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Abstract

In order to equip social robots with human-like cognitive abilities such as memory and language comprehension,
cognitive architectures in combination with Large Language Models (LLMs) have the potential to act as suitable
components. We demonstrate the use of an Adaptive Control of Thought-Rational (ACT-R) model in combination
with an LLM to store experiences from human-robot interaction (HRI) with a humanoid social robot in the
declarative memory of the cognitive architecture. These experiences can be retrieved from memory as associated
recollections and used for prompt augmentation of the LLM to enable personalized interactions with references
to previous encounters. This type of memory also enables the creation, storage and updating of person models
from interactions with different people, so that the robot can get to know these people better during temporally
unrelated interactions and react to them individually. In special application scenarios, it may also be necessary
to connect data sources via interfaces to expand the robot’s knowledge base. In such cases, the question of
decision-making arises from a general dialog situation to clarify when such additional sources must be used for a
robot response. The system for our practical study uses special chunks in ACT-R’s declarative memory for such
decisions. We demonstrate the use of such a system with the social robot Navel.
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1. Introduction

Social robots must be designed and developed to meet the needs of their social environment and be able
to respond appropriately and comprehensibly [1]. Their understanding of social norms and expectations
should guide their decision-making, and they are required to produce mental simulations to understand
and predict the thoughts, feelings and intentions of others in a broader social context. To achieve
this, the mental states of humans in the loop are modeled under the term “human-aware AI”, and a
human-centric perspective should improve the acceptance of social robots in Human-Robot Interaction
(HRI) by increasing human trust for successful collaboration [2].

Furthermore, when it comes to developing truly human-like cognitive abilities, individual experiences
mediated by social interactions between humans and machines are essential for an Al agent [3]. The
gradual acquisition of knowledge and skills leads to an autonomous decision-making ability through
interaction with the physical and social environment. Such an agent should be able to imagine actions
using mental representations before executing them and justify them using the cognitive ability of
prospection, i.e. the mental simulation of actions, including planning, predicting, imagining scenarios
and possible future events. Norbert Wiener, the inventor of cybernetics, was a great advocate of
a fundamental commonality between natural and artificial paradigms in terms of intelligence and
cognition [4]. However, the Al community often leans in the opposite direction when considering the
extent to which one should focus on a human brain-inspired approach to the development of intelligent
agents exhibiting situated cognition. Situated cognition as an approach to learning supports the idea
that learning takes place when an individual does something — usually in social interaction with others
— in the real world [5]. Such learning takes place in a situated activity that has a social, cultural and
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physical context and where cognition cannot be separated from this context.

In order to interact naturally with a robot, we would expect it to be able to remember and relate to
what we have already experienced or discussed with it in the past within a contextual framework. This
requires an episodic memory for the robot that is consistent and able to recall recollections associated
with us, representing a kind of “narrative self” that includes identity and continuity over time [6].
A long-term memory that functions analogously to human memory, with storage of individual facts
and experiences, recollection through associations of current experiences with stored experiences and
functions such as forgetting rarely used or reinforcing frequent memories, is likely to be a beneficial
cognitive ability for a robot in HRI. A reference to concrete recollections would also be useful with
regard to the explanatory or black box problem of AI [7].

But how can a robot store individual experiences in interaction with humans, remember them later
and learn from them? How is it possible for the robot to build up a wealth of individual experience
that goes beyond short-term interactions? If this is to happen in a way that is comparable to human
abilities, a cognitive architecture that has been tried and tested in cognitive psychology is likely to
be essential. For this reason, we chose the Adaptive Control of Thought-Rational (ACT-R) [8] as the
cognitive architecture to develop human-like memory functionalities for the robot. A Large Language
Model (LLM) was used to formulate the dialog parts of the robot and the recollections to be stored. The
associated recollections were in turn provided to the LLM via prompt augmentation for consideration
in its utterances.

2. Related Work

With the recent successes of language models in various fields, interest in the interplay between
LLMs and cognitive architectures has also increased, and ways of integrating LLMs with cognitive
architectures have been discussed [9, 10, 11, 12]. Insights from human cognition and psychology that
underlie cognitive architectures can contribute to the development of systems that are more efficient,
reliable and human-like [13]. The storage of episodic recollections has long been studied in simulation
models of human memory [14]. Paplu et al. investigated the use of long-term memory to generate
context for customized interactions and the connection with the interaction partner on an emotional
level in a personalized HRI [15]. They employed a MySQL database to store the memory content.

We demonstrated in previous work the ability of an ACT-R cognitive architecture connected to a
social robot to store and process recollections with the help of an LLM [16]. An integration of ACT-R
with LLMs was applied for human-centered decision making by using knowledge from the decision
process of the cognitive model as neural representations in trainable layers of the LLM [17]. Sumers
et al. proposed a language agent with a framework for modular memory components, a structured
action space for interaction with internal memory and the external environment, and a generalized
decision making process that combines insights from symbolic artificial intelligence and cognitive
science [18]. A conceptual framework for a combination of sequential cognitive situation modeling and
continuous motion control of a robot was proposed by Hao et al. to overcome the separation between
the cognitive and physical levels in HRI [19]. In order to equip the robot with a good anticipatory
model of the individual that can adapt to different individual situation representations, a wide range
of sensory input data from the human was required during the interaction. Knowles et al. proposed
a system architecture that combined LLMs and cognitive architectures with an analogy to “fast” and
“slow” thinking in human cognition [20, 11].

3. Methodology

Our approach to generate and utilize individual experiences for a robot in social interaction with
humans combines the memory capabilities of the ACT-R cognitive architecture with the linguistic
capabilities of an LLM to both formulate recollections and refer to those recollections in utterances
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Figure 1: Social robot Navel

during a subsequent interaction. In addition, individual characteristics of the interaction partner (e.g.
preferences, interests, etc.) are stored in a person model so that they can be referred to later.

Special application scenarios (for example in a care context) may make it necessary to connect external
sources or internal data of an organization via interfaces in order to expand the robot’s knowledge base
for the provision of information. Our proposed system uses special chunks in the declarative memory
of the cognitive architecture, to decide from a general dialog situation on a variety of topics between
humans and robots when such an additional source must be used for a robot response.

The humanoid social robot Navel as shown in Fig. 1 serves as a platform for the implementation of
our system.

3.1. Social Robot Navel

Designed as a care robot by navel robotics GmbH, Navel’s task is to autonomously increase the well-
being of people in need of care by additional emotional and cognitive activation and to relieve the
burden on caregivers [21]. The robot has been used in several nursing homes since October 2023. Based
on a Linux OS the robot features a Python SDK to program custom behavior with direct access to all
functions like face detection, emotion recognition, sound processing, and sound source localization. It
has a height of 72 cm.

3.2. Cognitive Model

Cognitive architectures like ACT-R refer both to a theory about the structure of the human mind and to
a computer-based implementation of such a theory. They are particularly suitable for human cognitive
modeling [22]. Cognitive architectures attempt to describe and integrate the basic mechanisms of human
cognition. In doing so, they rely on empirically supported assumptions from cognitive psychology.
Their formalized models can be used to react flexibly to actions in a human-like manner and to develop
a situational understanding regarding human behavior for adequate reactions. ACT-R comprises a



declarative and a procedural memory, whereby the declarative memory supports lexical knowledge
by encoding, storing and retrieving semantic knowledge, as in humans, while the procedural memory
enables the learning of habits and skills [23, 24, 25, 26]. To create and run ACT-R cognitive models
directly on the robot as part of our application, we used the Python package “pyactr” [27].

3.2.1. Creating Recollections

In ACT-R, declarative knowledge is represented in the form of chunks, i.e. representations of individual
properties as strings, each of which can be accessed via a labeled slot. The cognitive model we developed
to test our hypothesis should receive chunks with the name of the person speaking and keywords for
the memory association as well as the actual memory fact as a phrase from the robot application. Then
it had to check whether there were already any memory chunks with this same name indicating an
existing recollection for this person. Given the name, the model also searched for matching chunks
already stored in the declarative memory for the specified keywords. For simplicity reasons we assumed
the transfer of not more than three keywords. The model’s productions of the procedural memory
checked all combinations of the sequence of keywords for a match with memory content and generated
a hit if at least one of the keywords were matching. In this case, the associated recollection was called
up and returned to the robot application for LLM prompt augmentation. Generally, the new chunk was
stored in the declarative memory supplemented by the time at which this recollection was created in
order to be able to make a temporal classification if necessary.

3.2.2. Person Model

According to Person Model Theory (PMT), we generally understand others based on specific background
knowledge that we accumulate over the course of our lives and use to develop “person models” of
ourselves, other people and groups [28, 29]. These person models are the basis on which we recognize
and evaluate people with both mental and physical characteristics. To enable the robot to remember
individual characteristics of the people it has dealt with, we stored them in a person model linked
to the person’s name in ACT-R’s declarative memory. A memory chunk was to be created for each
person with slots such as interest, hobby, task in the organization and special sensitivities. One of
the robot’s goals during interaction was to gradually fill these gaps with relevant content by asking
specific questions about the slots that were still open. To do this, the system prompts for the LLM
were expanded to include a question about the next open slot in the person model. The LLM was then
supposed to provide a keyword, which was stored in the person model chunk.

3.2.3. Cognitive Control for Task Selection

We also defined a chunk type for task selection in ACT-R, which essentially contained a keyword slot
and a slot for the assigned task. Our test scenario included tasks such as querying a lunch menu via an
interface, consulting or completing the person model or engaging in conversation using recollections
from previous interactions with the conversation partner. Data from external sources was transferred
to the LLM system prompt, as were recollections or other remembered data. The declarative memory
was equipped with several chunks of this type in order to be able to use results from the model in the
robot application for a selection of predefined tasks. The existing assignment between keyword and
task could be dynamically extended to include the remaining keywords from the keyword triple. Each
utterance of the human in dialog with the robot started a search via the productions of the cognitive
model for all three keywords created by the LLM to determine whether there was a stored memory
chunk with a task in the declarative memory for one of these keywords.

Since Retrieval Augmented Generation (RAG) offers an approach to combine external sources in
LLMs with many optimizations to include relevant knowledge, it could provide a different approach to
make external data available [30, 31]. But here too, an instance would be needed to make the decision
on the appropriate action selection.



3.3. Prompting the LLM

We applied OpenAl’s Generative Pretrained Transformer (GPT) language model to generate speech and
process the dialog content of an interaction for finding the keywords and fact phrase to store in the
declarative memory of the ACT-R model [32]. The system prompts for the LLM differed depending on
the task. In the event that a person model needed to be completed, the LLM was instructed to specifically
ask for missing characteristics such as the interests of the human interlocutor and to generate a term
from the answer, which was then saved in the corresponding slot of the person model. Otherwise, in
addition to formulating an answer in the dialog, the LLM had the task of creating the fact phrase to be
stored as a recollection and three suitable keywords from the facts just discussed.

We chose the model gpt-4o0-mini to create all conversational parts of the robot. For the instruction
of the GPT model, we used prompts with zero-shot prompting for the system role to have the LLM
perform the desired tasks as a completion task [33].

4. Interaction Process Comprising Individual Experiences

We tested our proposed system with the social robot Navel. Fig. 2 schematically shows the course of
an interaction between the robot and a human whereby the robot can remember past encounters and
characteristics of the conversation partner. At the very beginning, the application loads all previous
contents of the declarative memory from a text file saved for this purpose so that they are available to
the cognitive model even after a restart. The robot waits until a person appears in its field of vision and
looks at it. If it perceives a person, it greets them. As soon as the human speaks to the robot, an attempt
is made to derive a task for the robot from the content of what is said, as described in Chapter 3.2.3,
and to recognize whether data from external sources is required, for example.

Now it is important whether the robot can determine the identity of the person. Since it is currently
not possible to access Navel’s camera recordings for a visual detection, we use speaker recognition,
i.e. we check whether the robot recognizes the speaker’s voice by comparing it with audio samples of
already known speakers. If the recognition fails, the robot asks for the name of the speaker, creates
voice samples for recognition and generates a person model for later completion. Once a person has
been recognized, the declarative memory of the ACT-R model is searched for recollections concerning
this person and information from the associated person model. If the person model is incomplete, an
attempt is made to complete it.

Content from recollections, the person model or external sources is fed to the LLM via the prompt
for consideration and reference in the conversation. As described in Chapter 3.3, the LLM generates
a response as well as keywords and fact phrases for storage in memory, whereby the name of the
interaction partner and the date and time of the interaction are also stored for possible later reference.
If the person responds to the robot’s answer, a new turn begins, otherwise the interaction ends.

5. Discussion and Initial Findings

Our investigations into the optimal use of the ACT-R cognitive architecture to generate a long-term
memory for a social robot are still in their infancy. In particular, meaningful comparative studies on the
perception of the described memory capabilities of the robot in interaction with humans are lacking.
However, as a proof-of-concept for technical feasibility, we can confirm both the generation and
storage of recollections of events during a dialog interaction as well as retrieval and reference during the
conversation. Individual recollections can be combined into a chain of episodic memory and used for
prompt augmentation. Task selection and the inclusion of the person model works in principle in the
way described, but with an unsatisfactory level of reliability to date. A detailed quantitative evaluation
is still pending. An increase in accuracy in the differentiation of possible tasks from the dialog, e.g.
to include data from an external source via interface, could possibly be increased by including the
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Figure 2: Interaction process with access to individual previous experiences (supplemented graphic from [34])

reasoning capabilities of the LLM in this decision-making process in addition to stored memory content

v

| React to person’s statement |

and procedural memory of the ACT-R model. This would need to be examined in the future.

Nonetheless, the basic possibility of accessing recollections available in plain text is an advantage
with regard to the explanatory or black box problem of AI or LLMs. Actual retrieval is influenced by
the productions of procedural memory in the ACT-R model as well as by settings such as noise, utility

for the subsymbolic processes and the like.

Eventually, the effectiveness of the process depends very much on the exact formulation of the prompts
for the LLM, especially if the robot’s task changes during the ongoing interaction (e.g., completing the

person model vs. conversation considering remembered knowledge).



6. Conclusion

Our idea that individual recollections of a robot retrieved by a model of the ACT-R cognitive architecture
create an enriched, more human-like personalized interaction experience between a robot and a human
has yet to be proven.

Progress along this path could lead to a memory system that supports the accumulation of knowledge
at ever higher levels of abstraction, and would possibly also be capable of prospection, i.e. the mental
simulation of actions. This would require a significantly expanded ACT-R model. However, the collection
of personal information when dealing with humans requires responsible handling of this data. Although
the recollections are stored directly on the robot, the use of an external LLM could represent a flaw in
terms of data protection.

Declaration on Generative Al
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