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Abstract

Facing the growing threat posed by quantum computers, post-quantum cryptography (PQC) is becoming es-
sential for the security of Artificial Intelligence (AI) systems deployed in High-Performance Computing (HPC)
environments. This article presents an in-depth performance analysis of the Kyber algorithm, a leading standard
for post-quantum key exchange, crucial for safeguarding Al data and models. We investigate both the reference
C implementation and the optimized AVX2 version, for multiple security levels (Kyber-512, Kyber-768, and
Kyber-1024). Benchmarks focus on latency, bandwidth consumption, memory footprint, and CPU cost under
realistic HPC conditions. Our results highlight the trade-offs between security and computational performance,
and provide recommendations for efficient and secure integration of Kyber into HPC applications, essential for
the resilience of Al systems in the quantum era.
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1. Introduction

The pervasive integration of Artificial Intelligence (Al) across diverse domains, particularly within High-
Performance Computing (HPC) environments that handle vast datasets and complex models, inherently
elevates the demand for robust security. As the advent of quantum computers threatens classical
cryptographic protocols, making the adoption of post-quantum cryptography (PQC) indispensable for
safeguarding critical Al data, models, and computational integrity [1], this article addresses a central
challenge for securing scalable AI deployments. We focus on the performance characteristics of the
Kyber algorithm, a leading post-quantum Key Encapsulation Mechanism (KEM) [2].

However, integrating Kyber into HPC platforms raises specific challenges: impact on network latency,
CPU overhead, memory consumption, and adaptation to modern parallel architectures [3, 4]. Many
studies have focused on measuring the performance of the reference C implementation [2] or the impact
of optimized AVX2 variants [5]. Nevertheless, few works precisely detail the contribution of vectorial
optimizations under realistic HPC conditions, nor do they propose a reproducible methodology to
identify bottlenecks affecting all Kyber parameters.

This work focuses exclusively on Kyber. After a thorough validation of the reference implementation
and its cryptographic properties, carried out via vector tests and entropy analysis, we quantify the
cost of fundamental operations (key generation, encapsulation, decapsulation) and compare the
effect of AVX2 optimizations according to the security level. The experimental measurements are in
methodological continuity with the works of [3, 4, 6] and are confronted with the practical constraints
of modern architectures. The results obtained provide crucial insights into the trade-offs between
security and computational efficiency and discuss optimization levers for optimal integration into HPC
infrastructures and, by extension, into Al applications, ensuring the resilience of Al systems in the
quantum era.
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+ a detailed characterization of Kyber’s performance profile (reference C implementation vs. opti-
mized AVX2 version);

« an analysis of security/performance trade-offs based on NIST levels;

« and concrete recommendations for optimized implementation, suitable for direct integration into
modern HPC environments.

2. Benchmarking Methodology and Experimental Environment

To provide a comprehensive evaluation of Kyber’s performance, the benchmarks are structured around
several axes: analysis of the speed of primary cryptographic operations, network latency, bandwidth
consumption, and resource utilization (CPU/memory). Each test follows measurement protocols adapted
to HPC environments to ensure the relevance and reliability of the results.

2.1. Experimental Environment
2.1.1. Hardware Platform

Performance tests were conducted on a physical machine with the following characteristics:

« Architecture: x86_64 (64-bit)

« Processor: Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz

« Cores and Threads: 2 physical cores, 4 threads (2 threads per core)
« Frequency: 2.40 GHz (base), up to 3.00 GHz (turbo)

« Caches:

- L1d: 64 KiB (2 instances)
— L1i: 64 KiB (2 instances)
- L2: 512 KiB (2 instances)
— L3: 3 MiB (1 instance, shared)

+ Memory: 8 GB DDR4
+ Operating System: Ubuntu 22.04 LTS (64-bit)
« Compiler: GCC 11.4.0

2.1.2. Kyber Implementation

Benchmarks were conducted using two variants of Kyber’s official C implementation, covering Kyber-
512, Kyber-768, and Kyber-1024 versions:

» Reference Kyber Version: Official NIST implementation (Round 3 or FIPS 203 draft)

« Optimized AVX2 Version: Optimized implementation leveraging AVX2 instructions to improve
performance on compatible architectures

« Compilation Options: -03 -march=native

« Complementary Libraries: MPICH for network tests, Python 3.x for vector analysis

2.2. Performance Benchmarking Methodology (Cycle Counting)

The performance of cryptographic operations is measured by processor cycle counting, us-
ing architecture-specific high-resolution timers (RDTSC on x86, or clock_gettime with
CLOCK_MONOTONIC for portability). Each operation is executed between 10,000 and 100,000 times
to ensure statistical robustness. The median number of cycles is retained to limit the impact of system
noise.

The tested operations include:
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Table 1
Summary of Test Vector Generation

Parameter Vectors Volume Time Status

Kyber-512 15-25 ~50kB  30s v Success
Kyber-768 12-20 ~75 kB 30s v Success
Kyber-1024 10-18  ~100kB  30s v Success

Table 2

Cryptographic Compliance Validation
Aspect Kyber-512 Kyber-768 Kyber-1024 Result
Key Generation v v v 0 error
Encapsulation v v v 0 error
Decapsulation v v v 0 error
Secret Consistency v v v 100%
Invalid Ciphertext Rejection v v v OK
Determinism v v v Yes

+ High-level KEM operations:
key generation (crypto_kem_keypair),
encapsulation (crypto_kem_encapsulate),
decapsulation (crypto_kem_decapsulate)

« Low-level polynomial operations: Number Theoretic Transform (NTT), Inverse NTT, polynomial
multiplication, matrix generation, noise generation

« Internal CPA-secure operations: CPA key generation, CPA encryption, CPA decryption

2.3. Validation and Analysis of Test Vectors

The validation of test vectors was performed to ensure implementation conformity and the crypto-
graphic quality of the outputs. Vectors are generated via a deterministic PRNG based on SHAKE128, in
accordance with the Kyber specification, ensuring result reproducibility.

Tests are automated by script, executing the test binaries for each Kyber parameter.

3. Analysis and Validation of Test Vectors

A comprehensive validation of the test vectors was carried out to ensure the implementation’s compli-
ance and to analyze its cryptographic properties. The test vectors were generated using a deterministic
PRNG based on SHAKE128, which ensures the reproducibility of results across different platforms.
3.1. Summary of Test Vector Generation

Table 1 details the parameters and outcomes of the test vector generation process for each Kyber security
level.

3.2. Implementation Compliance Validation

Table 2 presents the results of the cryptographic compliance validation tests, ensuring the correct
behavior of the Kyber implementation across different security levels.
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Table 3

Measured Key and Ciphertext Sizes in Test Vectors (bytes)
Component Kyber-512 Kyber-768 Kyber-1024
Public Key 800 1184 1568
Secret Key 1632 2400 3168
Ciphertext 768 1088 1568
Shared Secret 32 32 32

3.3. Verification of Key and Ciphertext Sizes

The measured sizes of keys and ciphertexts from the test vectors confirm the theoretical specifications
for each Kyber parameterization, as detailed in Table 3.

3.4. Entropy and Randomness Quality Analysis

A statistical analysis of the hexadecimal character distribution in the generated keys, ciphertexts, and
shared secrets was performed to evaluate the quality of the randomness. The analysis, conducted by

parameter size, shows:

« Uniform Distribution: The coefficients are well distributed across the 16 hexadecimal characters

(0-F), indicating a robust PRNG.

« High Entropy: Entropy values consistently approach the theoretical maximum (4.0 bits per
hexadecimal character), a sign of excellent randomness.
« Absence of Bias: No statistical bias or recurring patterns were detected, which is crucial for

cryptographic security.

» Consistency Across Parameters: The quality of randomness is uniformly maintained for

Kyber-512, Kyber-768, and Kyber-1024.

« Efficiency: The analysis confirms an efficiency exceeding 97% compared to the theoretical

maximum entropy.

The detailed analysis by component is illustrated in Figures 1 to 4, presenting the entropy for each

data type and parameterization.

Kyber Test Vector Entropy Analysis Summary

Public Keys Entropy Analysis

Secret Keys Entropy Analysis

3.98 3.97 3,95
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Figure 1: Summary of Entropy Across All Kyber Parameters and Components
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Figure 2: Entropy Analysis of Public Keys for Each Parameterization

3.5. Key Findings from Test Vector Analysis

The in-depth analysis of the test vectors conclusively demonstrates:

+ Perfect Implementation Compliance: No errors were detected during end-to-end tests across all
parameters.

« Excellent Randomness Quality: All generated data (keys, ciphertexts, shared secrets) exhibit the
expected entropy properties, which are essential for security.

« Standard Compliance: The reference Kyber implementation fully adheres to NIST PQC specifica-
tions for cryptographic outputs.

+ Deterministic Reproducibility: Identical seeds consistently produce the same outputs, regardless
of the execution environment.

« High Entropic Efficiency: All parameters achieve over 97% of the theoretical maximum hexadeci-
mal character entropy, validating the quality of the internal PRNG.

« Scalability of Quality: Cryptographic quality remains constant, with no loss of randomness, even
as key and ciphertext sizes increase.
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Hex Character Distribution Entropy Analysis

Secret Keys (Kyber-512) s Secret Keys
80 3.98 4.00
40
70
35
&0 3.0
50 )
> 2
g £2s5
g >
H 2
g a0 £20
= &
30 15
20 10
10 05
0 00
001 2 3 456 7 89 abocdef Actual Expected
Hex Characters
Hex Character Distribution Entropy Analysis
Secret Keys (Kyber-768) s Secret Keys
° 3.98 4.00
2.0
70
35
60
3.0
50 7
> £2s
g =
g0 g
£ £20
&
* 15
20 10
10 05
0 0.0
001 2 3 456 7 89 abocadef Actual Expected
Hex Characters
Hex Character Distribution Entropy Analysis
Secret Keys (Kyber-1024) Secret Keys
45
a.00
80 w0 3.98
70 35
60 30
g0 £2s
E z
g g
La0 z20
30 15
20 10
10 05

01 2 3 456 7 8 9 abocde f Actual
Hex Characters

Figure 3: Entropy Analysis of Secret Keys for Each Parameterization

4. Performance Results (Cycle Measurements)

This section delves into a thorough analysis of the CRYSTALS-Kyber algorithm’s performance, measured
in clock cycles. We’ll begin by examining the high-level Key Encapsulation Mechanism (KEM) operations
for each Kyber parameterization (Kyber-512, Kyber-768, Kyber-1024), highlighting how increased
security impacts computational cost.

Next, we’ll explore the security-performance trade-off by correlating NIST security levels with
observed cycle costs. A detailed analysis of low-level operations, including scaling behavior and the
performance of fundamental polynomial operations, will be presented to identify potential bottlenecks.

Finally, we’ll compare the performance of Kyber’s reference implementation with an AVX2-optimized
version, quantifying the efficiency gains achieved through vectorization. Our goal is to provide a com-
prehensive understanding of Kyber’s performance characteristics across different levels of abstraction
and optimization.

4.1. Performance of High-Level KEM Operations

Figure 5 provides a visual comparison of Kyber’s three main operations (key generation, encapsulation,
decapsulation) for each parameterization, clearly illustrating the increase in complexity from Kyber-512
to Kyber-1024.
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Figure 4: Entropy Analysis of Ciphertexts for Each Parameterization

Table 4

Performance of Main KEM Operations (median, cycles)
Operation Kyber-512 Kyber-768 Kyber-1024
Key Generation 115632 191152 303584
Encapsulation 136 204 212794 310 866
Decapsulation 173894 261090 385324

The exact median cycle counts for these high-level KEM operations are presented in Table 4, offering
precise numerical details that complement the visual trends.

4.2. Security/Performance Trade-off Analysis

Figure 6 illustrates the relationship between the security level (NIST categories) and computational
cost, demonstrating the practical impact of parameterization choice.

The table Table 5 provides a detailed summary of the performance metrics (in cycles) for each Kyber
parameterization, correlated with its corresponding NIST security level.

96



Penda Thiao et al. CEUR Workshop Proceedings 90-109

Kyber KEM Operations Performance Comparison
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Figure 5: Performance Comparison of Main KEM Operations by Parameterization (cycles)
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Figure 6: Trade-off between security level and performance (measured in cycles).

Table 5
Security vs. performance summary (cycles, K = thousands).

Parameterization NIST Level KeyGen Encaps Decaps

Kyber-512 Level 1 115.6K 136.2K 173.9K
Kyber-768 Level 3 191.2K 212.8K 261.1K
Kyber-1024 Level 5 303.6K 310.9K 385.3K

4.3. Detailed Analysis of Basic Operations
4.3.1. Scaling Behavior

Figure 7 illustrates how performance scales relative to Kyber-512 for the main operations, revealing the
growth in complexity.

97



Penda Thiao et al. CEUR Workshop Proceedings

90-109

Kyber Performance Scaling Analysis

3.0

Performance Scaling (relative to Kyber-512)
~
°

-@- Key Generation
=@~ Encapsulation
=~@- Decapsulation

Kyber-512

Kyber-768
Parameter Set

Figure 7: Scaling analysis relative to Kyber-512 (cycles).

Core Polynomial Operations Performance

Kyber-1024

m— Kyber-512
140000 Kyber-768
m— Kyber-1024

120000

100000

80000

Cycles

60000

40000

20000

NTT

o NTT

i
o™ "
vol

Polynomial Operations

Figure 8: Performance of basic polynomial operations (cycles).

jon
e
!

Table 6

Performance of polynomial operations (median, cycles).
Operation Kyber-512 Kyber-768 Kyber-1024
NTT 13520 9580 7292
Inverse NTT 22998 10088 21598
Polynomial Multiplication 9014 11836 16258
Matrix Generation 74202 117100 142778
Noise Generation (1)) 8826 2338 2254
Noise Generation (1)2) 4746 2340 2252

4.3.2. Low-Level Polynomial Operations

Kyber’s fundamental polynomial operations exhibit varying scaling behaviors. Some, like NTT, are
more efficient with larger parameters, suggesting optimization or cache effects, as illustrated in Figure 8.
The median cycle counts for these core polynomial operations across different Kyber parameteriza-

tions are detailed in Table 6.
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Figure 10: Cost breakdown by operation category and parameterization (cycles).

4.3.3. Detailed Operation Breakdown

Figure 9 provides a detailed view of all major operations, allowing for a direct comparison of their cost
according to the parameterization.

4.3.4. Analysis by Operation Category

Figure 10 presents the contribution of each operation category (polynomial arithmetic, sampling,
compression, etc.) to the total cost, highlighting the dominant areas.

4.3.5. Heatmap Analysis

Figure 11 provides a normalized view of all operations, facilitating the identification of those operations
that scale most significantly with parameterization.

99



Penda Thiao et al. CEUR Workshop Proceedings 90-109

Kyber Performance Heatmap
(Normalized by Operation)

Key Generation - 0.38
Encapsulation - 0.44
Decapsulation 0.45

CPA Key Gen A

CPA Encryption -

0) @2UBWLI0LRY PazI|ew.oN

CPA Decryption

r0.6

1 ‘159158)

NTT

(3samols

F0.5

Inverse NTT

r0.4

Matrix Gen

Poly Mult

Kyber-512 Kyber-768 Kyber-1024

Figure 11: Normalized Heatmap of Performance by Operation and Parameterization

Table 7
Performance Comparison of Main KEM Operations (median, cycles)

Operation Kyber-512 Kyber-768 Kyber-1024
Reference AVX2 Reference AVX2 Reference AVX2

Key Generation 115632 43414 191152 71 266 303584 88714
Encapsulation 136 204 43376 212794 68010 310 866 79278
Decapsulation 173894 48 658 261090 61630 385324 95110

4.4. Performance Comparison: Reference vs. AVX2 Implementation

This section presents a comparative analysis of Kyber’s performance between the reference implemen-
tation and the version optimized with AVX2 instructions. Measurements are expressed in processor
cycles, and performance gains are quantified as a percentage.

4.4.1. High-Level KEM Operations

Table 7 summarizes the median cycles for key generation, encapsulation, and decapsulation operations,
highlighting the significant gains provided by AVX2 optimization.

4.4.2. Polynomial and Compression/Encoding Operations

Low-level operations, such as NTT, polynomial multiplication, and compression/decompression func-
tions, are particularly sensitive to vectorial optimizations. Table 9 details the gains observed for these
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Table 8
Performance Gain (cycle reduction in %) for Main KEM Operations with AVX2
Operation Kyber-512 Kyber-768 Kyber-1024
Key Generation 62.47% 62.72% 70.71%
Encapsulation 68.16% 68.04% 74.50%
Decapsulation 72.01% 76.40% 75.31%
Table 9
Performance Comparison of Basic Operations (median, cycles)
Operation Kyber-512 Kyber-768 Kyber-1024
Reference AVX2 Reference AVX2 Reference AVX2
gen_a 74202 40 398 117100 26 606 142778 27 066
poly_getnoise_etal 8826 9546 2338 3472 2254 2890
poly_getnoise_eta2 4746 5846 2340 3424 2252 1932
NTT 13520 390 9580 332 7292 294
INVNTT 22998 450 10088 332 21598 280
polyvec_basemul_acc_montgomery 9014 372 11836 454 16 258 562
poly_tomsg 1404 30 2134 38 3160 48
poly_frommsg 840 56 784 48 990 48
poly_compress 582 38 598 50 1576 86
poly_decompress 70 78 112 36 926 68
polyvec_compress 2148 506 5540 388 9182 946
polyvec_decompress 1458 158 4310 176 5108 324

Table 10

Performance Gain (cycle reduction in %) for Basic Operations with AVX2

Operation Kyber-512 Kyber-768 Kyber-1024
gen_a 45.56 % 77.28 % 81.04 %
poly_getnoise_etal -8.16 % -48.50 % -28.28 %
poly_getnoise_eta2 -23.18 % -46.32 % 14.21 %
NTT 9712 % 96.53 % 95.97 %
INVNTT 98.05 % 96.71 % 98.71 %
polyvec_basemul_acc_montgomery 95.87 % 96.16 % 96.54 %
poly_tomsg 97.86 % 98.22 % 98.48 %
poly_frommsg 93.33 % 93.88 % 95.15 %
poly_compress 93.47 % 91.64 % 94.54 %
poly_decompress -11.43 % 67.86 % 92.66 %
polyvec_compress 76.44 % 92.99 % 89.70 %
polyvec_decompress 89.16 % 95.92 % 93.65 %

primitives.

4.4.3. Summary of AVX2 Gains

In summary, the integration of AVX2 optimizations yields considerable performance gains, particularly
pronounced in fundamental polynomial operations (NTT, multiplication) and compression/decom-
pression functions. These accelerations result in a drastic reduction in cycle cost for high-level KEM
operations, making Kyber significantly more efficient for HPC applications. The gains are even more sub-
stantial as the security level increases, highlighting the relevance of these optimizations for large-scale

deployments.
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Table 11
Summary of Total KEM RTT Latencies (microseconds, 1000 iterations)

Parameterization Average (us) Min (us) Max (us)

Kyber-512 319.47 191.40 3456.98
Kyber-768 433.68 317.34 3147.17
Kyber-1024 599.18 479.20 4020.76
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Max: 7522.1
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Version Kyber
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Figure 12: Total RTT Latency (Average, Min, Max) for Each Kyber Parameterization

5. Network Latency Results (MPI)

This section presents the communication latencies measured during Kyber key establishment operations
in an MPI environment. These results quantify the actual impact of PQC on inter-process communication
overhead, a crucial challenge for HPC applications. All measurements were conducted over 1000
iterations, with 10 warm-up rounds to stabilize the system.

5.1. Overall KEM Establishment Latency (RTT)

Table 11 summarizes the total Round Trip Time (RTT) for the key establishment process, including key
generation, public key transfer, encapsulation, ciphertext transfer, and decapsulation, for each Kyber
parameterization. Figure 12 illustrates these RTTs, along with the minimum and maximum observed
values.

5.2. Latency Component Breakdown

Table 12 provides a detailed breakdown of the average latency for each component of the KEM establish-
ment process by parameterization. Figure 13 visualizes these latencies, allowing for a direct comparison
of computational and communication overheads.

5.3. Impact of Message Size on Latency

The results show that increasing the Kyber security level primarily increases the latency of computa-
tional phases (key generation, encapsulation, decapsulation). Public key transfer remains negligible
(<1 ps), while ciphertext transfer becomes a significant factor, sometimes as important as the cryp-
tographic operations themselves, especially for Kyber-768 and Kyber-1024. This highlights that, in
MPI communications using Kyber, cryptographic processing and ciphertext transmission are the main
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Table 12

Detail of MPI Latencies per Operation (average, microseconds, 1000 iterations)
Operation Kyber-512 Kyber-768 Kyber-1024
Key Generation 77.48 118.92 169.27
Public Key Transfer 0.39 0.39 0.43
Encapsulation 103.22 131.49 191.31
Ciphertext Transfer 120.50 145.15 204.50
Decapsulation 120.80 168.94 224.73

Feerae L P Benchmark - 1000 terations)

& 5 & B
& e
< & & &

Kyber Operation

Figure 13: Average Latency of Kyber Operations by Security Level (MPI benchmark, 1000 iterations)

Table 13
Network Bandwidth Analysis (1000 KEM negotiations)

Parameterization Data/KEM (bytes) Total (bytes) Rank 0 (MB/s) Rank 1 (MB/s)

Kyber-512 1568 1568000 4.68 4.68
Kyber-768 2272 2272000 5.00 4.98
Kyber-1024 3136 3136000 4.99 4.98

contributors to total latency. The maximum RTT values (from 3.1 to 4.0 ms) reflect the influence of the
system (scheduling, memory management) on extreme cases, particularly for Kyber-1024.

6. Network Bandwidth Results

This section analyzes the impact of Kyber key and ciphertext sizes on bandwidth consumption within
the MPI environment. Bandwidth measurements were conducted in parallel with latency benchmarks,
providing a comprehensive view of effective throughput during KEM operations.

6.1. Effective Throughput Analysis

Effective throughput was measured from the perspective of both MPI ranks to account for potential
network asymmetries and provide a comprehensive view of communication performance.

6.2. Data Transfer Analysis

Figure 15 presents a detailed analysis of the relationship between data size and performance metrics,
including transfer efficiency.
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Figure 15: Analysis of Data Volume, Performance, and Transfer Efficiency

6.3. Key Bandwidth Learnings
The bandwidth analysis reveals several key points:

« Stable Throughput: Despite a significant increase in data volume (from 1.57 MB to 3.14 MB total),
the effective throughput remains remarkably stable around 4.8—5.0 MB/s for all parameterizations.

+ Network Symmetry: The minimal difference between Rank 0 and Rank 1 perspectives (<0.1

« Scalable Efficiency: Efficiency (MB/s per KB of data) shows that higher parameterizations
maintain proportional performance, demonstrating the good scalability of the communication
infrastructure.

« Practical Implications: The stability of the throughput suggests that the network infrastructure
can absorb the increased volume associated with higher security levels without proportional
degradation of throughput.

7. Network Latency Results (MPI) - Reference vs. AVX2 Comparison

This section presents a comparison of communication latencies measured during Kyber key establish-
ment operations in an MPI environment, highlighting the gains provided by AVX2 optimizations. All
measurements were conducted over 1000 iterations, with 10 warm-up rounds.

7.1. Overall KEM Establishment Latency (RTT) - Comparison

Table 14 summarizes the total Round Trip Time (RTT) for the key establishment process for both the
reference and AVX2 versions.
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Table 14
Comparison of Total KEM RTT Latencies (microseconds, 1000 iterations)

Parameterization Reference AVX2 Gain (Reduction in %)

Average (us) Max (us) Average (us) Max (us) Average (%) Max (%)

Kyber—51 2 319.47 3456.98 68.546 3254.405 78.5% 5.8%

Kyber-768 433.68 3147.17 117.987 4713.011 72.8% -49.7%

Kyber-1024 599.18 4020.76 125.840 2420.151 79.0% 39.8%
Table 15

Detail of MPI Latencies per Operation (average, microseconds, 1000 iterations) - Reference vs. AVX2

Operation Kyber-512 Kyber-768 Kyber-1024

Reference AVX2 Reference AVX2 Reference AVX2

Key Generation 77.48 19.528 118.92 32.146 169.27 34.744
Public Key Transfer 0.39 0.287 0.39 0.322 0.43 0.314
Encapsulation 103.22 21.065 131.49 31.915 191.31 41.500
Ciphertext Transfer 120.50 28.581 145.15 48.223 204.50 50.755
Decapsulation 120.80 19.860 168.94 36.959 224.73 39.777
Table 16
Performance Gains (average latency reduction in %) with AVX2
Operation Kyber-512 Kyber-768 Kyber-1024
Key Generation 74.8% 73.0% 79.5%
Public Key Transfer 26.3% 17.4% 27.0%
Encapsulation 79.6% 75.7% 78.3%
Ciphertext Transfer 76.3% 66.8% 75.1%
Decapsulation 83.5% 78.1% 82.3%

7.2. Detailed Latency Component Breakdown - Comparison

Table 15 presents a detailed comparison of the average latencies for each component of the KEM process,
clearly illustrating the impact of AVX2 optimizations.

7.2.1. Detailed Latency Gains

Table 16 summarizes the percentage gains for each operation, highlighting the significant improvements
achieved with AVX2 optimizations.

7.3. Discussion of Latency Gains

AVX2 optimizations have had a transformative impact on the latencies of Kyber operations. As shown in
Tables 14 and 15, purely computational phases such as "key generation, encapsulation, and decapsulation
saw their average latency dramatically reduced (between 73% and 83

Interestingly, "public key and ciphertext transfer times also showed notable reductions" (between 17%
and 76%). While these operations are primarily network bandwidth-related, the reduction in intensive
cryptographic processing time potentially frees up CPU resources faster, allowing for more efficient
management of communication operations by MPI ranks. This could explain these unexpected gains in
transfer phases, suggesting that even "network" operations were previously slightly CPU-bound.

It is important to note the behavior of maximum RTT values. For Kyber-512 and Kyber-1024, the
maximum RTT was reduced, but for Kyber-768, it slightly increased (-49.7% gain actually means an
increase of nearly 50%). This may indicate higher variability in certain executions or the influence of
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Table 17
Comparative Analysis of Network Bandwidth (1000 KEM negotiations)
Parameterization Data/KEM (bytes) Total (bytes) Rank 0 (MB/s) Rank 1 (MB/s)
Reference AVX2 Reference AVX2
Kyber—51 2 1568 1568000 4.68 21.796 4.68 21.805
Kyber-768 2272 2272000 5.00 18.356 498 18.361
Kyber-1024 3136 3136000 499 23.755 498 23.780

other system factors (scheduling, resource contention) that can have a more pronounced impact on
extreme values, even with faster cryptographic operations. This warrants further investigation if these
peaks are reproducible.

These results confirm that AVX2 optimizations are not only effective in terms of CPU cycles but also
directly translate into tangible performance gains in a distributed communication context.

8. Network Bandwidth Results - Reference vs. AVX2 Comparison

This section analyzes the impact of AVX2 optimizations on effective throughput within the MPI
environment.

8.1. Effective Throughput Analysis - Comparison

Table 17 presents a comparative analysis of network bandwidth for both the reference and AVX2 imple-
mentations, showing the throughput measured at both MPI ranks across all Kyber parameterizations.

8.2. Discussion on Bandwidth

The bandwidth analysis, presented in Table 17, reveals a very substantial gain with the AVX2
implementation. Contrary to an initial expectation where bandwidth would be predominantly
network-limited, AVX2 optimizations have significantly increased effective throughput: * For Kyber-512,
bandwidth increased from approximately 4.68 MB/s to 21.80 MB/s, an increase of about 366%.

* For Kyber-768, it increased from 5.00 MB/s to 18.36 MB/s, an increase of about 267%.

* For Kyber-1024, it increased from 4.99 MB/s to 23.77 MB/s, an increase of about 376%.

These considerable gains indicate that, in the reference version, the bottleneck was not solely the
network, but a combination of CPU-intensive operations and communication. The significant reduction
in computation time due to AVX2 optimizations allowed the system to process cryptographic operations
much faster, thereby freeing up the communication pipeline and enabling much higher throughputs
that were likely limited by the speed of the cryptographic computations themselves in the reference
version.

The throughput symmetry between Rank 0 and Rank 1 is maintained, which is a good indication of
the robustness of the test environment and the implementation. These results demonstrate that AVX2
optimizations are essential for fully leveraging network capabilities in applications where post-quantum
cryptographic operations are integrated into communications.

9. CPU Profiling Analysis with perf
To identify the main computational bottlenecks in Kyber, a detailed CPU profiling was conducted using

the Linux tool perf. This analysis highlights the most CPU-intensive functions and guides optimization
efforts for HPC environments.
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Table 18

Main CPU Hotspots by Parameterization (overhead %)
Function Kyber-512 Kyber-768 Kyber-1024
KeccakF1600_StatePermute 20.99 27.03 25.81
montgomery_reduce 19.01 19.05 19.49
invntt 11.40 5.34 7.11
ntt 8.95 12.46 8.81
barrett_reduce 8.79 7.52 6.00
basemul 7.57 6.47 8.38
Total crypto core 76.71 77.87 75.60

Table 19
Estimated Memory Footprint by Parameterization

Parameterization ~Memory/operation (bytes) Memory/operation (kB) 1000 operations (MB)

Kyber-512 3232 3.16 3.08
Kyber-768 4704 4.59 4.49
Kyber-1024 6336 6.19 6.04

9.1. Profiling Methodology

Profiling was performed with perf record on the speed benchmarks (test_speed512,
test_speed768, test_speed1024) for each Kyber parameterization. Measurements focused on
CPU cycles, with call trace recording for fine-grained function analysis.

9.2. CPU Hotspot Analysis

The results show a strong concentration of CPU usage on a small number of main functions, consistently
across all parameterizations. Table 18 summarizes the most resource-consuming functions.

9.3. Learnings and Recommendations

+ Keccak (SHAKE128/256) is the primary bottleneck (21-27% of CPU time), used for deterministic
key generation, encapsulation, and internal hashing functions.

+ Montgomery and Barrett reduction together account for nearly 28% of CPU time, essential
for modular arithmetic in polynomial operations.

« NTT and invNTT (forward and inverse number theoretic transform) total 15-20% of CPU time,
with a relative cost that decreases for larger parameterizations due to better cache utilization.

+ Priority Optimization: Accelerating Keccak (via vectorization, hardware SHA-3 instructions,
or GPU offload) and modular arithmetic (SIMD, assembly) would yield the most significant gain.

+ Algorithmic Stability: The cost distribution remains stable regardless of the security level,
which facilitates large-scale optimization.

9.4. Estimated Memory Footprint

Table 19 summarizes the estimated memory footprint for a complete KEM operation (public key, secret
key, ciphertext, shared secret).

In summary, CPU profiling shows that Kyber’s performance primarily relies on the efficiency of
hashing functions and modular arithmetic. Optimizations targeting these critical points are a priority
for HPC deployments.
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10.

Performance Summary and Recommendations

This section provides a synthesis of the experimental results and highlights key trends for deploying
Kyber in HPC environments.

10.1.

Overall Performance Summary

The measurements performed show:

10.2.

Latency (Average RTT, 1000 iterations):

- Kyber-512: 319 us

— Kyber-768: 434 us

— Kyber-1024: 599 us
Effective Network Throughput: stable around 4.8-5.0 MB/s, regardless of parameter size.
Network Transfer: public key transfer time remains negligible (<1 us), while ciphertext transfer
becomes significant for higher parameters.
Cryptographic Operation Overhead: almost all of the total latency is due to cryptographic
computations (key generation, encapsulation, decapsulation).
Cryptographic Quality: perfect validation of test vectors, entropy greater than 97% of the
theoretical value, full compliance with NIST PQC specifications.

Trends and Practical Implications

Scalability and Overhead

Total latency increases predictably with the security level: +36% between Kyber-512 and Kyber-768,
+38% between Kyber-768 and Kyber-1024.

Network throughput remains stable despite doubling the data volume between Kyber-512 and
Kyber-1024, demonstrating the robustness of the HPC infrastructure to PQC.

Memory footprint increases linearly with the security level (3.2 kB to 6.3 kB per KEM operation).

Identified Bottlenecks

10.3.

Cryptographic operations dominate (95%+ of total time).

Ciphertext transfer becomes a non-negligible factor for higher security levels.

Some extreme latency values (observed in max RTTs) can be attributed to system factors, such
as task scheduling or memory management, and should be considered for latency-sensitive
applications.

Recommendations for HPC Deployment

Kyber-512 (NIST Level 1): To be preferred for HPC applications where performance is paramount
and moderate security is sufficient. Very low latency suitable for frequent exchanges.
Kyber-768 (NIST Level 3): Optimal security/performance compromise for most scientific and
industrial uses.

Kyber-1024 (NIST Level 5): Reserved for use cases requiring maximum security, at the cost of
increased latency and memory.

Practical Advice

Current HPC network infrastructure easily supports the data volumes generated by Kyber, even
at the highest security levels.

Consider the linear growth of memory for massive deployments (thousands of simultaneous
connections).

Budget 300 to 600 us per key establishment, depending on the security level.

To minimize latency outliers, optimize system management and process scheduling.
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Conclusion

This study rigorously evaluated and profiled the performance of the Kyber post-quantum key exchange
algorithm in a High-Performance Computing (HPC) environment, focusing on both reference and
optimized (AVX2) implementations across its different security levels (Kyber-512, Kyber-768, Kyber-1024).
Our in-depth analyses of metrics such as latency, bandwidth, and CPU footprint clearly demonstrated
the inherent trade-offs between security and cryptographic performance.

The obtained results highlight the critical importance of hardware optimizations, particularly the
integration of AVX2 instructions, which yielded substantial performance gains, significantly reducing
KEM operation latency and increasing effective throughput. This improvement is crucial for the
adoption of post-quantum cryptography in demanding infrastructures like supercomputers, where
efficiency is paramount. By identifying major CPU "hotspots,’ we provide concrete avenues for future
specific optimizations.

Ultimately, this work offers a detailed characterization of Kyber’s behavior under real HPC conditions,
filling an important gap in the literature. The information and recommendations stemming from this
research are essential to guide system architects and developers in the transition to a post-quantum
cryptographic era, ensuring both security against emerging quantum threats and the preservation of
HPC system operational efficiency.
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