Kaplan, H. Edmonson, N. Reiman,
et al., Evaluating large language models trained on code, arXiv preprint arXiv:2107.03374 (2021).

[2] W.U. Ahmad, S. Chakraborty, B. Ray, K.-W. Chang, Unified pre-training for program understanding
and generation, arXiv preprint arXiv:2103.06333 (2021).

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, et al., Language
models are few-shot learners, in: Advances in Neural Information Processing Systems, volume 33,
2020, pp. 1877-1901.

[4] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, R. Salakhutdinov, Transformer-xl: Attentive
language models beyond a fixed-length context, in: Proceedings of ACL, 2019, pp. 2978-2988.

(5] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, P. Patel-Schneider, Oil: An ontology
infrastructure for the semantic web, IEEE Intelligent Systems 16 (2001) 38-45.

[6] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gi-
meno, A. Dal Lago, T. Hubert, P. Choy, C. de Masson d’Autume, I. Babuschkin, X. Chen, P.-
S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. Sutherland Rob-

52

David Araya et al. CEUR Workshop Proceedings 45-54

[12]

[19]

[20]

[21]

son, P. Kohli, N. de Freitas, K. Kavukcuoglu, O. Vinyals, Competition-level code generation
with alphacode, Science 378 (2022) 1092-1097. URL: http://dx.doi.org/10.1126/science.abq1158.
doi:10.1126/science.abq1158.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, Y. Zhang, Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023. URL: https://arxiv.org/abs/2303.12712. arXiv:2303.12712.
S. Wheeler, O. Jeunen, Procedural memory is not all you need: Bridging cognitive gaps in llm-based
agents, in: Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation
and Personalization, UMAP Adjunct ’25, Association for Computing Machinery, New York, NY,
USA, 2025, p. 360-364. URL: https://doi.org/10.1145/3708319.3734172. doi:10.1145/3708319.
3734172.

T. Liu, C. Xu, J. McAuley, Repobench: Benchmarking repository-level code auto-completion
systems, 2023. URL: https://arxiv.org/abs/2306.03091. arxXiv:2306.03091.

X. Liu, B. Lan, Z. Hu, Y. Liu, Z. Zhang, F. Wang, M. Shieh, W. Zhou, Codexgraph: Bridging large
language models and code repositories via code graph databases, 2024. URL: https://arxiv.org/abs/
2408.03910. arXiv:2408.03910.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, P. Liang, Lost in the
middle: How language models use long contexts, 2023. URL: https://arxiv.org/abs/2307.03172.
arXiv:2307.03172.

J. Wen, J. Guan, H. Wang, W. Wu, M. Huang, Codeplan: Unlocking reasoning potential in large
language models by scaling code-form planning, in: The Thirteenth International Conference on
Learning Representations, 2025. URL: https://openreview.net/forum?id=dCPF1wlqj8.

L. Beltagy, M. E. Peters, A. Cohan, Longformer: The long-document transformer, CoRR
abs/2004.05150 (2020). URL: https://arxiv.org/abs/2004.05150. arXiv:2004.05150.

A.Silva, S. Fang, M. Monperrus, RepairLLaMA: Efficient Representations and Fine-Tuned Adapters
for Program Repair, IEEE Transactions on Software Engineering (2024) 1-16. URL: https://doi.
ieeecomputersociety.org/10.1109/TSE.2025.3581062. d0i:10.1109/TSE. 2025.3581062.

D. Mosquera, M. Ruiz, O. Pastor, J. Spielberger, Ontology-based automatic reasoning and nlp for
tracing software requirements into models with the ontotrace tool, in: A. Ferrari, B. Penzenstadler
(Eds.), Requirements Engineering: Foundation for Software Quality, Springer Nature Switzerland,
Cham, 2023, pp. 140-158.

S. Zander, G. Heppner, G. Neugschwandtner, R. Awad, M. Essinger, N. Ahmed, A model-driven
engineering approach for ros using ontological semantics, in: 6th International Workshop on
Domain-Specific Languages and models for Robotic systems (DSLRob-15), 2015.

R. Pérez-Castillo, I. G.-R. de Guzman, M. Piattini, Knowledge discovery metamodel-iso/iec 19506:
A standard to modernize legacy systems, Comput. Stand. Interfaces 33 (2011) 519-532. URL:
https://doi.org/10.1016/j.csi.2011.02.007. d0i:10.1016/j.¢csi.2011.02.007.

Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, A. H.
Awadallah, R. W. White, D. Burger, C. Wang, Autogen: Enabling next-gen LLM applications
via multi-agent conversations, in: First Conference on Language Modeling, 2024. URL: https:
//openreview.net/forum?id=BAakY1hNKS.

S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin,
L. Zhou, C. Ran, L. Xiao, C. Wu, J. Schmidhuber, MetaGPT: Meta programming for a multi-agent
collaborative framework, in: The Twelfth International Conference on Learning Representations,
2024. URL: https://openreview.net/forum?id=VtmBAGCN7o.

C. Qian, W. Liu, H. Liu, N. Chen, Y. Dang, J. Li, C. Yang, W. Chen, Y. Su, X. Cong, J. Xu, D. Li,
Z. Liu, M. Sun, Chatdev: Communicative agents for software development, 2024, pp. 15174-15186.
doi:10.18653/v1/2024.acl-1long.810.

J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan, O. Press, Swe-agent: agent-
computer interfaces enable automated software engineering, in: Proceedings of the 38th Interna-
tional Conference on Neural Information Processing Systems, NIPS "24, Curran Associates Inc.,
Red Hook, NY, USA, 2025.

53

http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://doi.org/10.1145/3708319.3734172
http://dx.doi.org/10.1145/3708319.3734172
http://dx.doi.org/10.1145/3708319.3734172
https://arxiv.org/abs/2306.03091
http://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2408.03910
http://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
https://openreview.net/forum?id=dCPF1wlqj8
https://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2004.05150
https://doi.ieeecomputersociety.org/10.1109/TSE.2025.3581062
https://doi.ieeecomputersociety.org/10.1109/TSE.2025.3581062
http://dx.doi.org/10.1109/TSE.2025.3581062
https://doi.org/10.1016/j.csi.2011.02.007
http://dx.doi.org/10.1016/j.csi.2011.02.007
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=VtmBAGCN7o
http://dx.doi.org/10.18653/v1/2024.acl-long.810

David Araya et al. CEUR Workshop Proceedings 45-54

[22] F. Zhang, B. Chen, Y. Zhang,]J. Keung, J. Liu, D. Zan, Y. Mao, J.-G. Lou, W. Chen, RepoCoder:
Repository-level code completion through iterative retrieval and generation, in: H. Bouamor, J. Pino,
K. Bali (Eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, Singapore, 2023, pp. 2471-2484. URL:
https://aclanthology.org/2023.emnlp-main.151/. doi:10.18653/v1/2023.emnlp-main. 151.

[23] O. Topsakal, T. C. Akinci, Creating large language model applications utilizing langchain: A
primer on developing llm apps fast, in: Proceedings of the International Conference on Applied
Engineering and Natural Sciences, volume 1, 2023, pp. 1050-1056. doi:10.59287 /icaens.1127.

[24] X.Zhao,H.Li, Y. Zhang, G. Cheng, Y. Xu, Trail: Joint inference and refinement of knowledge graphs
with large language models, 2025. URL: https://arxiv.org/abs/2508.04474. arXiv:2508.04474.

[25] T. Guo, Q. Yang, C. Wang, Y. Liu, P. Li, J. Tang, D. Li, Y. Wen, Knowledgenavigator: Leveraging
large language models for enhanced reasoning over knowledge graph, Complex & Intelligent
Systems 10 (2024). doi:10.1007/s40747-024-01527-8.

[26] Y.-H. Lin, Q.-H. Chen, Y.-J. Cheng, J.-R. Zhang, Y.-H. Liu, L.-Y. Hsia, Y.-N. Chen, Llm infer-
ence enhanced by external knowledge: A survey, 2025. URL: https://arxiv.org/abs/2505.24377.
arXiv:2505.24377.

54

https://aclanthology.org/2023.emnlp-main.151/
http://dx.doi.org/10.18653/v1/2023.emnlp-main.151
http://dx.doi.org/10.59287/icaens.1127
https://arxiv.org/abs/2508.04474
http://arxiv.org/abs/2508.04474
http://dx.doi.org/10.1007/s40747-024-01527-8
https://arxiv.org/abs/2505.24377
http://arxiv.org/abs/2505.24377

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Overall System Design and Rationale
	3.2 LLM1: Code Assistant
	3.3 LLM2: Contextualizer
	3.4 Ontology Representation and Semantics
	3.5 Experimental Setup

	4 Results
	5 Discussion

