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Abstract

This study investigated the statistical insight of big data analytics for effective pandemic analysis. The COVID-
19 pandemic dataset, containing 5010 negatives and 4990 positives, was obtained from a prominent source
known as the Kaggle repository. The dataset was categorized into four classes: COVID-19, Normal, Pneumonia,
and Tuberculosis using diverse statistical metrics of image characteristics: mean intensity of a color channel,
homogeneity, dissimilarity, correlation, and density. The objective of the statistical analysis was to validate
the use of big data analysis for pandemic preparedness, with a working hypothesis that the intensity of the
colour channel images would be different (p < 0.05) between COVID-19 patients and patients with other health
conditions. A statistical package for the Social Sciences version 20 was used for the analysis. The outcomes show
that the mean intensity of color channels (Blue, Green, Red) in COVID-19 and Tuberculosis cases was greater
in the blue and green channels than in Normal and Pneumonia cases. Pneumonia and normal cases exhibited
comparable and reduced mean intensities across all three channels. The Normal condition exhibited the largest
mean contrast, whereas Pneumonia displayed the lowest. The mean dissimilarity and homogeneity indicate that
tuberculosis demonstrated the highest dissimilarity, signifying greater diversity in pixel intensity. COVID-19 and
Pneumonia exhibited comparable homogeneity; however Tuberculosis demonstrated more homogeneity. The
mean correlation indicates that Normal images exhibited the highest correlation, whilst Tuberculosis demonstrated
the lowest. The mean density study indicates that normal cases demonstrated the highest mean density, whereas
tuberculosis exhibited the lowest mean density. In conclusion, our findings established the advantages of statistics
for modeling and analyzing big data in the pandemic domain, covers the state-of-the-art for practical analysis.
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1. Introduction

Big Data Analytics have become common in many areas, from research to practice, and even in everyday
life. It is a prominent tool in pandemic preparedness and control as an aspect of the fourth industrial
revolution (4IR) [1]. COVID-19 was first found in Wuhan, China, in December 2019 and has spread
worldwide. Chinese and global epidemiological studies show person-to-person transfer [2, 3]. Sneezing
and coughing spread harmful COVID-19. COVID-19 was spread by touching infected surfaces or hands
and then their lips, nose, or eyes. Statisticians must prove their outcomes are not random [4, 5]. Failure
prevention and planning are often driven by statistics [6, 7]. Failures in pandemic and infectious diseases
control can lead to economic loss and loss of life.

Recently, Mwamnyange et al., [8] proposed a big data analytics platform for childhood infectious
illness surveillance and response. The system helps healthcare professionals track, monitor, and analyze
infectious illness reports via social media to prevent and control child-related diseases. The proposed
technique was validated using use-case scenarios and performance comparisons [9]. However, statistical
insights might be gained from data analytics for effective infectious diseases detection, but it was not
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considered. To provide some concrete examples, artificial intelligence (AI) was used to analyze incident
cases on the website. The Al Incident database (2021) compiles news articles from several sources.
We discovered that 72 of the 126 occurrences that have been reported thus far may be connected
to dependability problems. Based on the 72 reliability-related incidents, despite the ubiquity, it is
also observed that out of those 72 occurrences, 29 incidences resulted in fatalities or serious injuries,
demonstrating that dependability problems may cause significant damage [3, 10]. From a different
angle, public trust is necessary for the widespread use of Al technology.

Big data analytics are needed to manage infectious diseases. Massive data sets require statistics to
comprehend, analyze, and predict infectious disease patterns. Al technology is still growing and has
difficulties. Challenges include dependability, safety, durability, and trustworthiness. Dependability is
important because Al systems must be trusted. The system may work as intended. Resource allocation
and public health crisis response depend on these criteria. Examine reliability, strategy, and failures.
Recently developed Al dependability statistical analysis, especially for statisticians, highlights statistical
research concerns. The authors discussed AI dependability’s out-of-distribution detection, training set
influence, adversarial attacks, model correctness, and uncertainty quantification. A few examples show
study options. A recent study explored Al reliability evaluation, data gathering, and test preparation,
and how to improve system designs for Al dependability. Since data is vital for reliability assessment
[10]. Data on infectious diseases are initially analyzed using descriptive statistics and Al applications.
The key variables, like mean intensity of a color channel, standard error of the mean (SEM), mean
correlation, mean homogeneity, mean dissimilarity, mean correlation, and mean density, are crucial to
pandemic analysis. Statisticians can map some variables to the geographic and demographic spread of
pandemic diseases using big data sources search patterns.

The objective of this study is to investigate the feasibility of effective pandemic investigation using
statistical analysis. Specifically, the statistical package for Social Sciences was used for the analysis:
mean intensity of a Color channel, SEM, mean correlation, mean homogeneity, mean dissimilarity,
mean correlation, and mean density.

This study is structured as follows. Section 2 provides a literature review to emphasize the necessity
of the present investigation. Section 3 delineates the approach, attributes of the dataset, and the research
instrument. Section 4 presents a comprehensive analysis of statistical insights on big data analytics
for the effective detection of infectious diseases. Section 5 finishes the research and proposes future
endeavors for the implementation of effective pandemic control utilizing statistical tools.

2. Literature Review

Big Data Analytics is crucial for advancing the Fourth Industrial Revolution and tackling the challenges
presented by the pandemic. The Fourth Industrial Revolution is a significant transformation character-
ized by the convergence of physical, digital, and biological technologies. Currently, Big Data propels
substantial progress in automation and robotics, enabling these systems to analyze operational data for
enhanced efficiency and flexibility. It also enables the IoT, where interconnected devices across diverse
platforms generate vast data that, when analyzed, can improve operational efficiencies and predictive
maintenance capabilities. Moreover, in smart manufacturing, Big Data enhances the optimization of
production processes, minimizes downtime, and enables real-time customization of output. During the
COVID-19 pandemic, Big Data has proven its essential significance across multiple crucial sectors. It
has enabled effective epidemiological surveillance by analyzing data from several sources, including
travel records, social media, and government reports, to track the virus’s spread [11].

In pandemic management, analytics have enhanced hospital resource allocation, forecasted patient
outcomes, and tailored treatment options. Furthermore, the rapid progress and distribution of vaccina-
tions have been expedited by Big Data, which has enabled the analysis of massive clinical trial data. It
has also impacted public policy, aiding governments in developing specific lockdown measures and
informed reopening strategies based on real-time data concerning infection rates and public sentiment.
The use of Big Data in addressing COVID-19 and advancing Fourth Industrial Revolution technologies
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has accelerated the adoption of digital solutions, including telemedicine, remote work, and online educa-
tion, which are vital to the current digital transformation. This integration highlights the essential role
of Big Data in crisis management and as a core component of digital and industrial advancement in the
Fourth Industrial Revolution, demonstrating its capacity for comprehensive, real-time decision-making
across public health, economic, and industrial sectors [4, 11].

Hong et al. [11] explored statistical methodologies for assessing Al reliability, particularly for au-
tonomous systems. The authors introduce the "SMART" statistical framework to evaluate the robustness
of Al models used in various domains, including healthcare. The study highlights how Al reliability
decreases in out-of-distribution settings and suggests that statistical models outperform deep learning in
long-term failure prediction. However, it lacks real-world infectious disease applications and validation
on epidemiological datasets.

Another study highlights AT’s role in infectious disease monitoring and projection, emphasizing
data-driven approaches for disease surveillance. It demonstrates high sensitivity (91%) in predicting
disease outbreaks through Al models but suffers from a lack of statistical validation, poor interpretability,
and limited disease-specific analysis [12].

Fei et al. [13] also provided a broad overview of big data analytics applied to healthcare, particularly
during COVID-19. It discusses statistical inference challenges in high-dimensional data, highlighting
the effectiveness of Bayesian models in long-term trend prediction. However, it has a limited focus on
disease classification and weak integration of statistical methods in real-time applications.

Mwamnyange et al. [8] developed a big data analytics framework for tracking childhood infectious
diseases using a modified MapReduce algorithm. While it enhances early outbreak detection through
social media analytics and reduces processing time for large epidemiological datasets, it lacks statistical
validation of detection accuracy and focuses more on data processing efficiency than disease classifica-
tion. Olaboye et al. [9] presented a paper on policy and technical framework for using big data analytics
in epidemic forecasting. It improves forecasting accuracy with multi-source data integration, but has
limited classification models for specific diseases and underutilizes machine learning for outbreak
detection.

Panah et al. [14] investigated the integration of Al and big data analysis with public health infras-
tructure for early detection of infectious disease outbreaks. The authors propose an Al-driven data
integration framework leveraging social media, wearable technology, and traditional clinical databases.
While the paper emphasizes AI’s potential in public health surveillance, it lacks a detailed statistical
validation framework and real-time adaptive learning methodologies.

Adegoke et al. [15] presented a paper that provides a comprehensive review of data analytics models
used for disease outbreak prediction. It evaluates traditional statistical methods such as time-series
forecasting and Bayesian inference, alongside Al-based models. The study highlights the importance
of integrating epidemiological data with environmental and social media data for robust predictions.
However, it does not propose a standardized statistical framework for evaluating model performance
across different data sources.

Piontti et al. [16] explored computational models for infectious disease forecasting, focusing on data
science methodologies such as agent-based modeling and network theory. It provides insights into
how big data can enhance disease spread predictions, but lacks emphasis on statistical uncertainty
quantification and model generalizability across varying outbreak conditions.

Zhou et al. [17] investigated an integrated health big data system in China for infectious disease
prevention and control to detect dengue fever, tuberculosis (TB), and vaccination gaps in migrant
children. The system outperformed traditional surveillance methods by identifying more cases of TB
and dengue and more children with incomplete vaccinations.

Michael and Krishnan [18] studied how big data analytics affects healthcare prediction insights. The
study refines predictive models for disease progression, risk assessment, and individualized treatment
using EHRs, medical imaging, genomic data, and wearable sensors. Case studies show it reduces hospital
remissions and optimizes healthcare resource management. Al-driven healthcare analytics is lauded,
but real-time flexible models and scalability across healthcare systems are not.

Table 1 contains a summary of the review of the related studies on big data analytics for pandemic
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classification.

Table 1

Summary of the review of the related studies on big data analytics for pandemic classification.

Ref. Methodology Dataset Type Results Limitations
Hong et al.,[11] SMART framework, survival analy- Simulated Al reliability Al reliability decreases in No epidemiological valida-
sis, hazard functions datasets out-of-distribution; statisti- tion, not focused on disease
cal models perform betterin  detection
failure prediction
Wong et al.,[12] Al-based ML (SVM, RF, Neural Net-  Syndromic surveillance, 91% sensitivity in outbreak Lacks statistical validation,

works), social media and genomic
data fusion

search trends, clinical data

prediction

poor model interpretability

Fei et al., [13]

High-dimensional statistical mod-
els (LASSO, Bayesian Inference),
computational epidemiology

COVID-19 epidemiological
data, EHRs

Bayesian models outper-
form Al in long-term trend
prediction

Limited disease classifica-
tion focus, weak integration
of statistical methods

Mwamnyange et al., [8]

MapReduce, Hadoop-based data in-
tegration

Clinical records, social me-
dia, surveillance data

Faster epidemiological data
processing, early outbreak
detection

Lacks statistical validation,
prioritizes data processing
over classification

Panah et al., [14]

Al-driven data integration, public
health surveillance, wearable data
fusion

Social media, wearable tech,
clinical databases

Enhanced real-time disease
tracking

Lacks statistical valida-
tion, no adaptive learning
methodology

Adegoke et al., [15]

Investigation of statistical and Al
models (Bayesian inference, time-
series, ML)

Epidemiological, environ-
mental, social media data

Identifies gaps in predictive
analytics models

No standardized framework
for model comparison

Piontti et al., [16]

Agent-based modelling, network
theory, computational epidemiol-
ogy

Global epidemiological and
mobility data

Insights into disease spread
via big data

Lacks statistical uncertainty
quantification, limited
model generalizability

Zhou et al., [17]

Investigates an integrated health
big data system for detecting and
preventing infectious diseases.

Empirical study with com-
parative analysis.

Health data from clinics,
hospitals, and government
records in China.

Al-based screening, big data
analytics, disease detection
algorithms.

Michael & Krishnan, [18]

Investigates the role of data analyt-
ics in predictive healthcare, focused
on risk assessment and treatment
personalization.

Case study analysis with
machine learning models ap-
plied to patient data.

EHRs, medical imaging, ge-
nomic sequencing, wearable
sensor data from City Hos-
pital.

ML predictive modeling,
statistical analysis, Apache
Hadoop, Spark,Python,
Tableau.

3. Materials and Methods

The decision-making process is significantly enhanced by the application of statistical methods, even in
instances involving extensive data sets, sometimes referred to as big data [1, 10]. To implement data
processing techniques in certain sectors, it is essential to delineate the many types of data, encompassing
volume, variety, and velocity. Distinct types of data might be produced from multiple sources, and
it is essential to create systems capable of managing the characteristics of data. Figure 1 illustrates
the established architecture for big data analytics aimed at the efficient classification of infectious
diseases by statistical methodologies. The developed architecture depicts a complete classification and
detection procedure of the presence of COVID-19 using a synthetic dataset. It consists of three phases:
(i) Pandemic dataset acquisition and source phases, (ii) Data preparation phase, and (iii) Statistical
analysis of COVID-19 pandemic data diagnosis.

3.1. Pandemic Dataset Acquisition and Source

The COVID-19 pandemic dataset utilized in this investigation was obtained from a prominent
source known as the Kaggle database (https://www.kaggle.com/datasets/rishanmascarenhas/covid19-
temperatureoxygenpulse-rate). The distribution of the pandemic datasets sample in this analysis which
had values ranging from 0 to 9. The details include the ID, Oxygen, Pulse Rate, Temperature, and results
(4+/—). In total, the dataset contains 5010 negative and 4990 positive examples that support replicability,
making it large enough to be classified as big data. Figure 2 shows the distribution of the datasets by
classes and evidence of balanced classes using explorative data analysis. There is no ethical concern
regarding this dataset because it was sourced from opensource and has been deanonymized to protect
privacy and security.
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3.2. Data Preparation

Framing the research as a classification problem: Let S = {(z1,y1), (z2,%2), ...(Zn, yn)} constitute
the collection of training cases of size d. Y = {y1, y2..., yn } be the set of labels where z; is a feature
with corresponding y; label, and Y is a set of features according to classification task definition. The
preliminary phase of this data analysis and categorization commenced with the data preparation;
the dataset suffers from missing data and duplicated data. This was succeeded by a crucial step of
eliminating non-relevant data from the converted raw dataset. Duplication and missing values were
addressed using an imputation technique, wherein the meaning of the respective column was calculated
and used to replace the missing values. The issue was resolved through the identification of essential
aspects, conducted in accordance with [1, 3].

Pandemic dataset
acquisition and source

!

Data preparation

!

Statistical analysis of
pandemic data diagnosis

Figure 1: A block diagram for statistical big data analytics for pandemic classification.

3.3. Statistical analysis of pandemic data diagnosis

The statistical data analysis using one-way analysis of variance. Means were separated using Tukey.
Normality test was carried out using the Shapiro-Wilk test, and homogeneity of variances was verified
with Levene’s test implemented in SPSS v 21.0 (IBM Corp., Armonk, NY, USA). This was accomplished
using Intel(R) Core (TM) i7-4600U CPU running from 2.10GHz to 2.70GHz on a Windows 10 professional
with 8GB RAM. The statistical analysis was to validate the use of big data analysis for pandemic
preparedness, with a working hypothesis that the intensity of the colour channel images would be
different (p < 0.05) between COVID-19 patients and patients with other health conditions.

In statistics, statistical significance denotes the likelihood that the outcomes of a study or experiment
are attributable to factors other than random chance. Various metrics and tests are typically employed
to ascertain the statistical significance of a result. This research utilized primary criteria for statistical
significance contingent upon the specific type of pandemic dataset examined. Statistical significance is
a crucial concept; nonetheless, it is essential to recognize that statistical significance does not equate
to practical relevance. Always consider the context of the findings and additional metrics, such as
effect size, when evaluating results. The equations shown below describe these metrics and express
them statistically, using mean intensity of a Color channel, SEM, mean correlation, mean homogeneity,
mean dissimilarity, mean correlation, mean correlation and mean density. The detailed description of
statistical metrics used, with accompanying formulas are presented in this section.
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Distribution of Classes in Dataset

4000

3000

Frequency

2000

1000

Negative Positive

Figure 2: Datasets class distribution.

Equation 1 shows the average intensity of a color channel in the pandemic classification.

1 N
Imean = N § Ii (1)
=1

where Ii is the intensity of the pixel in the color channel, and N is the total number of pixels.
Equation 2 shows the Standard Error of the Mean (SEM) for pandemic classification.

SEM = \;LN (2)

where o is the standard deviation of pixel intensities and NV is the number of pixels for pandemic
classification.

Equation 3 shows the Gray Level Co-occurrence Matrix (GLCM), a statistical method for examining
texture that considers the spatial relationship of pixels. Mean Contrast (from Gray Level Co-occurrence
Matrix- GLCM)

Contrast = Z P(i,§)(i — j)? 3)
i,

where P(i, j) is the probability of intensity pairs in the GLCM for pandemic classification.
Equation 4 shows Mean Homogeneity;

: P(i, j)
Homogeneity = — 4
; 1+ i —j| (4)
Equation 5 shows Dissimilarity
Dissimilarity = Y P(i, j)|i — j| )
4,3

Equation 6 shows Correlation

220 = i) (i = ) P (3, 5)|

0i0;

(6)

Correlation =

where ;1 and o are the means and standard deviations of intensity levels for pandemic classification.
Equation 7 shows Mean Density (assuming it refers to pixel density in a binary image)

> Ibinary

N (7)

Density =
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where Ibinary represents pixel values in a binary image for pandemic analysis.

4. Result and Analysis

4.1. Results

This section presents the results attained from the statistical analysis of the pandemic dataset. The
task is conceptualized based on the statistical tools called for a detailed analysis of the COVID-19
pandemic dataset. A statistical analysis was conducted to categorize infectious diseases, including
COVID-19. A model was developed utilizing data from Kaggle, encompassing steps of data gathering,
preparation, analysis via SPSS, and essential statistical measures (intensity, SEM, contrast, homogeneity,
dissimilarity, correlation, and density). The findings are articulated through sophisticated statistical
metrics, including the mean intensity of a color channel, the standard error of the mean (SEM), mean
correlation, mean homogeneity, mean dissimilarity, repeated mean correlation, and mean density.

4.2. Analysis of big data analytics for pandemic classification.

Statistics on the pandemic dataset in this study are discussed in this subsection. It delineates the
statistical analysis of four pandemic data scenarios/conditions. Data is divided into COVID-19, Normal,
Pneumonia, and Tuberculosis. For each occurrence, it includes statistical measurements of image
attributes, including the mean and standard error. It is a clear presentation of results with mean values
and standard errors; Table 2 is the comparison of the blue channels in images across different health
conditions, and Table 3 presents the comparison of green channels in the image obtained for different
health conditions. While Table 4 compares the red channel in the image obtained for different health
conditions, Table 5 compares the contrast of the image obtained for different health conditions. The
focus of Table 6 is the comparison of dissimilarity of the image obtained for different health conditions,
and Table 7 shows the comparison of homogeneity of the image obtained for different health conditions.
Table 8 compares the correlation of the images obtained for different health conditions, and finally,
Table 9 compares the correlation of the images obtained for different health conditions. In COVID-19
and TB cases, blue and green channels have a higher mean intensity than Normal and Pneumonia
channels. All three channels show similar and reduced mean intensities for pneumonia and normal
patients.

Table 2

Comparison of the blue channels in images across different health conditions.
Case Sample size Mean intensity +t SEM  p-value 95% CI
COVID-19 554 134.87 + 0.94¢
Normal 1779 122.15 + 0.33% < 0.001 124.29-125.24
Pneumonia 4061 12291 + 1.05
Tuberculosis 729 133.77 £ 1.05¢

a,b: indicate significant difference (p<0.05); Cl: confidence interval.

Table 3

Comparison of green channels in the image obtained for different health conditions.
Case Sample size Mean intensity £+ SEM  p-value 95% CI
COVID-19 554 134.59 + 0.94¢
Normal 1779 122.15 £ 0.33¢ < 0.001 123.80-124.74
Pneumonia 4061 12291 + 0.31°¢
Tuberculosis 729 129.22 + 1.02°

a,b,c: indicate significant difference (p<0.05); Cl: confidence interval.
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Table 4

Comparison of red channel in the image obtained for different health conditions
Case Sample size Mean intensity + SEM  p-value 95% CI
COVID-19 554 134.29 + 0.96
Normal 1779 122.15 + 0.33° < 0.001 122.49-123.46
Pneumonia 4061 12291 +0.31°
Tuberculosis 729 116.79 + 1.15°¢

a,b,c: indicate significant difference (p<0.05); Cl: confidence interval.

Table 5

Comparison of contrast of the image obtained for different health conditions
Case Sample size Mean intensity £t SEM  p-value 95% ClI
COVID-19 554 134.36 + 4.37°
Normal 1779 163.81 + 1.08 < 0.001 129.87-132.76
Pneumonia 4061 121.02 + 0.86¢
Tuberculosis 729 107.79 + 2.34¢

a,b,c,d: indicate significant difference (p<0.05); Cl: confidence interval.

Table 6

Comparison of dissimilarity of the image obtained for different health conditions.
Case Sample size Mean intensity +t SEM  p-value 95% ClI
COVID-19 554 0.97 + 0.00°
Normal 1779 0.97 + 0.00° < 0.001 0.978-0.979
Pneumonia 4061 0.98 £ 0.01¢
Tuberculosis 729 0.97 + 0.00°

a,b: indicate significant difference (p<0.05); CI: confidence interval.

Table 7

Comparison of the homogeneity of the image obtained for different health conditions.
Case Sample size Mean intensity +t SEM  p-value 95% ClI
COVID-19 554 0.26 + 0.00¢
Normal 1779 0.23 + 0.004 < 0.001  0.269-0.272
Pneumonia 4061 0.27 + 0.00°
Tuberculosis 729 0.38 £ 0.00¢

a,b,c,d: indicate significant difference (p<0.05); Cl: confidence interval.

Table 8

Comparison of the correlation of the images obtained for different health conditions.
Case Sample size Mean intensity + SEM  p-value 95% CI
COVID-19 554 11,62+ 0.03
Normal 1779 12.06 + 0.01¢ < 0.001 11.61-11.64
Pneumonia 4061 11.58 + 0.01°
Tuberculosis 729 10.78 + 0.03¢

a,b,c: indicate significant difference (p<0.05); Cl: confidence interval.

The blue, green, and red channel images from COVID-19 patients showed significantly (p < 0.001)
the highest intensity, compared to patients with different health conditions as indicated in Table
2, 3 and 4, respectively. Mean contrast of the image from Covid-19 patients (134.36 + 4.37) was
significantly lowered (p < 0.001) compared with mean contrast of the image from the normal patients

(163.81 4 1.08) in Table 5.

Additionally, the mean dissimilarity and homogeneity indicate that Pneumonia and tuberculosis
demonstrate the highest dissimilarity (0.98 £+ 0.01) and homogeneity (0.38 + 0.00), respectively,
signifying greater diversity in pixel intensity as shown in Table 6 and 7. COVID-19 and Pneumonia
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Table 9

Comparison of the correlation of the images obtained for different health conditions
Case Sample size Mean intensity + SEM  p-value 95% CI
COVID-19 554 10.64 £ 0.34¢
Normal 1779 19.20 £ 0.12¢ < 0.001 13.48-13.78
Pneumonia 4061 12.16 + 0.08°
Tuberculosis 729 10.48 + 0.21¢

a,b,c: indicate significant difference (p<0.05); Cl: confidence interval.

exhibit comparable homogeneity (0.26 — 0.27; Table 7). The mean correlation indicates that Normal
images exhibit the highest correlation (12.06 & 0.01) as shown in Table 8. The mean density study
indicates that normal cases demonstrate the highest mean density (19.20 £ 0.12; Table 9). Meanwhile,
the mean contrast, dissimilarities, homogeneity, correlation and density were lower (p < 0.05) for
COVID-19 patients than normal patients.

5. Conclusion Recommendation

The statistical data analysis has changed infectious and pandemic illness research and management.
Pattern identification and analysis of infectious and pandemic illness epidemics have underutilized
statistical approaches. The global pandemic data study lacks statistical analysis. For pandemic analysis,
state-of-the-art statistical methods like mean intensity of a color channel, SEM, mean correlation,
homogeneity, dissimilarity, correlation, and density provide depth of finding for informed decision-
making. This research shows that pandemics are straightforward to control and minimize mortality if
statistical methods are used to analyze the pandemic dataset to advise doctors, policymakers, and other
stakeholders on disease spread. This study examines statistics, data science, machine learning, and Al
in relation to environmental science, natural sciences, medicine, and technology. It shows how statistics
may model and analyze huge data in pandemics, covers the state-of-the-art for practical analysis, and
shows how to implement methodologies. The paper makes a more substantial contribution to the
field of pandemic analytics. Future research may compare results using theoretical machine learning
techniques, ML modeling, and validation, to validate the result of this investigation. Multiple data
sources enable a more complete picture of disease spread. Maps of COVID-19 hotspots were created
using social media, contact tracing apps, and real-time hospital data.

Declaration on Generative Al
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