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Abstract

The carbonized Herculaneum scrolls represent a unique challenge for text recovery due to their fragile state and
the visual similarity between ink and papyrus substrate. This study presents an iterative, human in-the-loop
approach for ink detection in Scroll 5 (PHerc. 172) using a TimeSformer-based deep learning model. Building upon
preprocessed X-ray Phase-Contrast Tomography (XPCT) data from the Vesuvius Challenge, we employ progressive
model refinement and expert-verified labeling to improve the identification of ancient Greek letterforms. Our
approach demonstrates that precise, trace-based annotation combined with repeated training cycles leads to
a significant increase in legible character recognition from 169 to 368 letters across 15 scroll segments. The
results underscore the value of interdisciplinary collaboration and iterative feedback in advancing the digital
decipherment of ancient texts.
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1. Introduction

The eruption of Mount Vesuvius in 79 AD sealed away a unique literary treasure: the carbonized
papyrus scrolls from the Villa of the Papyri in Herculaneum. Preserved under layers of volcanic
material, these ancient manuscripts offer a rare glimpse into the intellectual life of the Roman world. Yet
for centuries, their charred and fragile state rendered many of them unreadable. Recent advancements
in non-destructive imaging, particularly X-ray Phase-Contrast Tomography (XPCT), have created a
new opportunity to digitally access their contents without physical unrolling.

To advance this opportunity, the Vesuvius Challenge [1] was launched in 2023 as an open competition
aimed at deciphering the hidden texts of the Herculaneum scrolls and to accelerate this endeavor by
providing researchers with high-resolution XPCT data and the tasks of geometric reconstruction by
virtual unwrapping of the scrolls and detecting and reconstructing ink traces hidden within the scrolls.
The challenge has stimulated the development of machine learning pipelines capable of enhancing text
visibility and separating faint ink from the dense papyrus background. Among the most significant
breakthroughs has been the adaptation of TimeSformer, a transformer-based vision model [2], to the
domain of volumetric ink detection. Originally trained on labeled segments from Scroll 1 (PHerc.Paris.
4), this model serves as a foundational tool in our study.
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In this study, our primary focus is on Scroll 5 (PHerc. 172), where we utilize the preprocessed
outputs of the Vesuvius Challenge to train and refine an ink detection system based on the TimeSformer
model. The proposed methodology involves a human-in-the-loop approach, wherein initial model
predictions are systematically reviewed and refined by domain experts. These refinements then serve
as a foundation for subsequent training iterations. This iterative feedback loop has been demonstrated
to result in progressive improvements in model accuracy and output clarity.

The primary metric employed is the quantity of clearly identifiable Greek letters, as verified by a
specialist, across successive model iterations. This approach maintains a balance between technical
precision and historical authenticity, ensuring that detected ink traces correspond to plausible ancient
letterforms. The results demonstrate that through careful annotation and iterative refinement, even
faint textual signals embedded within the scrolls can be successfully recovered and rendered legible.

The remainder of this paper is structured as follows: Section 2 provides an overview of related work,
including past Vesuvius Challenge contributions and the historical development of letter shape analysis
and transformer-based models. Section 3 introduces the dataset and preprocessing pipeline, with a focus
on XPCT scanning and the segmentation method used to flatten the scroll layers. Section 4 details our
methodological approach, including labeling strategies, iterative training, and implementation details.
In Section 5, we present our experimental results and evaluate model performance across iterations.
Section 6 concludes the paper with a discussion of findings and outlines directions for future research,
including semi-supervised techniques and improved preprocessing workflows.

2. Related Work

The data of the Vesuvius Challange is an application of computer tomographic (CT) measurement
and imaging in the context of the evaluation of man-made artifacts. The description and estimation
of these artifacts is related to man-made scientific reading and assessment schemes. In its entirety
it covers topics of material distinction and description, physical, chemical description of material
change under conditions of temperature and time, material representation through measurement and
its computational estimation, also the description of change of human labor habits related to production
and usage of papyrus, the development of writing, reading and storing information. Out of that we
choose three aspects, that we will cover in the section of related work: (1) Ink on charred papyrus, (2)
script usage and (3) the computation on the data (model and modelling) in relation to ink residues.

2.1. Ink on charred papyrus

In 2015 the founders of the challenge published their research on a charred scroll (parchment) from
En-Gedi [3], they showed significant progress in evaluation of ink residues in the XPCT datasets. They
express that the ink composition must have involved iron or lead. Which is not the whole chemical
truth, because it is iron on the atomic level, but a metal oxide on the molecular level (in respect to the
burning [more important since the ferric gallat is solid up to 170 °C and turns to iron oxide at 350 °C
[3]] and the time of being buried). The analysis pipeline built on previous work on the Herculaneum
papyri from 2009 and 2013. In the year 2015 there was also research published on the ink of the papyri
from Herculaneum [4], [5] and tracking ink composition on Herculaneum papyrus scrolls [6]. As we
learn from these perspectives it is likely that not only metallic inks were used to write the scrolls. The
research offered the obvious insight, that the CT method is not the most suitable here, an infrared
photography would suit the problem better (reflection vs. absorption measurements uncover surface
structures [even if they are made up of equal material]), but unfortunately it is not available for non
destructive workflows. As a result of that research period the presents of metal in ink was taken for
granted, in contrast to the archaeologists’ assumption of purely carbon based ink, for the Herculanum
papyri. In the end it is not clear where the metal components of the ink come from and a biotic source of
plant material (the main component of carbon ink) is not improbable (find PCA Cluster of charcoal from
different specimen [7]; a general overview to the scientific outcome about ash and charcoal [8], on the



other hand the Pb content was discussed in terms of polluted water, but not in terms of accumulation
in biomass and thus high Pb content in biomass ash and charcoal [9]).

2.2. Script usage

For the purpose of this paper it is essential to know potential form and development of letters used in
the Herculaneum scrolls. They span from the fourth century BCE to 79 CE with Latin and Greek letters.
A detailed treatment is given by Cavallo, "Libri scritture scribi a Ercolano”, Naples 1983 [10]. In our
case the letters are Greek majuscules written by a literary hand.

2.3. TimeSformer ink model

The original analysis pipeline (mesh model of scroll as a mass spring system driven by the gradient
criterion of second order symmetric tensor and salience measure of the intensity volume (which denotes
the location of animal skin surface, mapping voxels as textures to mesh model, flatten segments, merge
segments by hand)) is now dominated by Al-driven methods. The reason for that is threefold: first the
segmentation of sheets of material is difficult and local geometrical and statistical expressions of surface
orientation are not always possible depending on the preservation state (some papyrus sheets are
simply crushed or baked together); second the poor ink signal in the XPCT dataset needs to be boosted
and third it’s the AI time. We will focus on the work that was carried out to estimate ink residues in
flattened parts of a papyrus scroll (segments) represented by the volume around of the papyrus sheet.
To solve the problem of estimating regions of an unknown material density characteristics in relation
to surrounding regions and classify them as written regions. Youssef Nader utilizes the training of
the a TimeSformer model and its application for inference. The approach is quite different from the
original intention of the TimeSformer [11]. The first difference is, that any autoencoder of the input
data is neglected. The data is used directly with some additional masking. Second difference is, that the
decoder stage of the timeSfomer is not used. That means the encoder reproduces masks for a given
intensity volume. That is fine, because due to the fact, that ink was nearly invisible on the intensity
level, the only human driven labeling is possible in rare situations (crackles). And labeling on top of the
encoder output was the only solution to coupe with small intensity gradients representing papyrus and
ink in contrast to papyrus only.

3. Dataset and Preprocessing

The analysis of ancient carbonized scrolls, particularly those recovered from the Villa of the Papyri in
Herculaneum, requires a digital pipeline to prepare the data for ink detection and text reconstruction.
We leverage the preprocessed volumetric data provided by the Vesuvius Challenge [1], which includes
high-resolution scans, segmentation outputs, and flattened papyrus sheets. Understanding the preceding
preprocessing steps is crucial for contextualizing our methodology and its constraints. This section
outlines the key stages in data acquisition and preparation, highlighting the scan process and the
segmentation methodology provided through the Volume Cartographer [12] and Thaumato Anakalyptor

[13].

3.1. Scan Process

The scrolls examined by the Vesuvius Challenge community have undergone a non-destructive scanning
procedure using XPCT, executed at the Diamond Light Source synchrotron facility. Unlike conventional
absorption-based X-ray imaging, XPCT is sensitive to minute changes in the refractive index, making it
ideal for detecting the subtle structural differences within the carbonized papyrus and ink [14, 15]. The
result is a three-dimensional volumetric dataset capturing the internal microstructure of the scrolls at a
resolution sufficient to resolve the fine layers (as seen on Figure 1) and potential ink traces embedded
within.



Figure 1: XPCT scan of Scroll 5, showing its internal layered structure.

These raw scans, however, do not directly yield readable text. Due to the compressed and irregular
geometry of the scrolls — folded, coiled, and damaged over centuries — text is often embedded within
highly distorted 3D spaces, distributed across dozens of sub-millimeter depth layers. Thus, a critical
step involves virtual unwrapping, in which the topology of the scroll is modeled computationally and
then digitally flattened into a series of depth images suitable for further analysis. This unwrapping
pipeline builds on the prior work by Stabile et al. [14] and Baum et al. [16], and has been refined and
standardized as part of the infrastructure of the Vesuvius Challenge.

The scroll is ultimately converted into a stack of 65 axial slices — each representing a distinct depth
layer within the material [17, 1]. This layered representation, while still volumetric in nature, allows
traditional 2D and 3D machine learning tools to be employed for segmentation and ink prediction.

3.2. Segmentation and Flattening

One of the main components of the Vesuvius Challenge infrastructure is the Volume Cartographer
pipeline, introduced by Parsons et al. [18], which automates the segmentation and mapping of scroll
geometries onto 2D image stacks. In contrast to earlier manual or semi-automated methods, Volume
Cartographer provides a reproducible, data-driven solution to the segmentation problem, producing
aligned sheet maps from raw volumetric data.

At the core of Volume Cartographer is a hierarchical sheet detection algorithm that identifies and
tracks distinct papyrus layers within the scroll volume. The system begins by isolating regions of
coherent planar structure using a curvature-based filter across the volumetric scan. These candidate
layers are then refined through a multi-stage fitting process that leverages surface normals and local
geometry to produce high-fidelity surface meshes. These meshes are subsequently used to interpolate
flattened representations of each sheet via a deformation-minimizing transformation. The output is
a stack of 2D orthogonal slices that correspond to the original layers but have been geometrically
corrected to remove bending and torsion [18].

In our project, we build upon the pre-segmented and virtually unwrapped output generated by Volume
Cartographer. This includes the depth-normalized 65-slice representation of Scroll 5, from which we
extract regions of interest for ink detection. Importantly, the segmentation process already incorporates
denoising and artifact rejection, meaning that the layers we process have reduced geometric noise and
exhibit a relatively consistent topology [1, 18].

While our contribution does not involve segmentation itself, the quality and accuracy of the input data
are directly contingent on the success of Volume Cartographer. Misalignments, topological artifacts, or
segmentation errors at this stage can propagate downstream, leading to false positives in ink detection,
i.e. the misidentification of substrate textures as letterforms. Therefore, the robustness and generality
of Volume Cartographer were essential prerequisites for the iterative modeling pipeline described in



subsequent sections.

Moreover, the segmentation approach offers an implicit form of contextual regularization. By aligning
layer surfaces according to the physical curvature of the scroll, Volume Cartographer ensures that
adjacent image slices correspond to adjacent material layers, preserving local spatial continuity. This
is particularly valuable for models like TimeSformer [2], which rely on consistent spatiotemporal
correlations to detect faint and dispersed ink traces across slices. These processed datasets form the
basis of our study, allowing us to bypass the computationally intensive segmentation phase and focus
directly on ink inference.

By building atop the outputs of XPCT scanning and the Volume Cartographer system, we are able
to engage directly with virtual representations of ancient manuscripts, thus sidestepping the most
fragile and destructive aspects of physical papyrology. These processed scroll images provide a reliable
substrate upon which our ink inference techniques are deployed.

4. Methodology

Our methodology aims to reliably detect ink traces from the segmented, flattened volume slices pro-
duced during preprocessing. Given the extreme visual similarity between carbon-based ink and the
papyrus substrate, we adopt a human-in-the-loop strategy that combines expert-informed manual
labeling, iterative model refinement and implementation techniques designed to maximize visibility and
interpretability. This section illustrates the system’s implementation details, our image enhancement
and labeling strategies and the iterative model training workflow.

1. Implementation Details

All models were implemented using the PyTorch Lightning framework to enable modular and repro-
ducible training. We used Weights & Biases [19] to track all experiments, logging metrics, hyperparam-
eters, and qualitative outputs.

Training was conducted on a remote Linux server equipped with an NVIDIA Tesla V100 GPU (32GB
VRAM). We adopted the 2023 grand prize-winning method from the Vesuvius Challenge, which utilizes
a TimeSformer model architecture [17] using a sliding window approach. Each training input consisted
of a 64 x 64 x 26 volumetric window, extracted with a stride of 32. The very small scale of this window
size is visualized in Figure 2 as a yellow 64 by 64 pixel square, which takes up only a fraction of the
space of the full letter. This configuration is chosen to preserve local structural context of the papyrus
material while preventing the model from being able to learn to recognize entire characters, which
would likely lead to overfitting and poor generalization.

"‘Y‘Q < m\-\we‘ .‘.‘

Figure 2: Visualization of window size (yellow square) on inference result with initial model on segment
20241030083650

To evaluate the model performance during training, the segment 20241028121111 (see Figure 3) was
always held out as a validation set and never used for training. This segment overlapped substantially



with a nearby labeled segment (20241028121112), minimizing overall data loss while still providing the
trainer class with metrics for evaluation and learning rate scheduling.
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Figure 3: Model output on held-out validation segment 20241028121111 after final training iteration

4.2. Labeling Techniques

To enhance the interpretability of scroll segments generated during virtual unwrapping, we began with
predictions from a pretrained TimeSformer model [17]. These initial predictions served as a starting
point for expert-guided manual annotation.

Figure 4: Comparison of two labeling strategies Trace-based (top) and Expansive (bottom) on Inference result
with initial model on segment 20241030083650

To create a reliable training set, we considered two alternative labeling strategies:

« Trace-based labeling: This conservative strategy prioritized precision. We labeled only clearly
visible, well-defined ink traces that matched expected Greek letterforms. Faint traces were
included only if they structurally aligned with expected shapes and showed sufficient contrast
against the background. All labels were validated by a specialist of ancient Greek, referencing
authoritative sources including [20] and comparative paleographic studies [21].

« Expansive labeling: This strategy sought to increase coverage by extrapolating partial traces
into full letterforms when there was high confidence in the inferred structure. Ambiguous features
- such as vertical strokes potentially being part of multiple characters like ¢ (iota), IT (pi), ¥ (psi),
T (tau), k (kappa) — were excluded. This approach increased the quantity of labeled data, as gaps
in incomplete letters were filled, as seen in Figure 4. Conversely, it also introduced the possibility
of adding false positive labels, which are correct from a reader’s perspective, but might teach the
model to hallucinate ink, where there is none, ultimately preventing our goal of visual clarity.



Testing the second approach for one iteration, the results were visually much noisier, which led to
our choice of labeling using the Trace-based approach for the remainder of the process.
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Figure 5: Workflow overview of the labeling and iterative model training process.

4.3. Progressive Visibility Enhancement of Letter Structures

We employed an iterative model training approach to improve ink trace detection over time. Figure 5
illustrates the overall flow. The central idea was to refine the labels after each iteration based on model

inference and expert analysis, thereby enhancing both label quality and model accuracy. Each iteration
followed this general process:

1. Correct false positives by removing previously labeled letters that were no longer supported by
model inference in the current iteration.

2. Identify and annotate new traces that plausibly match letterforms found in the [20], particularly
those attributed to works by Philodemus (1% century B.C).
3. Count the number of readable letters in each segment to evaluate progress.

4. Retrain the TimeSformer [17] model from scratch on the revised label set, then run inference to
initialize the next round.

This process allowed us to iteratively improve both the precision of the model and the clarity of
the training data. The combination of structured annotation, expert validation, and feedback-guided
training significantly reduced noise and false positives.



Figure 6: CT Scan of papyrus decomposed to 65 Layers. (https://scrollprize.org/tutorial3).

The iterative process concluded after four rounds, when the final iteration no longer showed noticeable
improvements in visual clarity or letter count. This saturation point was considered the effective limit
of our current approach.

5. Experimental Results and Evaluation

5.1. Data setup

The data used in this study originates from Scroll 5 of the Vesuvius Challenge dataset [18]. The scroll
has been CT-scanned and virtually unwrapped using the state-of-the-art pipeline provided by the
competition organizers (explained in Section 3.1).

Although the scroll contains 23 available segments, we worked with a subset of 15, which were used
consistently throughout all iterations of the project. These 15 segments include: 20241028121111,
20241028121112, 20241030083650, 20241030152031, 20241105112301, 20241113070770,
20241113080880, 20241113090990, 20241025062040, 20241025145341, 20241025150211,
20241102160330, 20241108111522, 20241108120731, and 202411081207312. Of these, the ini-
tial round of manual labeling and model training used the first 8 segments (see Figure 5 for the workflow
diagram).

Each segment contains 65 volumetric layers, corresponding to depth-wise slices through a single
sheet of papyrus. We consistently used layers 17 through 42, which cover the central portion of each
sheet. This range provided the highest ink visibility while avoiding distortion or noise from overlapping
neighboring layers. Figure 6 illustrates how one sheet of papyrus appears as multiple layers in the CT
data.

As a starting point, we applied the 2023 Vesuvius Challenge grand prize model [17], trained on
Scroll 1, to all 15 segments of Scroll 5. The resulting predictions served as input for the first round of
manual labeling and model training in our iterative pipeline.

5.2. Results

We evaluated the progression of identifiable letters across three model iterations, using a benchmark of
169 letters manually labeled across 8 scroll segments. These letters were verified by an expert in ancient
Greek and served as the baseline for subsequent inference and retraining cycles.

Only ink traces that could be confidently identified as full letters of the ancient Greek alphabet were
included in the count. Ambiguous fragments — such as vertical strokes that could plausibly belong
to multiple characters, like ¢ (iota), II (pi), ¥ (psi), 7 (tau), x (kappa) — were deliberately excluded to
maintain a high standard of certainty in the evaluation.

In the first iteration, inference was performed on all 15 segments, resulting in 286 identifiable letters -
an increase of 117 over the initial benchmark. This improvement was due to the model’s ability to
generalize beyond the initial labeled set and detect additional partial or faint characters. Iteration 2



Figure 7: Transformation of letters in segment 20241113070770 from AOIIX to AOTOC

yielded a more modest increase to 321 letters, while the final iteration raised the count to 368, marking
the highest number of identified characters achieved during the project. Overall, this represents more
than a twofold increase compared to the initial benchmark.

While gains diminished across iterations, Iteration 3 still contributed 47 newly recognized letters,
indicating that the model continued to extract signal from previously ambiguous areas. However, it also
became evident that the majority of readable content had been recovered: noise was largely suppressed,
and regions previously confused for ink had been ruled out. This suggests that further iterations would
likely not yield meaningful new information from the existing input data.

Performance varied across segments. Some, such as 20241025062040 and 20241108111522, initially
had no identifiable letters but saw substantial improvement after refinement (gaining 42 and 22 new
letters, respectively). In contrast, other segments with clearer early signals, like 20241030152031, showed
slower but steady increases over time. These differences reflect the physical variability in preservation
(and the state of the estimation of the target volume of Volume Cartographer) and legibility across the
scroll.

While the overall trend across iterations was positive, we did observe a few instances of regression,
where the number of identifiable letters in certain segments temporarily decreased. These cases
typically arose when regions initially labeled as letters were later judged, by the model or during manual
verification, to be more likely noise. As the model improved, it became more selective, sometimes
discarding partial or ambiguous traces that were previously accepted as valid characters. In other
cases, slight changes in predicted shapes rendered a previously plausible letter unrecognizable. Such
corrections, although reflected as numerical decreases, often represented a gain in labeling precision.

Additionally, across iterations, we observed that some characters underwent shape reinterpretation,
which contributed to fluctuations in the number of identifiable letters. As shown in Figure 7, an example
of such a transformation involved ink traces that were initially classified as II (Pi) and X (Chi), which
in this specific case were later reassigned as T (Tau), O (Omicron), and ¥ (Sigma), the latter of which
was commonly written in a form resembling the modern Latin letter 'C’ during the relevant historical
period. While such transformations affected local letter counts within specific segments, they also
highlight the model’s ability to refine its interpretation of ambiguous traces over time.

Figure 8 and Figure 9 illustrate the evolution of segments 20241108111522 and 20241113080880
respectively, which progressed from zero recognized letters to 22 by the third iteration and from 4 to 14.
A full breakdown of results by segment and iteration is provided in Table 1.

While the number of identifiable letters is not a standardized metric, it offers a practical proxy for
model performance in this interdisciplinary context. Unlike traditional benchmarks, the goal here
is not classification accuracy but the recovery of legible ancient text. These results highlight the
effectiveness of iterative refinement for enhancing model reliability in low-signal, high-noise settings,
such as carbonized papyrus scrolls.



Figure 9: Progress of segment 20241113080880 from iteration 0 (top) to iteration 3 (bottom)

6. Conclusion and Future Work

This study explored an iterative labeling approach for ink detection in the carbonized Herculaneum
Scroll 5. By leveraging a pretrained TimeSformer model, originally trained on Scroll 1, we systematically
refined our dataset through multiple cycles of manual annotation and model retraining. This process
resulted in a significant increase in the number of identifiable letters, demonstrating the effectiveness
of progressive label refinement in challenging historical document analysis tasks.

Our findings highlight the importance of high-quality manual annotation in improving model
performance, particularly in cases where ink traces are faint and difficult to distinguish from the
substrate. One key finding was that a trace-based labeling strategy, which focused strictly on visible
ink traces without reconstructing missing portions, produced clearer results than the approach that
attempted to extrapolate incomplete letters. While the latter method increased the amount of labeled



Table 1
Progression of Confident Letter Identifications Across Iterations and Segments

Segment Iteration 0 | Iteration 1 | Iteration 2 | Iteration 3 | New letters
20241030152031 78 84 99 105 27
20241028121112 27 32 35 38 11
20241028121111 17 25 27 31 14
20241030083650 14 15 13 18 4
20241105112301 13 12 17 23 10
20241113090990 10 16 16 18 8
20241113070770 6 7 8 8 2
20241113080880 4 7 9 14 10
20241025062040 0 31 36 42 42
20241108111522 0 18 20 22 22
20241108120732 0 13 16 20 20
20241108120731 0 9 10 11 11
20241025150211 0 6 7 8 8
20241025145341 0 5 5 5 5
20241102160330 0 6 3 5 5
TOTAL 169 286 321 368 199

data, it introduced additional uncertainty and noise, reducing the clarity of detected text. Additionally,
our results reinforce the value of expert verification in ensuring historical and linguistic accuracy,
preventing misinterpretation of detected letterforms.

Challenges remain, particularly in distinguishing ink from the surrounding papyrus, but recent efforts
have expanded the availability of labeled data. With our iterative approach, we have contributed to an
improved dataset, which can now serve as a foundation for future model training. Building on this, future
work should explore semi-supervised learning and active learning techniques to further optimize the
annotation process while maintaining label accuracy. Additionally, enhancing preprocessing methods,
such as contrast optimization and structure-preserving augmentation, may improve ink visibility and
model robustness.

Beyond the technical aspects, collaboration between computer scientists, historians, and papyrologists
will be essential for making meaningful progress in virtual unwrapping and text reconstruction. As deep
learning continues to advance, these interdisciplinary efforts will play a critical role in recovering and
interpreting texts from the Herculaneum scrolls and other fragile manuscripts, bringing lost historical
knowledge back to light.
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