
Beyond LLM-Guided Common-Sense Reasoning for
Natural Language Understanding
Moritz Bayerkuhnlein

1,*
, Julian Britz

1
and Diedrich Wolter

1

1Universität zu Lübeck, Institute for Software Engineering and Programming Languages, Ratzeburger Allee 160, 23562 Lübeck,
Germany

Abstract
Mastering common-sense reasoning is often regarded as a major obstacle towards natural language understanding

(NLU). The growing availability of large-scale knowledge bases and automated theorem provers has motivated

studies to determine to which extent common sense knowledge as required in NLU is already provided by existing

knowledge bases. However, large-scale knowledge bases may comprise too many axioms to be handled by an

automated theorem prover. In 2024, Claudia Schon presented a paper at the FCR workshop demonstrating that

similarity of language as captured by the embedding space of a large language model (LLM) can provide an

effective heuristic for selecting relevant axioms. The work presented in this paper is motivated by her findings.

We first show in a reproduction study that the results not only apply to theorem prover E, but also to prover

Vampire. An analysis of the results reveals a complementary heuristic that identifies generally important axioms

automatically, improving the performance of reasoning significantly.

Keywords
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1. Introduction

Natural language is inherently ambiguous, requiring listeners and readers to fill in missing pieces of

information from context, their understanding of the world, and by logical inference. The importance

of common-sense reasoning to interpret natural language has thus often been stressed in the literature,

prominently in the works by Gary Marcus and Ernest Davis [1, for example]. We characterize reasoning

in natural language understanding as the task of constructing a model in the sense of logic that is

consistent with given natural language input as well as context and background knowledge. Setting

aside the questions of which logic may be most suitable to represent semantics of language and how

knowledge about language can be acquired, we are interested in computational principles that allow a

logic model of a given natural language phrase to be constructed. As has already been shown by Schon

[2, 3], this often cannot be accomplished by automated reasoning tasks alone, simply due to the high

computational cost. Overcoming this computational bottleneck is a requirement to assess the extent of

common-sense required in NLU tasks that is already covered by available knowledge bases.

Throughout the last decades of AI, several attempts have been made to compile common-sense

knowledge bases on various levels of abstraction. Well-known examples on the side of fine-grained

knowledge bases include the Cyc project [4] and its variants such as Next-KB [5]. On the side of general

ontologies, SUMO [6] and DOLCE [7] provide formal knowledge that is also intended to provide the

necessary glue to connect natural logic to formal reasoning. In case of the ontologies mentioned, a

classic one (binary truth) is used as underlying logic and a connection to first-order theorem provers is

possible. In this paper we consider Adimen-SUMO [8], a re-engineering of SUMO in first-order logic

such that the axioms can be used with off-the-shelf automated theorem provers.
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Applying automated theorem provers to large-scale knowledge bases quickly reveals a major chal-

lenge: The sheer size of a knowledge base – in conjunction with high computational costs of automated

theorem proving – limits applicability. Clearly, not all elements of a knowledge base are relevant for

proving consistency of a candidate model. Selecting the subset of relevant axioms offers means to

improve applicability of theorem proving. But why should it be possible to design a clause selection

method that is more effective than the advanced techniques already implemented in automated theorem

provers? A potential answer to this question lies in the kind of proofs the theorem prover is requested

to perform. Consider the task of proving that leaving your bike unlocked increases the likelihood of the

bike being stolen. A potential reasoning chain would likely connect concepts such as “lock” as a means

for fixing otherwise movable objects, “thieves“ re-locating objects while overcoming security measures.

In a large corpus of text we expect to find such reasoning chains to be spelled out or at least hinted at,

hence the co-occurrence of “unlocked bike”, “theft”, and “stolen bike” is likely to occur.

Such co-occurrence is exactly what semantic similarity as determined by LLMs represents. By

inspecting the embedding of a given sentence, i.e., its mapping to a neural activation of the LLM, it

might thus be possible to retrieve related words or phrases. Schon [3] proposed selecting axioms that

pin down the semantics of such words, which was shown to be effective in an experimental study.

In this paper we re-visit the approach by Schon [3] and reproduce the study, also considering an

additional theorem prover. We are motivated to identify further indicators for relevant axioms that an

automated theorem prover cannot discover on its own. In particular, we are motivated to study whether

intrinsic properties of a knowledge base also provide means to identify relevant axioms. Our approach

is motivated by the hypothesis that a manually constructed knowledge base would be orthogonal in the

sense of stating general axioms exactly once. If such core axioms exist which are used in many proofs

over a given knowledge base, it would be important to feed them to the theorem prover. To sum up, our

work addresses the following hypotheses:

Hypothesis 1 A language model that captures semantic similarity in terms of alternative wordings

can also estimate relevance of axioms in a knowledge base that serves as a lexicon in natural

language understanding.

Hypothesis 2 A manually designed knowledge base contains relevant axioms that cannot be discovered

from semantic similarity alone, but which are essential in the construction of a valid model.

The contribution of this paper is to describe an experimental analysis using the Adimen-SUMO

ontology and theorem provers E [9] and Vampire [10]. We demonstrate the existence of core axioms in

Adimen-SUMO, i.e., a set of axioms that must be considered for achieving a proof.

2. Preliminaries and Problem Statement

Traditionally, the domains for automated reasoning, planning, and understanding have been narrow and

application specific. There have been monumental efforts in the common-sense reasoning community

to estimate and capture the knowledge that is relevant to make reasoning about the everyday world

possible. The largest and longest-standing project (in all of artificial intelligence) is Cyc, an ontology

that encodes everyday concepts in a logic-like language. Unfortunately, Cyc is closed source and not

integrated with standard theorem provers. In this study we focus on the Adimen-SUMO ontology [8],

a re-engineering of SUMO’s upper and mid-level ontology in first-order logic which is suitable for

automated theorem proving.

Atomic truths in Adimen-SUMO are represented as axioms, which can be used to prove theorems.

Adimen-SUMO contains around 8000 axioms. Similar to theorem proving in other domains, the amount

of axioms provided increases the potential search space for a theorem prover, making it difficult to find

proofs in a reasonable time frame. For common-sense reasoning in the context of natural language

understanding, this is especially problematic, as often implications are omitted from the natural language

sentences, which makes it difficult to identify the relevant axioms for a given proof task. Theorem



proving has thus to rely on axiom selection, a technique to select which axioms will be considered in a

proof attempt.

2.1. Axiom Selection

Every theorem will require a different set of axioms to be proven, which encourages the use of selection

strategies to favor dynamic selection over selecting axioms based on fixed rules. These techniques

are also referred to as clause selection since the conjunction of all axioms constitutes the background

knowledge for a proof. While clause selection appears to be a more natural term when considering the

task from a theorem prover’s point of view, axiom selection better captures the outside view of filtering

which axioms from a common sense ontology are passed to the theorem prover.

A prominent example of such a strategy is the SUMO Inference Engine (SInE) selection strategy

[11]. The SInE strategy is a trigger-based method for axiom selection in automated theorem proving.

It begins with symbols from the conjecture and recursively selects axioms containing them, using a

trigger condition that avoids overly common symbols. A benevolence parameter 𝑏 allows slightly more

frequent symbols to trigger axioms, improving flexibility. Clearly, the SInE strategy is based on syntactic

similarity of symbols, which is why we refer to it as syntactic axiom selection.

The widespread use of LLMs enables axiom selection based on so-called semantic similarity. Trained

on vast text corpora, LLMs capture co-occurrence relationships between words and phrases which are

referred to as semantic relationships. Assuming common-sense knowledge bases to reflect concepts

from natural language as part of the LLM training data, LLMs can be applied to select axioms based on

a semantic similarity of the concepts involved. Computationally, concepts are mapped by the LLM to

an (internal) embedding space. Embedding spaces are real-valued vector spaces that are commonly

equipped with a cosine similarity 𝑢𝑇 𝑣 · ||𝑢||−1 · ||𝑣||−1
for 𝑢, 𝑣 ∈ R𝑛

. In vector-based selection, axioms

are selected from an averaged embedding of individual symbols. The SeVEn (Sentence-based Vector

Encoding) extends this approach by embedding entire axioms as natural language sentences. Each

axiom 𝐴 from a knowledge base KB is first translated into a natural language sentence 𝑆 = 𝑡(𝐴),
which is then encoded into a vector 𝑣𝑆(𝐴) = 𝑓(𝑆) using a sentence embedding model. The resulting

sentence-based representation of the knowledge base, 𝑣𝑆(KB), maintains the structure of vector-based

selection while enabling deeper semantics, which is why we refer to it as semantic axiom selection.

Building on both approaches, [3] proposed a hybrid strategy that unifies semantic and syntactic

selection. The idea is to first apply SeVEn to select axioms semantically related to the conjecture. Then,

SInE is applied to this enriched conjecture set, adding further axioms based on syntactic triggers.

Formally, let SInE(KB, {𝐴1, . . . , 𝐴𝑛}) denote the set of axioms selected by SInE given a set of

conjectures, and SeVEn(KB, 𝐶) denote the axioms selected by SeVEn for a conjecture 𝐶 . The combined

selection strategy is defined as a union of both methods.

2.2. Problem Statement

Like [3], we consider white box proofs in the Adimen-SUMO ontology [8]. In Adimen-SUMO, truth

tests are provable conjectures used to check logical consistency and reasoning accuracy. A set of 8010

truth-tests has been automatically constructed [12], from which we randomly selected a subset of 1000

for the experiments. We count how many proofs the theorem prover will be able to achieve using

different axiom selection strategies. Our research objective is to identify an axiom selection method that

allows most proofs to be achieved. As a baseline we consider the theorem’s prover built-in selection

techniques.

3. Experiments

We compare the following axiom selection strategies:

standard full ontology baseline without any pre-selection, i.e., only using the prover’s built-in method;



Figure 1: Overview of the selection process. Steps of the approach proposed by [3], combining syntactic and
semantic selection (left and right). Our contribution is the identification and integration of core axioms into the
hybrid selection pipeline (middle).

syntactic axiom selection using the SInE algorithm;

semantic axiom selection using SeVEn based on semantic similarity, computed via sentence embed-

dings;

union combined semantic and syntactic selection approach following [3] and

enhanced-union extension of the union method, enriched with frequently used axioms (core axioms)

3.1. Validation of Prior Work

Our experiments validate the findings of [3], with nearly identical results (Figure 3). The slight difference

is due to the sampling of 1,000 White-box Truth tests. The syntactic selection strategy, via SInE was

run with a benevolence of 3 and recursion depth of 2. Semantic selection using SeVEn with a threshold

of 1,500 axioms (increased from prior work to match the average output of SInE) powered by a pre-

trained all-MiniLM-L6-v2
1

sentence embedding model, and a hybrid union approach that combines

both methods. The hybrid method employs the pre-trained all-MiniLM-L6-v2 sentence embedding

model, selecting the 160 closest axioms per conjecture
2
.

3.2. Core Axioms

The combined use of syntactic and semantic selection methods fails to cover a wide enough range of

proofs. We observe that conjectures without successful proofs often show higher cosine similarity

to their 160 nearest axioms, suggesting that overly specific selections can exclude essential axioms.

Since theorem provers rely on axioms to guide simplification steps, missing such axioms hinders proof

discovery. To address this, Prover E was run in auto mode on all 8, 010 White-box Truth tests, allowing

it to optimize SInE parameters per conjecture. The 25 axioms most frequently used in successful proofs

were then identified as core axioms (see Figure 2 for an example).

As such we obtain an axiom selection strategy featuring the core axioms discovered in the previous

step, which we refer to as enhanced. To improve core axiom selection without greatly increasing their

number, a SInE strategy was applied to the 25 core axioms (benevolence 1, depth 1), an overview is

1

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

2

Parameters and models are based on the results of [3]

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


fof(mergeA594, axiom,
![REL]: (p__d__instance(REL, c__BinaryRelation) =>
(p__d__instance(REL, c__IrreflexiveRelation) <=>
(![INST]: ~p__d__holds3(REL, INST, INST))))

)

Figure 2: Example of a core axiom discoved using the White-box Truth tests in TPTP-FOF representation,
defining the irreflexive property of binary relations. Stating that if a relation REL is a binary relation, then it is
irreflexive if and only if there is no instance INST such that REL holds between INST and itself. In other words,
an irreflexive relation never relates an entity to itself.
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Figure 3: Side-by-side comparison of validation results from Jakobs and Schon [3]. TIME_OUT indicates the
prover exceeded the 15s CPU limit, PROOF_FOUND denotes success, and GAVE_UP means the prover stopped
searching due to internal heuristics.
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Figure 4: Axiom selection in combination with an automatic theorem prover (ATP) in Auto Mode, as used during
CASC.

shown in Figure 1. The resulting axioms were combined with those from the union-based method,

balancing frequency and structural relevance. On the same 1,000 White-box Truth tests, this enhanced

approach yielded 286 proofs (see Figure 3).

3.3. Running ATP in Competition Mode

To explore how internal heuristics interact with external axiom selection we evaluate different automatic

theorem provers using their automatic mode also used during CASC competitions. In addition to Prover

E which was used in the original study we selected Vampire 4.9 [10] due to being a current and

long-standing winner of the CASC competitions [13] FOF (First-order-form) bracket.

From the results evaluating Prover E in its competition mode, we obtained three subsets of the



Table 1
Cardinality of White-Box truth test subsets and average proof times (in seconds) for each method. The sets
𝒲auto, 𝒲union, and 𝒲enhanced correspond to the subsets of truth tests for which a proof was found by the
respective selection strategy.

Subset Cardinality auto union enhanced
𝒲auto 309 5.48 0.55 0.40
𝒲union 395 – 1.30 1.36
𝒲enhanced 547 – – 1.66

White-box Truth tests 𝒲 , identified by the axiom selection methods 𝒲auto,𝒲union and 𝒲enhanced.

We can report that the obtained subsets are in fact subsets of their cardinally superior set, such that

𝒲auto ⊂ 𝒲union ⊂ 𝒲enhanced ⊂ 𝒲 .

Furthermore, the versions featuring the additional selection strategies of union and enhanced result

in comparably faster proof times on average. Overall, restricting the search space through a combined

syntactic and semantic selection process, supplemented by core axioms, consistently improves the

prover’s performance. In automatic mode, the average time to find a proof was 5.48 seconds; with

the selection strategies in place, it was reduced to less than a second (see Table 1). A slight increase

was measured from extending the union strategy with the core axioms, which can be explained by

simply having slightly more axioms to choose from for the set 𝒲union. Finally, presumably the largest

of the subset 𝒲enhanced showed a reduced average time to proof with core axioms in place compared to

the automatic mode.

3.4. Discussion

While we have demonstrated the existence of these core axioms for proving conjectures in common-

sense ontologies, there are some clear limitations.

First of all, the White-box Truth tests used to evaluate the selection strategies are designed to validate

theorem provers on formal ontologies like Adimen-SUMO. As of now, similar truth tests that reflect

natural language expressions directly are not available in the same quantity or quality. This makes it

unclear to which extent the effects we observe, especially the impact of core axioms, will carry over to

an actual NLU setting, or if they are specific to this kind of synthetic evaluation.

Second, we can only extract core axioms from successful proof attempts. This introduces a bias

toward axioms that appear in easy or already solvable proofs. Axioms that are essential but only show

up in harder proofs, or in cases that currently fail, are missed entirely by this method.

That said, our results suggest that there is an effect, i.e., some axioms appear to act as bridges,

filling in gaps that neither syntactic nor semantic selection strategies can easily cover. In other words,

demonstrating the existence of such core axioms shows that several axioms cannot be identified using

LLMs. These axioms are not just frequent, they appear to carry structural or semantic importance

that helps reasoning succeed. Being able to identify likely core axioms in advance could help improve

reasoning performance in settings where no prior proof data is available, and could enable logic-based

NLU.

4. Conclusions and Future Work

In this study we set out to reproduce a study by Schon [3] in order to get a deeper understanding of

how word similarity applied to symbol names helps to guide an automated theorem prover. We were

able to reproduce the results, also using Vampire as alternative theorem prover. These findings suggest

that Hypothesis 1 holds, i.e., language similarity measures derived from co-occurrence offers a helpful

heuristics for activating axioms or sub-theories that are relevant to prove a given fact.

We could identify a set of axioms from Adimen-SUMO which often is used in successful proofs.

Explicitly activating this set of axioms for every proof significantly increased the proof success rate.



This suggests that Hypothesis 2 holds too, i.e., there exists a set of axioms specific to the underlying

knowledge-base that is not identified by word-level similarity as it represents general concepts.

Taking both observations together and setting them into context with previous findings by Schon [3],

we may conclude that there exists significant opportunities for improving automated theorem proving

when applied to commonsense reasoning. In future work we wish to shift attention more towards NLU

by using reasoning to infer models (in a logic sense) from given sentences. Due to language leaving out

pieces of information that are obvious to humans, this step requires means to select not only axioms but

also facts that are related to a given sentence, considering background knowledge as well as context.

Declaration on Generative AI

Section “Preliminaries” was translated and rephrased using GenAI Tools.
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