
Towards Explainability of Approximate Lifted Model
Construction: A Geometric Perspective
Jan Speller1,*, Malte Luttermann2,3, Marcel Gehrke3 and Tanya Braun1

1University of Münster, Computer Science Department, Einsteinstraße 62, 48149 Münster, Germany
2German Research Center for Artificial Intelligence (DFKI), Ratzeburger Allee 160, 23562 Lübeck, Germany
3University of Hamburg, Institute for Humanities-Centered AI (CHAI), Warburgstraße 28, 20354 Hamburg, Germany

Abstract
Advanced colour passing (ACP) is the state-of-the-art algorithm for lifting a propositional probabilistic model to
a first-order level by combining exchangeable factors, enabling the use of lifted inference algorithms to allow for
tractable probabilistic inference with respect to domain sizes. More recently, an approximate version of ACP,
called 𝜀-ACP, ensures the practical applicability of ACP by accounting for inaccurate estimates of underlying
distributions. 𝜀-ACP permits underlying distributions, encoded as potential-based factorisations, to slightly
deviate depending on a hyperparameter 𝜀 while maintaining a bounded approximation error. To navigate through
different levels of compression versus accuracy, a hierarchical version of 𝜀-ACP has emerged that builds a
hierarchy of 𝜀 values. In a drive towards interpretability of results, this paper looks at geometric properties of
𝜀-equivalence, a central notion employed by 𝜀-ACP and its hierarchical version to quantify the maximum allowed
deviation between potentials. Specifically, we present a unified view on the results for 𝜀-ACP and its hierarchical
version and provide a geometric interpretation of 𝜀-equivalence in ℒ𝑝, thereby making results more interpretable.
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1. Introduction

Intelligent systems tasked with modelling its environment have to contend with uncertainty in the world
as well as objects and relations among them. The former is canonically modelled using probabilistic
graphical models, encoding features as random variables (randvars) and relations between them in a
factorised probability distribution. The latter is often represented using some form of higher-order logic,
describing a world through hard constraints on objects and their relations. Combining both perspectives
has lead to various probabilistic relational formalisms: Parametric factor graphs (PFGs) [1] emerge from
the uncertainty perspective with logical constructs added to model objects and relations among them
under uncertainty. Markov logic networks [2] originate from the logic perspective with weights added to
the constraints to denote how likely they are to hold. Both formalisms follow grounding semantics [3, 4],
yielding a full joint probability distribution over indistinguishable grounded (propositional) randvars.
Over the years, many researchers have focused on developing efficient inference algorithms in such
models, exploiting these first-order structures under the name of lifting [1] for episodic reasoning
[5, 6, 7, 8, 9, 10], queries [11, 12], evidence [9, 13], temporal reasoning [14, 15], and decision making
[16, 17, 18, 19, 20, 21, 22], allowing for tractable inference in the number of objects [23].

While these works document the impressive progress made over the years, these works usually
assume a first-order model lifted from the ground level to start with. How to lift a propositional
model has been a more overlooked research question. Colour Passing (CP) is the state-of-the-art
algorithm to turn a propositional model into a first-order one, specifically lifting a factor graph (FG)
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to a PFG, grouping factors with identical potentials [5], based on the Weisfeiler-Leman algorithm for
graphs [24]. CP has been revisited over ten years later to further optimise the algorithm, considering
commutativity among the randvars in factors [25, 26, 27] as well as scaling of potentials [28]. To deal
with the fact that identical potentials are highly unlikely to emerge naturally in a ground FG, even if the
underlying objects behave almost indistinguishably, 𝜀-Advanced Colour Passing (𝜀-ACP) constitutes an
approximate extension that groups factors whose potentials differ by a factor of at most (1± 𝜀), with 𝜀
as a hyperparameter [29]. In a step towards making the algorithm hyperparameter free, Hierarchical
Advanced Colour Passing (HACP) proceeds to build a hierarchy of 𝜀 values that lead to increasingly
more compact encodings at the expense of a higher approximation error [30], while keeping previous
compressions in tact to improve explainability.

This paper takes the most recent advances in approximating Advanced Colour Passing (ACP) and
builds toward making the resulting compressed representation more interpretable by considering a
geometric perspective. Specifically, this paper contributes

(i) a unified overview of the results for 𝜀-ACP and HACP,

(ii) proofs of novel properties of 𝜀-equivalence in ℒ𝑝,

(iii) a discussion of their value for interpretability, and

(iv) a glimpse of potential advances for approximate lifted model construction.

The remaining part of this paper is structured as follows. We start with basic definitions and a recap of
the results for 𝜀-ACP and HACP. The main part then presents the geometric view of 𝜀-equivalence in
the ℒ𝑝 space, including a closer look at the special case of the Euclidean space. The paper ends with a
discussion and conclusion about the potential benefits of the new view and the resulting possibilities
for further generalisations of ACP and its approximate variants.

2. Factor Graphs and Approximate Colour Passing

To establish a formal foundation for lifted probabilistic inference under approximation, we use the same
notation and definitions of Luttermann et al. [29] and its continuation [30]. The following sequence
introduces FGs, probabilistic queries, and then progresses towards the central notion of 𝜀-equivalent
factors, which builds the backbone of the initial approximate lifted model construction approaches
(i.e., 𝜀-ACP and HACP) and the foundation of a geometric perspective developed in Section 3. First,
properties of the introduced concepts are followed by a summary of the algorithms 𝜀-ACP and HACP
for approximate lifted model construction and their asymptotic behaviour in Section 2.1 and Section 2.2.

Definition 1 (Factor graph [29, Def. 1]). An FG 𝑀 = (𝑉 ,𝐸) is an undirected bipartite graph consisting
of a node set 𝑉 = 𝑅 ∪Φ, where 𝑅 = {𝑅1, . . . , 𝑅𝑛} is a set of randvars and Φ = {𝜑1, . . . , 𝜑𝑚} is a set
of factors (functions), as well as a set of edges 𝐸 ⊆ 𝑅×Φ. There is an edge between a randvar 𝑅𝑖 ∈ 𝑅
and a factor 𝜑𝑗 ∈ Φ in 𝐸 if 𝑅𝑖 appears in the argument list of 𝜑𝑗 . A factor 𝜑𝑗(ℛ𝑗) defines a function
𝜑𝑗 : ×𝑅∈ℛ𝑗 range(𝑅) ↦→ R>0 that maps the ranges of its arguments ℛ𝑗 (a sequence of randvars from 𝑅)
to a positive real number, called potential. The term range(𝑅) denotes the possible values a randvar 𝑅 can
take. We further define the joint potential for an assignment 𝑟 (with 𝑟 being a shorthand for 𝑅 = 𝑟) as

𝜓(𝑟) =

𝑚∏︁
𝑗=1

𝜑𝑗(𝑟𝑗), (1)

where 𝑟𝑗 is a projection of 𝑟 to the argument list of 𝜑𝑗 . With 𝑍 =
∑︀

𝑟

∏︀𝑚
𝑗=1 𝜑𝑗(𝑟𝑗) as the normalisation

constant, the full joint probability distribution encoded by 𝑀 is then given by

𝑃𝑀 (𝑟) =
1

𝑍

𝑚∏︁
𝑗=1

𝜑𝑗(𝑟𝑗) =
1

𝑍
𝜓(𝑟). (2)



𝐴

𝐵

𝐶

𝜑1

𝜑2

𝐴 𝐵 𝜑1(𝐴,𝐵)
true true 𝜙1

true false 𝜙2

false true 𝜙3

false false 𝜙4

𝐶 𝐵 𝜑2(𝐶,𝐵)
true true 𝜙1

true false 𝜙2

false true 𝜙3

false false 𝜙4

Figure 1: An example for an FG that represents a probability distribution over three randvars 𝐴, 𝐵, and 𝐶 as a
product over two factors 𝜑1 and 𝜑2.

Example 1 (Factor Graph). Take a look at the FG depicted in Fig. 1. For the sake of the example, it holds
that 𝑅 = {𝐴,𝐵,𝐶}, Φ = {𝜑1, 𝜑2}, 𝐸 = {{𝐴, 𝜑1}, {𝐵,𝜑1}, {𝐵,𝜑2}, {𝐶, 𝜑2}}, and range(𝐴) =
range(𝐵) = range(𝐶) = {true, false}. The potential tables (i.e., function definitions) of the factors
𝜑1 and 𝜑2 are shown next to the graph on the right. Specifically, it holds that 𝜑1(true, true) = 𝜙1,
𝜑1(true, false) = 𝜙2, and so on, where 𝜙𝑖 ∈ R>0, 𝑖 = 1, . . . , 4, are arbitrary positive real numbers.

An FG enables an efficient representation of complex distributions by decomposing them into factors
over subsets of variables. Each factor captures an aspect of the joint distribution, giving rise to natural
queries that we will define next to determine the objectives of probabilistic inference.

Definition 2 (Query [29, Def. 2]). A query 𝑃 (𝑄 | 𝐸1 = 𝑒1, . . . , 𝐸𝑘 = 𝑒𝑘) consists of a query term 𝑄
and a set of events {𝐸𝑗 = 𝑒𝑗}𝑘𝑗=1 where 𝑄 and all 𝐸𝑗 , 𝑗 = 1, . . . , 𝑘, are randvars. To query a specific
probability instead of a distribution, the query term is an event 𝑄 = 𝑞.

Example 2 (Query). The query 𝑃 (𝐴 | 𝐵 = true) asks for the probability distribution of 𝐴 given that the
event 𝐵 = true is observed.

To enable approximate inference and structure compression, the notion of 𝜀-equivalence has been
introduced by Luttermann et al. [29]. 𝜀-equivalence relaxes exact equality between potentials and
enables coarser, more efficient representations under bounded deviation.

Definition 3 (𝜀-Equivalence [29, Def. 3]). Let 𝜀 ∈ R>0 be a positive real number. Two potentials 𝜙1, 𝜙2 ∈
R>0 are 𝜀-equivalent, denoted as 𝜙1 =𝜀 𝜙2, if 𝜙1 ∈ [𝜙2 · (1−𝜀), 𝜙2 · (1+𝜀)] and 𝜙2 ∈ [𝜙1 · (1−𝜀), 𝜙1 ·
(1+ 𝜀)]. Further, two factors 𝜑1(𝑅1, . . . , 𝑅𝑛) and 𝜑2(𝑅′

1, . . . , 𝑅
′
𝑛) are 𝜀-equivalent, denoted as 𝜑1 =𝜀 𝜑2,

if there exists a permutation 𝜋 of {1, . . . , 𝑛} such that for all assignments (𝑟1, . . . , 𝑟𝑛) ∈ ×𝑛
𝑖=1range(𝑅𝑖),

where 𝜑1(𝑟1, . . . , 𝑟𝑛) = 𝜙1 and 𝜑2(𝑟𝜋(1), . . . , 𝑟𝜋(𝑛)) = 𝜙2, it holds that 𝜙1 =𝜀 𝜙2.

Example 3 (𝜀-Equivalence). Consider the potentials 𝜙1 = 0.49, 𝜙2 = 0.5, and let 𝜀 = 0.1. Due to
𝜙2 = 0.5 ∈ [𝜙1·(1−𝜀) = 0.441, 𝜙1·(1+𝜀) = 0.539] and𝜙1 = 0.49 ∈ [𝜙2·(1−𝜀) = 0.45, 𝜙2·(1+𝜀) =
0.55], it holds that 𝜙1 and 𝜙2 are 𝜀-equivalent (for 𝜀 = 0.1).

In general, it might happen that indistinguishable randvars are located at different positions in the
argument list of their respective factors, which is the reason the definition of 𝜀-equivalence involves
permutations of arguments. For simplicity, in this paper, we stipulate that 𝜋 is the identity function
(that is, we assume that for two 𝜀-equivalent factors, all potentials in their potential tables are row-wise
𝜀-equivalent). However, all results of this paper also apply to any other choice of 𝜋 [29].

While the above definition captures only indirectly the smallest possible value 𝜀0 for which 𝜀-
equivalence holds, Speller et al. [30] introduced an easier access to the concept via a vector-based
distance measure called one-dimensional 𝜀-equivalence distance (1DEED), which enables us to quantify
deviations pairwise between factors and decide 𝜀-equivalence in a scalable and computationally more
accessible manner. In the following, we denote the potential table of a factor 𝜑 as a vector in R𝑛

>0, where
𝜑(𝑘) denotes the 𝑘-th entry, i.e., the potential associated with the 𝑘-th row, in the potential table of 𝜑.



Definition 4 (One-dimensional 𝜀-equivalence distance and 𝜀-equivalence [30, Def. 4]). 1DEED, defined
as the mapping 𝑑∞ : R𝑛

>0 × R𝑛
>0 → R for two n-dimensional vectors 𝜑1, 𝜑2 ∈ R𝑛

>0, is given by

𝑑∞(𝜑1, 𝜑2) := max
𝑘=1,...,𝑛

{︂⃒⃒⃒⃒
𝜑1(𝑘)− 𝜑2(𝑘)

𝜑1(𝑘)

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝜑1(𝑘)− 𝜑2(𝑘)

𝜑2(𝑘)

⃒⃒⃒⃒}︂
= max

𝑘=1,...,𝑛

{︂
|𝜑1(𝑘)− 𝜑2(𝑘)|

min{|𝜑1(𝑘)|, |𝜑2(𝑘)|}

}︂
. (3)

With Def. 4, the concept of 𝜀-equivalence can be re-expressed in terms of 1DEED, which Speller et al.
[30] demonstrate to be equivalent to the original definition of 𝜀-equivalence (Def. 3) via the upcoming
Theorem.

Theorem 1 ([30, Thm. 2]). Two vectors 𝜑1, 𝜑2 ∈ R𝑛
>0 are 𝜀-equivalent (Definition 3) if and only if

𝑑∞(𝜑1, 𝜑2) ≤ 𝜀 holds.

The next lemma provides a brief overview of the main characteristics of 1DEED and 𝜀-equivalence.

Lemma 2 ([30, Cor. 1, Prop. 9]). The following properties hold.

(i) 1DEED is non-negative and symmetric.

(ii) It holds that 𝑑∞(𝜑1, 𝜑2) = 0 if and only if |𝜑1(𝑘)− 𝜑2(𝑘)| = 0 for all 𝑘 = 1, . . . , 𝑛, which holds
only if 𝜑1 = 𝜑2.

(iii) 𝜀-equivalence is not transitive.

Since transitivity of 𝜀-equivalence does not hold (Lemma 2, iii), 𝜀-equivalence cannot be considered
an equivalence relation and thus is not suitable for defining equivalence classes. This is the main reason
why the consideration of a hierarchical variant makes sense, because there is not necessarily a unique
ordering of groups for all possible 𝜀-values.

For more comprehensive examples of the defined concepts and the proofs of their first properties, we
refer the reader to the detailed descriptions given by Luttermann et al. [29] and Speller et al. [30].

2.1. The Algorithms 𝜀-ACP and HACP

Both the 𝜀-ACP algorithm and the HACP algorithm are primarily based on the ACP algorithm [25].
The ACP algorithm aims to identify symmetries within an FG, specifically those arising from exactly
matching factors (that is, factors whose potentials are strictly equal). In this context, scalar multiples
of factors can also be treated as equivalent, as a rescaling to the same magnitude can be achieved via
normalisation [31]. In case the number of detected symmetries is insufficient or an FG with potentials
estimated from data is given, for which scalability is desired, the concept of 𝜀-equivalence (Def. 3 and
Def. 4) has been introduced to approximate the construction of a lifted (compressed) model. The concept
of 𝜀-equivalence forms the foundation for the development of the 𝜀-ACP algorithm.

Given 𝜀 ≥ 0, groups 𝐺𝑙 = {𝜑𝑙1, . . . , 𝜑𝑙𝑚𝑙
} of pairwise 𝜀-equivalent factors 𝜑𝑙𝑖 ∈ R𝑛

+ are determined.
A representative factor is chosen for every group 𝐺𝑙 by computing the optimal solution that minimises
the loss function between the representative and every factor in 𝐺𝑙, where the loss function between
two factors 𝜑𝑙𝑖 and 𝜑𝑗 is defined as the sum of squared deviations

𝐸𝑟𝑟(𝜑𝑙𝑖, 𝜑𝑗) =
∑︁

𝑟1,...,𝑟𝑛

(︁
𝜑𝑙𝑖(𝑟1, . . . , 𝑟𝑛)− 𝜑𝑗(𝑟1, . . . , 𝑟𝑛)

)︁2
, (4)

with 𝑟 = 𝑟1, . . . , 𝑟𝑛 denoting all possible assignments to the arguments of 𝜑𝑙𝑖 and 𝜑𝑗 . The representative
𝜑𝑙* of each group is chosen as

𝜑𝑙* = argmin
𝜑𝑗

∑︁
𝜑𝑙
𝑖∈𝐺𝑙

𝐸𝑟𝑟(𝜑𝑙𝑖, 𝜑𝑗), (5)



to minimise the total deviation between 𝜑𝑙* and the group. All 𝜑𝑙𝑖 ∈ 𝐺𝑙 are replaced by the representative
𝜑𝑙*, which is computed as the arithmetic mean over all factors in the group 𝐺𝑙 [29, Thm. 1]:

𝜑𝑙*(𝑟) =
1

𝑚𝑙

𝑚𝑙∑︁
𝑖=1

𝜑𝑙𝑖(𝑟). (6)

Replacing a group 𝐺𝑙 of factors by a single representative significantly reduces the storage requirements
and thus also drastically speeds up run times for probabilistic inference depending on the size of 𝜀,
provided sufficient symmetries are present. For more details, see the work by Luttermann et al. [29].

Building on the sorted groups of pairwise 𝜀-equivalent factors, a hierarchical algorithm (HACP) has
been introduced [30, Alg. 2] to ensure a consistent comparison of various approximate compressed
FGs and to guide the choice of suitable 𝜀 values. To this end, an ordering of group memberships is
first established based on 1DEED [30, Alg. 1], which can be interpreted as an agglomerative clustering
algorithm using 1DEED as a base distance. Only completely pairwise 𝜀-equivalent groups are allowed
to be merged (complete linkage within maximal deviation). The design of the implementation of the
𝜀-ACP algorithm and the HACP algorithm guarantees the following useful properties.

Corollary 3 ([29, Cor. 2]). If 𝜀 = 0, 𝜀-ACP returns the same PFG as ACP.

Corollary 4. If 𝜀 = 0, HACP returns the same PFG as ACP.

Proof. Follows directly from [30, Prop. 4], with 𝜀 = 0.

2.2. Asymptotic Properties

A key advantage of the HACP algorithm lies in its ability to retain the same upper bound on the deviation
of probabilistic queries as established for 𝜀-ACP. For a fixed 𝜀 > 0, 𝜀-ACP ensures that the deviation
of any query result in the approximate compressed FG from the original distribution remains within
a boundary. HACP, although introducing a hierarchical structure, builds upon the same guarantee.
To quantify the change in query results between the original and modified (compressed) model, we
adopt the symmetric divergence measure introduced by Chan and Darwiche [32], which provides a
tight bound on the maximal deviation between two distributions 𝑃𝑀 and 𝑃𝑀 ′ with respect to any
assignment 𝑟 via

𝐷𝐶𝐷(𝑃𝑀 , 𝑃𝑀 ′) := lnmax
𝑟

𝑃𝑀 ′(𝑟)

𝑃𝑀 (𝑟)
− lnmin

𝑟

𝑃𝑀 ′(𝑟)

𝑃𝑀 (𝑟)
. (7)

The next results are proven asymptotic properties for the 𝜀-ACP and HACP algorithm shown by
Luttermann et al. [29] and Speller et al. [30], respectively.

Theorem 5 ([29, Thm. 7], [30, Prop. 4]). Let 𝑀 = (𝑅 ∪Φ,𝐸) be an FG and let 𝑀 ′ be the output of
𝜀-ACP or the output of HACP when run on𝑀 . With 𝑃𝑀 and 𝑃𝑀 ′ being the underlying full joint probability
distributions encoded by 𝑀 and 𝑀 ′, respectively, and 𝑚 = |Φ|, it holds that

𝐷𝐶𝐷(𝑃𝑀 , 𝑃𝑀 ′) ≤ ln

(︃(︀
1 + 𝑚−1

𝑚 𝜀
)︀(︀
1 + 𝜀

)︀
1 + 1

𝑚𝜀

)︃𝑚

(8)

< ln
(︀
1 + 𝜀

)︀2𝑚 (9)

< ln

(︂
1 + 𝜀

1− 𝜀

)︂𝑚

, (10)

where the bound given in Eq. (8) is optimal (i.e., sharp).

Even though the worst-case bound can be attained in constructed examples, such cases are rare
in practice. Nonetheless, the need to control this bound persists, as the selection of a specific 𝜀 for
either algorithm can be guided by a prior assessment of the maximum permissible deviation. This
enables a more informed decision before executing the actual lifted probabilistic inference algorithm
and, consequently, before executing the 𝜀-ACP or HACP algorithm.



Theorem 6 ([30, Thm. 5]). The maximal absolute deviation between any initial probability 𝑝 = 𝑃𝑀 (𝑟 | 𝑒)
of 𝑟 given 𝑒 in model 𝑀 and the probability 𝑝′ = 𝑃𝑀 ′(𝑟 | 𝑒) in the modified model 𝑀 ′ resulting from
running 𝜀-ACP or HACP on 𝑀 can be bounded by

𝑝maxΔ := max
for any 𝑟|𝑒

|𝑝− 𝑝′| ≤
√
𝑒𝑑 − 1√
𝑒𝑑 + 1

with 𝑑 = 𝐷𝐶𝐷(𝑃𝑀 , 𝑃
′
𝑀 ).

Due to the monotonicity of
√
𝑒𝑑−1√
𝑒𝑑+1

in 𝑑, Theorem 6 can easily be converted into the next corollary.

Corollary 7 ([30, Cor. 6]). The change in any probabilistic query in an initial model 𝑀 and a modified
model 𝑀 ′ obtained by running 𝜀-ACP or HACP is bounded by

𝑝maxΔ ≤
√
𝑒𝑑1 − 1√
𝑒𝑑1 + 1

with 𝑑1 = 𝐷𝐶𝐷(𝑃𝑀 , 𝑃
′
𝑀 )

≤
√
𝑒𝑑2 − 1√
𝑒𝑑2 + 1

with 𝑑2 = ln

(︃(︀
1 + 𝑚−1

𝑚 𝜀
)︀(︀
1 + 𝜀

)︀
1 + 1

𝑚𝜀

)︃𝑚

.

While we have calculated the deviation that follows from a specific choice of 𝜀 so far, we can also
calculate how large 𝜀 can be chosen to get a maximal deviation of 𝑝*Δ we want to allow.

Theorem 8 ([30, Thm. 7]). For any given 𝑝*Δ ∈ (0, 12 ], the output of 𝜀-ACP and HACP guarantees for any
𝜀 ∈ (0, 1), which is smaller or equal to

𝜀1 = −
1 + 𝑚−1

𝑚 − 1
𝑚

𝑚
√
𝑒𝑑

2 𝑚−1
𝑚

+

⎯⎸⎸⎷(︁−1 + 𝑚−1
𝑚 − 1

𝑚
𝑚
√
𝑒𝑑

2 𝑚−1
𝑚

)︁2
− 1− 𝑚

√
𝑒𝑑

𝑚−1
𝑚

with 𝑑 = ln
(︁
𝑝*Δ+1
1−𝑝*Δ

)︁2
the bound 𝑝maxΔ ≤ 𝑝*Δ.

Therefore, a calculation of 𝜀1(𝑝*Δ) bounds the maximal deviation 𝑝*Δ of 𝜀-ACP and HACP, respectively,
before the algorithm has been started.

3. Geometric View of 𝜀-Equivalence

Although 𝜀-equivalence works well in practice, it introduces a conceptual barrier due to its reduction of
the relation between two factors to a single relative distance via 1DEED. This section aims to enhance
the interpretability of the concept and to enable potential generalisations for 𝜀-ACP and HACP. We
investigate the geometric implications of 𝜀-equivalence and the behaviour of pairwise 𝜀-equivalent
groups. All factors are assumed to lie in R𝑛

+, which corresponds to an orthant in the Euclidean space.
However, to allow for a more general setting, we consider the general ℒ𝑝 norm in Section 3.1 rather
than sticking to the Euclidean setting.

Before we start, we summarise the proven results on the relative ordering of lengths directly derived
from the original definition of 𝜀-equivalence (Def. 3). Two 𝜀-equivalent factors may deviate maximally
in the positive and negative direction, respectively, and due to symmetry, the expression (1− 𝜀) can
more precisely be replaced by the expression 1

1+𝜀 .

Lemma 9 ([29, Lem. 6]). For two 𝜀-equivalent factors 𝜑1, 𝜑2 ∈ R𝑛
+, it holds that 𝜑1(𝑘) ∈ [𝜑2(𝑘) ·

1
1+𝜀 , 𝜑2(𝑘) · (1 + 𝜀)] and 𝜑2(𝑘) ∈ [𝜑1(𝑘) · 1

1+𝜀 , 𝜑1(𝑘) · (1 + 𝜀)] for 𝑘 = 1, . . . , 𝑛.

From Lemma 9, we derive a corollary reformulating the same statement in terms of quotients.

Corollary 10. If 𝜑1 =𝜀 𝜑2 holds for two factors, then it also holds that

𝜑1(𝑘)

𝜑2(𝑘)
∈
[︂

1

1 + 𝜀
, 1 + 𝜀

]︂
and

𝜑2(𝑘)

𝜑1(𝑘)
∈
[︂

1

1 + 𝜀
, 1 + 𝜀

]︂
for all 𝑘 ∈ {1, . . . , 𝑛}. (11)

Corollary 10 implies that the length deviations per dimension remain relatively small, and that
deviations can be interpreted around the multiplicative identity 1.



3.1. Geometric Perspective in ℒ𝑝

Considering distances between two 𝜀-equivalent, normalised factors yields the following result.

Lemma 11. Let 𝜑1, 𝜑2 be two factors in R𝑛
+ ∩ 𝑆𝑛−1

𝑝 with 𝑆𝑛−1
𝑝 := {𝜑 ∈ R𝑛 : ‖𝜑‖𝑝 = 1} being the unit

𝑛−1-sphere in ℒ𝑝 for 𝑝 ≥ 1. If 𝜑1 =𝜀 𝜑2 holds, then we have

(i) ‖𝜑1 − 𝜑2‖𝑝 ≤ 𝜀, and

(ii) 𝜑3−𝑖 ∈ 𝐵𝑝
𝜀 (𝜑𝑖) ∩ 𝑆𝑛−1

𝑝 for 𝑖 = 1, 2 with 𝐵𝑝
𝜀 (𝜑𝑖) := {𝜑 ∈ R𝑛 : ‖𝜑− 𝜑𝑖‖𝑝 ≤ 𝜀} being the closed

𝑝-ball with centre 𝜑𝑖 and radius 𝜀 > 0.

Proof. By definition of 𝜀-equivalence, we get for (𝑖) the property

𝜑1(𝑘) ∈ [(1− 𝜀)𝜑2(𝑘), (1 + 𝜀)𝜑2(𝑘)] for all 𝑘 = 1, . . . , 𝑛, (12)

which is equivalent to

𝜑1(𝑘)− 𝜑2(𝑘) ∈ [−𝜀𝜑2(𝑘), 𝜀𝜑2(𝑘)] for all 𝑘 = 1, . . . , 𝑛, (13)

or in shorter form |𝜑1(𝑘)− 𝜑2(𝑘)| ≤ 𝜀𝜑2(𝑘) for all 𝑘 = 1, . . . , 𝑛. Substituting this into the ℒ𝑝 norm
taking into account the normalisation ‖𝜑2‖𝑝 = 1, we obtain the desired result:

‖𝜑1 − 𝜑2‖𝑝𝑝 =
𝑛∑︁

𝑘=1

|𝜑1(𝑘)− 𝜑2(𝑘)|𝑝 (14)

≤
𝑛∑︁

𝑘=1

|𝜀𝜑2(𝑘)|𝑝 (15)

= 𝜀𝑝
𝑛∑︁

𝑘=1

|𝜑2(𝑘)|𝑝 = 𝜀𝑝‖𝜑2‖𝑝𝑝 = 𝜀𝑝. (16)

Property (ii) follows directly from property (i).

The previous proof also contains a result for non-normalised factors, presented in the next corollary.

Corollary 12. Let 𝜑1, 𝜑2 be two 𝜀-equivalent factors in R𝑛
+. Then, ‖𝜑1 − 𝜑2‖𝑝 ≤ 𝜀‖𝜑𝑖‖𝑝 holds for

𝑖 = 1, 2.

Proof. Follows from Eq. (16). By symmetry, the claim holds for 𝑖 = 2 and also 𝑖 = 1.

In contrast, when viewing the problem from the opposite direction, we can only establish a relatively
weak statement about 𝜀-equivalence.

Lemma 13. Let 𝜑1, 𝜑2 be two factors in R𝑛
+. If ‖𝜑1 − 𝜑2‖𝑝 ≤ 𝜀, then 𝜑1 =𝜀′ 𝜑2 holds with

𝜀′ :=
𝜀

min
𝑘=1,...,𝑛,
𝑖=1,2

{𝜑𝑖(𝑘)}
. (17)

Proof. Consider

‖𝜑1 − 𝜑2‖𝑝𝑝 =
𝑛∑︁

𝑘=1

|𝜑1(𝑘)− 𝜑2(𝑘)|𝑝 ≤ 𝜀𝑝. (18)

Since |𝜑1(𝑘)− 𝜑2(𝑘)|𝑝 ≥ 0 for all 𝑘, Eq. (18) also holds for every 𝑘 individually: |𝜑1(𝑘)− 𝜑2(𝑘)| ≤ 𝜀.
Therefore, we get

𝜑1(𝑘) ≤ 𝜀+ 𝜑2(𝑘) =

(︂
1 +

𝜀

𝜑2(𝑘)

)︂
𝜑2(𝑘) (19)



and

𝜑1(𝑘) ≥ −𝜀+ 𝜑2(𝑘) =

(︂
1− 𝜀

𝜑2(𝑘)

)︂
𝜑2(𝑘), (20)

which implies

𝜑1(𝑘) ∈
[︂(︂

1− 𝜀

𝜑2(𝑘)

)︂
𝜑2(𝑘),

(︂
1 +

𝜀

𝜑2(𝑘)

)︂
𝜑2(𝑘)

]︂
. (21)

Analogously, we get the opposite inequality and interval inclusion for 𝜑2(𝑘)

𝜑2(𝑘) ∈
[︂(︂

1− 𝜀

𝜑1(𝑘)

)︂
𝜑1(𝑘),

(︂
1 +

𝜀

𝜑1(𝑘)

)︂
𝜑1(𝑘)

]︂
. (22)

This is true for each dimension 𝑘. To guarantee

𝜑3−𝑖(𝑘) ∈
[︀(︀
1− 𝜀′

)︀
𝜑𝑖(𝑘),

(︀
1 + 𝜀′

)︀
𝜑𝑖(𝑘)

]︀
(23)

for 𝑖 = 1, 2, for 𝑘 = 1, . . . , 𝑛, and a fixed 𝜀′ and therefore to guarantee 𝜀-equivalence, we need to
choose the largest 𝜀

𝜑𝑖(𝑘)
value for 𝜀′. It is easy to see that the broadest interval is generated by the

smallest denominator among all possibilities, which is given by min𝑘=1,...,𝑛,𝑖=1,2{𝜑𝑖(𝑘)}.

For a given 𝜀 > 0, we can construct an example that hits the same bound as mentioned in Lemma 13
independently of the choice of the 𝑝-norm, because the worst deviation may occur in a single dimension:

Example 4. Let 𝑝 be any value in [1,∞) and 𝜀 = 0.01, then the ℒ𝑝 norm of the two factors

𝜑1 =

(︂
0.01
1.0

)︂
, 𝜑2 =

(︂
0.02
1.0

)︂
(24)

is given by

‖𝜑1 − 𝜑2‖𝑝𝑝 =
2∑︁

𝑘=1

|𝜑1(𝑘)− 𝜑2(𝑘)|𝑝 = 0.01𝑝 + 0𝑝 = 0.01𝑝 = 𝜀𝑝 (25)

and therefore fulfils the conditions of Lemma 13. Still, it leads to a comparably high value for 𝜀-equivalence
via 𝜑2(1) = 2.0 · 𝜑1(1) = (1 + 𝜀′)𝜑1(1) and

𝜀′ =
𝜀

min
𝑘=1,...,𝑛,
𝑖=1,2

{𝜑𝑖(𝑘)}
=

0.01

0.01
= 1. (26)

This example can be extended with identical values 𝜑1(𝑘) = 𝜑2(𝑘) for all 𝑘 > 1 to arbitrary large
dimensions 𝑛. When normalising the two vectors ‖𝜑𝑖‖𝑝 = 1 for 𝑖 = 1, 2, the differences in one dimension
will affect the others, resulting in an 𝜀′ that depends on 𝑝 and the number of dimensions 𝑛. Moreover,
even normalisation cannot improve upon the result of Lemma 13, as entries of a single dimension 𝑘 can be
arbitrarily small, leading to a large discrepancy between 𝜑1(𝑘) and 𝜑2(𝑘) in relative terms.

3.2. Groups of Pairwise 𝜀-Equivalent Factors

The current implementation of 𝜀-ACP and HACP uses the arithmetic mean over all factors in a group of
pairwise 𝜀-equivalent factors. An important property is that the factor defined as the arithmetic mean
over a group of pairwise 𝜀-equivalent factors itself is again 𝜀-equivalent to all factors in the group.

Lemma 14 ([29, Lem. 5]). Let 𝐺 = {𝜑1, . . . , 𝜑𝑘} denote a group of pairwise 𝜀-equivalent factors in R𝑛
+

and let 𝜑*(𝑟) = 1
𝑘

∑︀𝑘
𝑖=1 𝜑𝑖(𝑟) for all assignments 𝑟. Then, 𝐺* = {𝜑1, . . . , 𝜑𝑘, 𝜑*} is a group of pairwise

𝜀-equivalent factors.



According to Luttermann et al. [29, Thm. 1], the arithmetic mean is the optimal choice for the squared
loss objective used for minimisation within the error function 𝐸𝑟𝑟(𝜑𝑙𝑖, 𝜑𝑗) (see Eq. (4)). However, one
may wonder whether the arithmetic mean is always the optimal choice for any given task. In principle,
any weighted mean can be used as a representative 𝜀-equivalent factor, as shown in the next theorem.

Theorem 15. Let 𝐺 = {𝜑1, . . . , 𝜑𝑘} denote a group of pairwise 𝜀-equivalent factors and let 𝜑𝜔(𝑟) =∑︀𝑘
𝑖=1 𝜔𝑖𝜑𝑖(𝑟) be the weighted mean with weights 𝜔𝑖 ≥ 0 and

∑︀𝑘
𝑖=1 𝜔𝑖 = 1 for all assignments 𝑟. Then,

𝐺* = {𝜑1, . . . , 𝜑𝑘, 𝜑𝜔} is a group of pairwise 𝜀-equivalent factors.

Proof. We show the claim in two directions by proving that 𝜑𝜔(𝑟) ∈ [𝜑𝑖(𝑟) · (1− 𝜀), 𝜑𝑖(𝑟) · (1 + 𝜀)]
and 𝜑𝑖(𝑟) ∈ [𝜑𝜔(𝑟) · (1− 𝜀), 𝜑𝜔(𝑟) · (1 + 𝜀)] hold for any assignment 𝑟 and 𝜑𝑖 ∈ 𝐺.

For the first direction, let 𝑟 be an arbitrary assignment and let 𝜑𝑖 ∈ 𝐺. As all factors in 𝐺 are pairwise
𝜀-equivalent, it holds that

𝜑𝑖(𝑟) · (1− 𝜀) ≤ min
𝜑𝑗∈𝐺

𝜑𝑗(𝑟) (27)

= min
𝜑𝑗∈𝐺

𝜑𝑗(𝑟)
𝑘∑︁

𝑗=1

𝜔𝑗 =
𝑘∑︁

𝑗=1

𝜔𝑗 · min
𝜑𝑗∈𝐺

𝜑𝑗(𝑟) (28)

≤
𝑘∑︁

𝑗=1

𝜔𝑗 · 𝜑𝑗(𝑟) = 𝜑𝜔(𝑟) (29)

and analogously also for the upper bound

𝜑𝑖(𝑟) · (1 + 𝜀) ≥ max
𝜑𝑗∈𝐺

𝜑𝑗(𝑟) (30)

= max
𝜑𝑗∈𝐺

𝜑𝑗(𝑟)
𝑘∑︁

𝑗=1

𝜔𝑗 =
𝑘∑︁

𝑗=1

𝜔𝑗 · max
𝜑𝑗∈𝐺

𝜑𝑗(𝑟) (31)

≥
𝑘∑︁

𝑗=1

𝜔𝑗 · 𝜑𝑗(𝑟) = 𝜑𝜔(𝑟). (32)

For the second direction, it holds that for any assignment 𝑟, every 𝜑𝑖 ∈ 𝐺 is contained in the interval
[𝜑𝑗(𝑟) · (1− 𝜀), 𝜑𝑗(𝑟) · (1 + 𝜀)] for any 𝑗 ∈ {1, . . . , 𝑘}. Therefore, we can get the lower bound for a
specific 𝑗 ∈ {1, . . . , 𝑘} and obtain

(1− 𝜀)𝜑𝜔(𝑟) = (1− 𝜀)
𝑘∑︁

𝑖=1

𝜔𝑖 · 𝜑𝑖(𝑟) (33)

=
𝑘∑︁

𝑖=1

𝜔𝑖 · (1− 𝜀)𝜑𝑖(𝑟) (34)

≤
𝑘∑︁

𝑖=1

𝜔𝑖𝜑𝑗(𝑟) = 𝜑𝑗(𝑟)

𝑘∑︁
𝑖=1

𝜔𝑖 = 𝜑𝑗(𝑟) (35)

as well as the upper bound for a specific 𝑗:

(1 + 𝜀)𝜑𝜔(𝑟) = (1 + 𝜀)

𝑘∑︁
𝑖=1

𝜔𝑖 · 𝜑𝑖(𝑟) (36)

=

𝑘∑︁
𝑖=1

𝜔𝑖 · (1 + 𝜀)𝜑𝑖(𝑟) (37)



≥
𝑘∑︁

𝑖=1

𝜔𝑖𝜑𝑗(𝑟) = 𝜑𝑗(𝑟)
𝑘∑︁

𝑖=1

𝜔𝑖 = 𝜑𝑗(𝑟). (38)

Therefore, we get for every 𝑗 the property 𝜑𝑗(𝑟) ∈ [(1− 𝜀)𝜑𝜔(𝑟), (1 + 𝜀)𝜑𝜔(𝑟)].

Geometrically, this property can be viewed as follows: The convex hull of a group of pairwise
𝜀-equivalent factors 𝜑𝑖 consists entirely of points that are 𝜀-equivalent to each other:

conv(𝜑1, . . . , 𝜑𝑚) :=

{︃
𝑚∑︁
𝑖=1

𝜔𝑖𝜑𝑖

⃒⃒⃒⃒
⃒ 𝜔𝑖 ≥ 0,

𝑚∑︁
𝑖=1

𝜔𝑖 = 1

}︃
. (39)

Besides the arithmetic mean, this also includes the geometric mean of the original factors, which can
most easily be shown by an appropriate choice of weights.

Corollary 16. Let 𝐺 = {𝜑1, . . . , 𝜑𝑚} denote a group of pairwise 𝜀-equivalent factors and let 𝜑𝑔𝑚(𝑟) :=
𝑚
√︀∏︀𝑚

𝑖=1 𝜑𝑖(𝑟) be the geometric mean for all assignments 𝑟. Then, 𝐺* = {𝜑1, . . . , 𝜑𝑚, 𝜑𝑔𝑚} is a group
of pairwise 𝜀-equivalent factors.

Proof. Since 𝜑𝑔𝑚(𝑟) ∈ [min𝑖=1,...,𝑚 𝜑𝑖(𝑟),max𝑖=1,...,𝑚 𝜑𝑖(𝑟)], we can use

1 ≥ 𝜔1 :=
𝜑𝑔𝑚(𝑟)−min𝑖=1,...,𝑚 𝜑𝑖(𝑟)

max𝑖=1,...,𝑚 𝜑𝑖(𝑟)−min𝑖=1,...,𝑚 𝜑𝑖(𝑟)
≥ 0 (40)

1 ≥ 𝜔2 :=
max𝑖=1,...,𝑚 𝜑𝑖(𝑟)− 𝜑𝑔𝑚(𝑟)

max𝑖=1,...,𝑚 𝜑𝑖(𝑟)−min𝑖=1,...,𝑚 𝜑𝑖(𝑟)
≥ 0, (41)

which summarises to 𝜔1 + 𝜔2 = 1 and with Theorem 15, the proof can be completed:

𝜑𝑔𝑚(𝑟) = 𝜔1 · min
𝑖=1,...,𝑚

𝜑𝑖(𝑟) + 𝜔2 · max
𝑖=1,...,𝑚

𝜑𝑖(𝑟).

Note 1. For positive real numbers 𝜑1(𝑟), . . . , 𝜑𝑚(𝑟) the geometric mean is always smaller or equal to the
arithmetic mean

𝜑𝑔𝑚(𝑟) = 𝑚

⎯⎸⎸⎷ 𝑚∏︁
𝑖=1

𝜑𝑖(𝑟) ≤
1

𝑘

𝑚∑︁
𝑘=1

𝜑𝑘(𝑟) = 𝜑*(𝑟), (42)

and more robust against outliers.

Results previously shown in this subsection required no ℒ𝑝 normalisation, assuming that the weighted
average localises on a spherical shell.

Lemma 17. Let 𝐺 = {𝜑1, . . . , 𝜑𝑚} denote a group of pairwise 𝜀-equivalent factors with 𝜑𝑖 ∈ 𝑆𝑝
𝑛−1 for

𝑖 = 1, . . . ,𝑚 and let 𝜑𝜔(𝑟) =
∑︀𝑚

𝑖=1 𝜔𝑖𝜑𝑖(𝑟) be the weighted mean with weights 𝜔𝑖 ≥ 0 and
∑︀𝑚

𝑖=1 𝜔𝑖 = 1

for all assignments 𝑟. Then, the length of 𝜑𝜔 is bounded by ‖𝜑𝜔‖𝑝 ∈
[︁

1
1+𝜀 , 1

]︁
.

In other words, 𝜑𝜔 ∈ 𝐵𝑝
1(0) ∖𝐵

𝑝
1/(1+𝜀)(0) =

{︁
𝜑 ∈ R𝑛 : 1

1+𝜀 ≤ ‖𝜑‖𝑝 ≤ 1
}︁

.

Proof. For 𝑝 ≥ 1 we can use the Jensen-inequality for the convex function 𝑓𝑝(𝑥) := |𝑥|𝑝 (also called
convexity of ℒ𝑝 norm, [33]) and get

‖𝜑𝜔‖𝑝𝑝 =

⃦⃦⃦⃦
⃦

𝑚∑︁
𝑖=1

𝜔𝑖𝜑𝑖

⃦⃦⃦⃦
⃦
𝑝

𝑝

=
𝑛∑︁

𝑘=1

(︃
𝑚∑︁
𝑖=1

𝜔𝑖𝜑𝑖(𝑘)

)︃𝑝

(43)

≤
𝑛∑︁

𝑘=1

𝑚∑︁
𝑖=1

𝜔𝑖𝜑
𝑝
𝑖 (𝑘) =

𝑚∑︁
𝑖=1

𝜔𝑖

𝑛∑︁
𝑘=1

𝜑𝑝𝑖 (𝑘) (44)



=

𝑚∑︁
𝑖=1

𝜔𝑖‖𝜑𝑖‖𝑝𝑝 =
𝑚∑︁
𝑖=1

𝜔𝑖 = 1. (45)

By the pairwise 𝜀-equivalence of 𝜑𝜔 , from Theorem 15, we get 𝜑𝜔(𝑘) ≥ max𝑗=1,...,𝑚{𝜑𝑗(𝑘)} / (1 + 𝜀)
for 𝑘 = 1, . . . , 𝑛. We therefore obtain

‖𝜑𝜔‖𝑝𝑝 =
𝑛∑︁

𝑘=1

(︃
𝑚∑︁
𝑖=1

𝜔𝑖𝜑𝑖(𝑘)

)︃𝑝

(46)

≥
𝑛∑︁

𝑘=1

(︃
𝑚∑︁
𝑖=1

𝜔𝑖 max
𝑗=1,...,𝑚

{𝜑𝑗(𝑘)} / (1 + 𝜀)

)︃𝑝

(47)

=

𝑛∑︁
𝑘=1

max
𝑗=1,...,𝑚

{𝜑𝑗(𝑘)}𝑝 / (1 + 𝜀)𝑝

(︃
𝑚∑︁
𝑖=1

𝜔𝑖

)︃𝑝

(48)

= 1 / (1 + 𝜀)𝑝
𝑛∑︁

𝑘=1

max
𝑗=1,...,𝑚

{𝜑𝑗(𝑘)}𝑝 (49)

≥ 1 / (1 + 𝜀)𝑝
𝑛∑︁

𝑘=1

𝜑𝑝1(𝑘) (50)

= 1 / (1 + 𝜀)𝑝‖𝜑1‖𝑝𝑝 = 1 / (1 + 𝜀)𝑝. (51)

The last inequality is a reduction of the maximum to one arbitrary, but specific factor (in this case 𝜑1),
to be able to take its scaling into account. Taking the 𝑝-th root results in the desired lower bound. In
the final inequality, we reduce the maximum to a single factor 𝜑1, allowing us to use its unit property
in ℒ𝑝. This completes the proof, as taking the 𝑝-th root yields the desired lower bound.

Consequently, we can naturally combine the idea of the convex hull from Theorem 15 with the normal-
isation from Lemma 17 to obtain an intuitive visual perspective. Given a set of factors 𝜑1, . . . , 𝜑𝑘 ∈ R𝑛

+,
we normalise them to ensure fair starting conditions such that 𝜑norm

𝑖 := 𝜑𝑖 / ‖𝜑𝑖‖𝑝 ∈ R𝑛
+ ∩ 𝑆𝑝

𝑛−1, i.e.,
each lies on the positive orthant of the 𝑝-unit 𝑛-sphere. If they are pairwise 𝜀-equivalent, then any
weighted mean in their convex hull remains pairwise 𝜀-equivalent to them. Additionally, the ℒ𝑝 norm
of any such mean lies between 1

1+𝜀 and 1. However, this norm is in general strictly less than 1 (except
boundary factors), implying that normalisation does not preserve the normalised property under convex
combinations. This leads to the subsequent observation, which prevents the geometric interpretation
from being further simplified to a convex cone.

Note 2. Let 𝐶 := cone(𝐺) = {𝜑 ∈ R𝑛
+ : 𝜑 =

∑︀𝑚
𝑖=1 𝜔𝑖𝜑𝑖 with 𝜔𝑖 ≥ 0, 𝜑𝑖 ∈ 𝐺} be the finitely

generated convex cone from a group of factors 𝐺 = {𝜑1, . . . , 𝜑𝑚}, whose normalised set 𝐺norm :=
{𝜑norm

𝑖 = 𝜑𝑖 / ‖𝜑𝑖‖𝑝, 𝑖 = 1, . . . ,𝑚} is pairwise 𝜀-equivalent, contains normalised factors 𝜑norm ∈ 𝐶 with
‖𝜑norm‖𝑝 = 1 that are not pairwise 𝜀-equivalent to all elements of 𝐺norm. Formally, there exists 𝜑norm ∈ 𝐶
with ‖𝜑norm‖𝑝 = 1 such that for some 𝑖 ∈ {1, . . . ,𝑚} we have 𝜑norm ̸=𝜀 𝜑

norm
𝑖 . Example 5 provides a

counterexample that invalidates this geometric interpretation in general.

Example 5. When normalising any factor within the generated cone, it is not necessarily 𝜀-equivalent to
the original generating normalised factors. This is illustrated by the following example with

𝜑1 =

⎛⎝0.10
1.0
1.0

⎞⎠ , 𝜑2 =

⎛⎝0.11
1.05
1.0

⎞⎠ , 𝜑3 =

⎛⎝0.11
1.0
1.05

⎞⎠ . (52)

We begin by determining the 𝜀-equivalence of the original factors:

𝑑∞(𝜑1, 𝜑2) = 0.1 = 𝑑∞(𝜑1, 𝜑3) and 𝑑∞(𝜑2, 𝜑3) = 0.05. (53)



After normalisation, for instance using the ℒ2-norm via 𝜑norm
𝑖 := 𝜑𝑖 / ‖𝜑𝑖‖2 for all 𝑖, we obtain:

𝑑∞(𝜑norm
1 , 𝜑norm

2 ) = 0.07244888 = 𝑑∞(𝜑norm
1 , 𝜑norm

3 ) and 𝑑∞(𝜑norm
2 , 𝜑norm

3 ) = 0.05. (54)

Due to Def. 4, we have pairwise 𝜀-equivalence for

𝜀0 := max
𝑖,𝑗∈{1,2,3}

𝑑∞(𝜑norm
𝑖 , 𝜑norm

𝑗 ) = 0.07244888 (55)

for this triple of normalised factors. For the convex combination 𝜑𝜔 := 0 · 𝜑norm
1 +0.1 · 𝜑norm

2 +0.9 · 𝜑norm
3 ,

pairwise 𝜀0-equivalence still holds (see also Theorem 15) with 𝑑∞(𝜑𝜔, 𝜑
norm
𝑖 ) ≤ 𝜀0 for 𝑖 = 1, 2, 3. However,

the normalised version 𝜑norm
𝜔 := 𝜑𝜔/‖𝜑𝜔‖2 has 𝑑∞(𝜑norm

𝜔 , 𝜑norm
1 ) = 0.07256301 > 𝜀0 and is in particular

not 𝜀0-equivalent to 𝜑norm
1 and automatically not pairwise 𝜀-equivalent to the normalised group anymore.

This example shows that the original idea of finding symmetries within the ACP framework can
be extended from exact symmetries to normalised and also to 𝜀-equivalent approximate symmetries.
However, the latter cannot be interpreted as a finitely generated convex cone. Consequently, scaling
assumes a more profound role than previously anticipated, particularly in determining a unique order
in the hierarchical version HACP, making its choice significant. Nonetheless, the proven results offer
positive prospects by enabling extensions of the 𝜀-ACP and HACP algorithms via alternative loss
functions that permit different optimal representatives for a pairwise 𝜀-equivalent group through
weighted mean selection. In addition, the convex hull of a group of pairwise 𝜀-equivalent factors is the
smallest set containing these weighted elements. If it can be shown that a new factor is also pairwise
𝜀-equivalent to each factor of the given group, the new convex hull is a superset and extends the possible
representatives while retaining all previous ones.

3.3. Special Case: Euclidean Perspective

We now focus on the geometric interpretation in the Euclidean space ℒ2 as a special case of Section 3.1.
Although the counterexample from Example 5 still applies, this setting has advantages. In particular, it
allows a more interpretable and intuitive understanding of 𝜀-equivalence due to the accessibility of
Euclidean norms and angles, which provide a one-dimensional comparison similar to 1DEED; see also
[15, 31] for related discussions.

Definition 5. The Cosine distance 𝐷cos for two non-zero vectors 𝜑1, 𝜑2 ∈ R𝑛 is defined as

𝐷cos(𝜑1, 𝜑2) := 1− 𝜑1 · 𝜑2
||𝜑1||2 · ||𝜑2||2

(56)

= 1−
∑︀𝑛

𝑖=1 𝜑1(𝑖) · 𝜑2(𝑖)√︁∑︀𝑛
𝑖=1 𝜑

2
1(𝑖) ·

√︁∑︀𝑛
𝑖=1 𝜑

2
2(𝑖)

, (57)

which is equal to 1− cos(𝜃) for one 𝜃 ∈ [0, 𝜋].

In [31], a refined definition of the Cosine distance for factors is given, which is based more precisely
on the assignments 𝑟. It also includes the notion of exchangeable factors, i.e., two factors that are
identical after scaling and permutation of potentials.

Theorem 18 (Theorem 2, [31]). Let 𝜑1(𝑅1, . . . , 𝑅𝑛) and 𝜑2(𝑅1, . . . , 𝑅𝑛) denote two factors. If 𝜑1 and
𝜑2 are exchangeable, then it holds that 𝐷cos(𝜑1, 𝜑2) = 0.

When normalising the factors in ℒ2, the Cosine distance satisfies the following well-known property.

Lemma 19. The Cosine distance for two normalised factors 𝜑1, 𝜑2 ∈ R𝑛
>0 and the Euclidean distance for

two normalised factors 𝜑1, 𝜑2 ∈ R𝑛
>0 with ‖𝜑𝑖‖2 = 1 for 𝑖 = 1, 2 are the same besides a scaling factor, i.e.,

2𝐷cos(𝜑1, 𝜑2) = ||𝜑1 − 𝜑2||2. (58)



Proof. With the normalised vectors ||𝜑𝑖||2 = 1 for 𝑖 = 1, 2, consider

||𝜑1 − 𝜑2||2 = (𝜑1 − 𝜑2)(𝜑1 − 𝜑2) (59)

= ||𝜑1||2 + ||𝜑2||2 − 2(𝜑1 · 𝜑2) (60)

= 2(1− (𝜑1 · 𝜑2)) (61)

= 2

(︂
1− 𝜑1 · 𝜑2

||𝜑1||2 · ||𝜑2||2

)︂
(62)

= 2𝐷cos(𝜑1, 𝜑2).

As the Cosine distance for 𝜀 > 0 can be seen as an angle between two factors, we obtain a bound on
the maximal angle difference between 𝜀-equivalent factors.

Lemma 20. The angle 𝜃 ∈ [0, 𝜋2 ] of two 𝜀-equivalent factors 𝜑1, 𝜑2 ∈ R𝑛
>0 ∩ 𝑆2

𝑛−1 is at most

𝜃(𝜀) ≤

{︃
arccos(1− 𝜀

2) for 𝜀 ≤ 2
𝜋
2 for 𝜀 > 2.

(63)

Proof. The angle of two vectors within an orthant in the Eucledian space is always maximal 𝜋
2 , which

will be the upper bound for 𝜀 > 2. For the other case of 0 ≤ 𝜀 ≤ 2 we get from Lemma 11 (𝑖) and
Lemma 19 the inequality:

𝜀

2
≥ ‖𝜑1 − 𝜑2‖2

2
= 𝐷cos(𝜑1, 𝜑2) = 1− cos(𝜃) (64)

⇔ cos(𝜃) ≥ 1− 𝜀

2
(65)

⇔ 𝜃(𝜀) ≤ arccos
(︁
1− 𝜀

2

)︁
. (66)

In the last step, taking the strictly monotonically decreasing arccos for values in [0, 1] or 𝜀 ∈ [0, 2] on
both sides switches the direction of Eq. (66). The operation remains well-defined if 𝜀 ≤ 2.

4. Discussion

Understanding of 𝜀-equivalence. As an extension of exchangeable factors, the general concept
of 𝜀-equivalence and the more manageable 1DEED seem to be a promising option to extend lifted
inference to a new level via approximation of similar factors. Therefore, the understanding of similarity
in this context is key. Building on the maximum metric (Chebyshev distance), 1DEED takes relative
lengths into account, resulting in the lack of transitivity. However, the property of 𝜀-equivalence is
easy to check and leads to multiple practical properties including the guaranteed asymptotic bounds
of Section 2.2 and a compressed (compact) and more interpretable model depending on the choice
of 𝜀. The hierarchical approach additionally helps to understand the complexity of the given FG by
pre-analysing the 1DEED of all factors.

Geometric interpretability. Understanding differences between factors as an angle between vectors
within the Euclidean space is not a new concept [31]. However, it is one way to interpret the concept of
𝜀-equivalence. Pairwise 𝜀-equivalent factors can also be seen as set of 𝑛-dimensional vectors, which
bound and generate a compact set (the convex hull) within the ℒ𝑝 space. This geometric object is
basically the minimal set containing the group of 𝜀-equivalent factors. If another factor that is pairwise
𝜀-equivalent to all factors in a group is added to the group, the resulting set becomes a superset and its
newly generated convex hull is again a set of pairwise 𝜀-equivalent factors containing the old set.



New potential for future exploration. Using weighted means as representatives for groups of
𝜀-equivalent factors enriches the possibilities of how the algorithms 𝜀-ACP and HACP can be applied.
The usage of weighted means opens the whole concept of approximate lifted model construction based
on 𝜀-equivalence to possible robustifications and generalisations by changing the original squared loss
function and its optimal choice of the arithmetic mean as representatives for groups of 𝜀-equivalent fac-
tors. Choosing different loss functions and their new corresponding optimal solution of a representative
increases the flexibility of the 𝜀-ACP algorithm and the HACP algorithm.

5. Conclusion

We presented fundamental properties of 𝜀-equivalence related to lifted model construction under a
unified view and have proven several additional properties for the ℒ𝑝 space. By viewing the concept
of 𝜀-equivalence from geometric perspective in ℒ𝑝, we provided a solid foundation for geometric
interpretability and gave a new perspective on the concept of pairwise 𝜀-equivalence via the convex hull
of groups of 𝜀-equivalent factors. Our geometric interpretation opens up for advancements with respect
to the 𝜀-ACP algorithm and its hierarchical version HACP in terms of generalisation and robustification
of the previously introduced compression techniques.
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