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Abstract
Traditional crowd simulations in complex environments like train stations often simplify human behavior by
focusing solely on physical movement and neglecting psychological depth. This paper introduces a cognitive
agent framework that integrates dynamic emotional states (e.g., valence, frustration) and physiological needs
(thirst, hunger etc.) to model decision-making more realistically. Agents operate via a dual-mode architecture:
during surplus time, they strategically pursue secondary goals using a utility-based mechanism that balances need
intensity, spatial costs, and environmental opportunities; when needs exceed critical thresholds, they reactively
prioritize urgent demands (e.g., finding a restroom). The framework also incorporates personalized factors (age,
mobility, luggage) and agents’ evolving knowledge of Points of Interest (POIs), enabling them to reason about
unknown POIs and anticipate need fulfillment on trains. Implemented in a simulated train station environment,
the model demonstrates how agents generate context-sensitive, heterogeneous behaviors such as interrupting
travel plans for urgent needs or dynamically rerouting driven by internal state fluctuations. Results show that
this approach captures a richness in decision-making absent in conventional rule-based simulations, offering
improved realism for applications in crowd management and spatial design.
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1. Introduction

In the complex socio-technical ecosystem of modern transportation hubs, understanding human behav-
ior is critical for designing safer, more efficient spaces. Train stations, with their diverse populations (e.g.,
young, old, disabled, frequent, and first-time travelers), fluctuating crowding patterns (peak and off-peak
hours), and multiple services (shops, ticketing), represent particularly challenging environments for
both analysis and management. Identifying the main reasons for emotional changes that influence
passenger behavior is especially complex within these settings.

Traditional approaches to crowd simulation are rooted in agent-based modeling and often rely
on simplified representations that treat individuals as homogeneous entities responding primarily
to physical stimuli, for example, modeling pedestrian flow through corridors or exits using basic
rules of proximity and collision avoidance [1, 2]. Although effective in capturing large-scale movement
patterns, such approaches frequently fail to reflect the rich interplay between cognitive states, emotional
responses, and situational context that governs real human behavior.
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In reality, the actions of passengers are shaped by a variety of factors beyond physical space. Internal
emotional states triggered by social interactions, personal urgency, or prior travel experiences play
a significant role. These emotions are not static; they evolve in response to momentary events in
the environment. Sometimes, even seemingly minor occurrences such as being blocked by another
passenger or experiencing unexpected delays can lead to noticeable shifts in a person’s emotional state,
which in turn can shape the actions they subsequently take.

Yet, such subtleties are often overlooked in most simulations, which tend to prioritize mechanical
rule-following and micro-level interactions while ignoring the psychological depth that drives human
decisions. Consequently, these models may misrepresent crucial aspects of crowd dynamics, particularly
during high-stress situations or emergencies, where panic, confusion, or urgency driven by emotional
states can dramatically alter predicted behaviors of the crowd.

Contribution: In this paper, we present a cognitive agent framework for crowd simulation in train
station environments that explicitly models the interaction between emotional states (valence and
frustration) and physiological needs (including thirst, hunger, energy, and restroom urgency). Rather
than treating behavior as a direct response to spatial constraints alone, our approach incorporates
internal state dynamics and how they evolve in response to social and environmental stimuli. We
demonstrate how fine-grained behavioral predictions can emerge from the continuous interplay between
these internal states and external conditions, enabling agents to make context-sensitive decisions that
go beyond deterministic rule-following.

To illustrate the effectiveness of our model, we follow the trajectory of a single agent through the
simulation environment and visualize the evolution of its emotional and physiological states over time.
The main contributions of this paper are as follows:

• We introduce a unified cognitive framework that integrates emotional states, physiological needs,
knowledge base, and personal characteristics (persona) into agents’ real-time decision-making
processes in complex environments such as train stations.

• We then develop a dual-mode decision-making architecture that allows agents to dynamically
shift between opportunistic and reactive behavior, guided by threshold-driven prioritization of
needs.

• We demonstrate the effectiveness of our model by simulating the life span of a single agent and
visualizing how internal state changes drive behavior over time, offering fine-grained behavioral
predictions absent in conventional rule-based simulations.

Related Work: Modeling human behavior in complex public environments like train stations de-
mands an interdisciplinary approach, drawing from cognitive science, artificial intelligence, and crowd
simulation. Previous work [1, 2, 3] in this area has largely focused on agent-based modeling (ABM)
frameworks (for an analysis of various comparable frameworks, refer to [4]) that simulate human
decisions based on simplified assumptions typically reactive behaviors triggered by spatial constraints
or crowd density. While effective for macro-level planning, such models lack the depth to capture
simple but important human responses to stress, fatigue, or conflicting motivations.

Cognitive architectures such as Adaptive Control of Thought—Rational (ACT-R) and State, Operator,
And Result (SOAR) have provided a more psychologically grounded framework, enabling simulations of
memory, learning, and decision-making under controlled conditions [5, 6]. However, their applicability
in dynamic, real-world scenarios remains limited. ACT-R excels in task based cognition but lacks
support for modeling emotions or physiological drives factors critical in time-sensitive, high-stakes
settings such as public transportation hubs [5]. SOAR supports strategic planning and learning but
similarly underrepresents non-cognitive influences on behavior [6]. Recent work has attempted to
bridge this gap by modeling individual naturalistic decision-making where expert agents must act under
uncertainty and time pressure within cognitive architectures, demonstrating how recognition primed
strategies can be operationalized computationally [7].



BDI (Belief-Desire-Intention) architectures have been widely used for modeling deliberative behavior,
particularly where goal prioritization and intention formation are central [8]. Yet, many implementations
abstract away from embodied experience and moment-to-moment affective states. The PECS (Physical,
Emotional, Cognitive, Social) framework fills this gap by integrating emotion and physiology into
agent models [9]. While conceptually rich, PECS often remains at the theoretical level, with few
computationally tractable implementations suitable for large-scale simulations [10].

Parallel to these cognitive approaches, emotional modeling has evolved from categorical appraisals
(as seen in the OCC model) [11, 12] to dynamic process models such as Scherer’s Component Process
Model (CPM) [13] and Frijda’s theory of action tendencies [14]. These models underline the role of
emotion as a core regulator of action, rather than a peripheral affect. Yet, their integration into agent
simulations remains partial, often limited to discrete states or predefined reactions.

Several studies have explored agent behavior in transportation hubs. Many focus on evacuation
scenarios or optimizing passenger flow, often using rule-based or reactive agents [15]. More recent
work has begun to incorporate psychological factors like stress or social group behavior [16, 17] into
simulations of crowd dynamics. However, few have attempted to create a unified framework where
an agent’s decisions emerge dynamically from the interplay between high-level goals (e.g., catching a
train), evolving emotional states (e.g., stress, anger), and pressing physiological needs (e.g., thirst). In
terms of needs and motivation, most prior work adopts static utility functions or rule-based thresholds
for triggering needs-driven actions. Our proposed framework distinguishes itself by introducing a
priority-based utility mechanism that enables dynamic negotiation between cognitive goals, emotional
arousal, and physiological drives.

While significant progress has been made in modeling human behavior through various cognitive
architectures and emotional/motivational theories, a persistent gap remains in their ability to holistically
capture the dynamic, interwoven nature of human decision-making in complex, real-world environ-
ments. For instance, ACT-R, while highly effective for tasks involving precise cognitive activities like
memory retrieval and attention shifts, often finds it challenging to account for the dynamic, affect-driven
behaviors seen in spontaneous human interaction. For example, some work has explored how emotion
can emerge within a cognitive architecture, yet it highlights that emotional responses are often treated
as emergent properties or inferred rather than being naturally modeled as dynamic, driving forces
within the core architecture [18].

Similarly, studies focusing on capturing dynamic performance in ACT-R centered on refining memory
parameters for specific cognitive tasks, without addressing how evolving internal emotional states
might dynamically alter goal pursuit or prompt unplanned actions in a crowded, high-stress public
space [19]. Furthermore, Laird provides an analysis in [20] that extensively describes the limitations of
both ACT-R and SOAR in this regard.

Regarding BDI architectures, while they provide an intuitive framework for goal oriented reasoning,
they traditionally abstract away from the continuous, often subconscious influence of emotions and
physical discomfort. For instance, a model combining BDI logic and temporal logics for decision-making
in emergency situations focused on logical reasoning and planning under time constraints, but largely
sidestepped the direct influence of dynamic emotional arousal (like panic or urgency) that can lead to
non-rational but highly realistic behaviors in such high-stress situations [21].

These examples highlight a critical need: existing frameworks often treat emotions and physiological
needs as secondary add-ons or external modulators, rather than fundamental, dynamically interacting
components that can spontaneously alter an agent’s goals and actions. Our proposed framework
directly addresses this by introducing a unified cognitive architecture where an agent’s decisions
emerge dynamically from the continuous interplay between high-level goals, evolving emotional states,
and pressing physiological drives.

Structure of the Paper The rest of this paper is structured as follows: Section 2 reviews theoretical
foundations, including cognitive architectures, emotional modeling, and agent motivation theories.
Section 3 presents our proposed cognitive modeling framework, detailing the agent architecture, internal



states, and decision-making processes. Section 4 describes the simulation environment, configurations,
and showcases results through a case study of a single agent’s behavior. Section 5 discusses the
implications, and its limitations. Finally, Section 6 concludes the paper and outlines future work.

2. Theoretical Foundations

2.1. Cognitive Architectures for Agents

The pursuit to create high-fidelity models of human behavior within complex, dynamic environments,
such as major transportation hubs, has traditionally been grounded in theoretical frameworks of
cognitive architectures [22]. Developed at the intersection of artificial intelligence and cognitive
science, these architectures provide computational specifications of intelligent agents, laying out the
fundamental structures and processes of cognition and action. Some of the more notable paradigms
are the ACT-R, SOAR, BDI model, and the PECS framework. While each offers effective mechanisms
for simulating goal oriented behavior, they differ significantly in their capacity to model the complex
intertwinement of cognition, emotion, and physiological states considerations paramount to human
decision-making in the high-stakes, high-density context of a train station [23]. In the following, we
study these architectures.

ACT-R is a highly structured, hybrid cognitive architecture that attempts to provide a general theory
of cognition in terms of modeling human thought processes as the interaction of independent modules
[24]. It simulates human thought processes through symbolic rules and subsymbolic mechanisms.
Essentially, ACT-R posits a core production system operating on information within two primary
memory modules: a declarative module to store fact knowledge and a procedural module for storing
production rules asserting skills and acquired procedures. The subsymbolic component of the architec-
ture uses mathematical equations to gate cognitive processes, and is able to make quantitatively precise
predictions about human performance on well-specified tasks [5].

As being modular and mechanistic, ACT-R is highly appropriate to simulate highly intense, goal-
directed cognitive activity. For instance, an ACT-R passenger model is able to closely replicate the
cognitive activities of searching for a platform number, including visual attention shifts and memory
retrievals involved [25]. But its virtues in simulating circumscribed cognition establish its limitations
in ecological validity too. Its emphasis on rational processing permits less room for spontaneous or
affect-modulated behaviors characteristic of normal life. For example, while it can record a passenger’s
thoughtful search, it is less suited to record an emergent decision to help a misplaced traveler or to
drastically divert based on a spontaneous increase in concern. Though extensions have sought to
incorporate emotion, these are not part of the underlying architecture, thus limiting its application for
simulation of the rich texture of agent interaction in open public spaces.

SOAR is a framework for problem solving and decision-making based on production rules and a
goal-subgoal hierarchy [6]. All tasks in SOAR are formulated as attempts to solve problems within a
“problem space,” and all long-term knowledge is stored in a procedural memory of production rules.
When an agent cannot immediately select its next action, an “impasse” occurs. SOAR resolves this by
recursively creating a subgoal to figure out what to do next, a process known as universal subgoaling.
The results of successfully resolving such impasses are cached as new production rules through a
learning mechanism called “chunking,” allowing the agent to improve its performance over time [26].

Its robust mechanisms for hierarchical planning and procedural learning make SOAR effective for
modeling agents engaged in complex, strategic tasks. However, like ACT-R, SOAR was fundamentally
designed as a model of the “cognitive band” of human behavior, with limited intrinsic support for
affective or physiological processes. While researchers have developed extensions to incorporate
emotions, these are often treated as secondary modulators of cognitive function rather than as integral
components of the decision-making process itself [27]. Consequently, SOAR-based agents may struggle



to realistically portray behaviors driven by stress, urgency, or physical discomfort states that are
pervasive in crowded transit environments and profoundly influence human action.

BDI model is a framework for practical reasoning in agents with strong philosophical foundations in
the work of Bratman on human planning [28]. Rather than focusing on low-level cognitive processes,
BDI is specified at a higher level of abstraction. Agents possess three key mental attitudes: Beliefs (their
representation of the world state), Desires (their long-term goals or objectives), and Intentions (the goals
to which they have committed themselves to actively attempt to bring about). The architecture’s main
loop is to perceive the world to update beliefs, deliberate desires to generate new intentions, and execute
plans to satisfy intentions [8]. Recent work has successfully used BDI to simulate context-sensitive
energy regulation in vehicle-to-grid systems, demonstrating its utility in environments where multiple
agents must coordinate based on shared goals and evolving beliefs [29].

This folk-psychological, intuitive approach makes BDI particularly well-suited for clear and inter-
pretable modeling of deliberative reasoning and multi-agent negotiation. Traditional BDI implemen-
tations, however, model agents as purely rational agents, abstracting away from the ongoing, often
subconscious influence of emotional and physiological states. This can result in behavior that is too
logical or overlooks the certain sub-optimal decisions humans make under stressful circumstances.
Whereas many have attempted to create “emotional BDI agents” by adding affective appraisals into
the reasoning cycle [30], these models have a tendency to put emotion on top of an already existing
rational framework rather than making it one of the fundamental building blocks of cognition.

PECS was developed in direct response to the cognitivist bias of earlier frameworks. The PECS
reference model was developed to provide a more holistic conceptualization of human behavior [31]. It
proposes that any realistic simulation of human action must take into account the tight interrelation
among four interdependent dimensions: Physical (body of states, fatigue, physiological requirements),
Emotional (affective states and effect), Cognitive (reasoning, memory, perception), and Social (relations,
norms, group behavior).

The primary strength of PECS lies in its conceptual integrity; it foregrounds the very elements
embodiment, emotion, and social context that are often marginalized in other architectures. It serves
as a valuable blueprint for designing more human-like agents. However, PECS is more of a high-level
conceptual guideline than a detailed, computationally specified architecture. It describes what should
be modeled but does not prescribe how to implement the complex interactions between its components.
This lack of operational specificity has hindered its adoption for large-scale, spatially explicit simulations
where precise behavioral rules and computational tractability are paramount.

Architecture Strengths Limitations
ACT-R Detailed modeling of cognitive tasks,

memory, and attention
Weak on emotional/physiological
modeling, constrained in dynamic
environments

SOAR Strong problem-solving and planning
capabilities

Limited emotion modeling, lacks
bodily needs integration

BDI Intuitive structure for goal-oriented
reasoning

Often abstract; omits continuous
emotional/physiological influences

PECS Holistic framework integrating body,
mind, and emotion

Conceptual; lacks detailed imple-
mentation standards

Table 1
Comparison of existing cognitive architectures

Table 1 shows the summary of the strengths and limitations of the architectures studied. Although
each of them offers important insights into different facets of human behavior, none fully integrates
dynamic emotional states with physiological drives in a way that is both behaviorally realistic and
computationally tractable for use in simulating intelligent agents in a complex environment. This gap



motivates the development of our proposed framework, which builds on these foundations but extends
them to better reflect the richness and immediacy of human decision-making in crowded, high-stress
environments like train stations.

2.2. Emotions in Cognitive Modeling

Accurate capture of emotion is crucial to the formation of cognitive models that accurately capture
human behavior, particularly in dynamic, high-stakes situations. Various influential theories have
shaped understanding and integration of emotions into cognitive modeling.

The OCC model [11] offers a tightly articulated, cognitive appraisal theory of emotions. It presumes
that emotions are elicited by cognitive interpretations of situations, specifically focusing on how events,
agents’ actions, and objects relate to an individual’s goals, standards, and preferences. The OCC model
parses emotions into distinct categories (e.g., joy, distress, hope, fear, pride, shame) based on these
appraisal dimensions and provides an open, rule-based framework for predicting emotional responses.
Its rule-based and categorical structure renders it directly suitable for application in computational
agent-based systems, enabling direct translation of environmental input into discrete states of emotion.
Its focus on discrete, propositional appraisals, however, tends to limit its capacity to accommodate the
smooth, subtle, and often ephemeral character of human emotional experience.

Another theory of emotion studied in the literature is the Frijda’s theory of emotions [14]. It
emphasizes the functional and motivational role of emotions. Frijda conceptualizes emotions primarily
as “action tendencies” states of readiness to engage in specific behaviors aimed at coping with or
responding to environmental changes. This view highlights that emotions are not merely internal
states but powerful motivators that predispose individuals to act in particular ways (e.g., fear leads
to flight or freezing, anger to attack). This perspective is particularly valuable for modeling real-time
decision-making under stress, as it directly links emotional states to behavioral outputs, offering insights
into how emotions facilitate adaptive responses in dynamic environments.

Furthermore, Scherer’s Component Process Model [13] elaborates appraisal theory by propos-
ing that emotions emerge from continuous, recursive stimulus evaluation over a series of appraisal
dimensions, known as Stimulus Evaluation Checks (SECs). These are novelty, inherent pleasantness,
goal relevance, coping potential, and norm compatibility. Unlike the OCC model’s categorical output,
Scherer’s model suggests that the specific pattern of appraisals along these dimensions is what gives
rise to the distinctive subjective experience and physiological response of an emotion. This model
actually combines physiological response, expressive behavior, and subjective experience and offers a
complete system for modeling emotion as a dynamic, multi-strata process. Its emphasis on continual
assessment and the dynamic interplay of elements provides a more subtle description of emotional
processes, and as such is particularly well-suited to capture the fluidity of human emotional reactions
in dynamic socio-technical environments like train stations.

Together, these models offer complementary mechanisms for cognitive simulation: categorical
appraisal (OCC), motivational readiness (Frijda), and dynamic multi-level processing (Scherer). Their
integration offers more realistic agent action in simulations meant to simulate real-world emotional
response and impact on decision-making in complex socio-technical environments.

2.3. Goals, Needs, and Motivation in Agents

Effective cognitive models of human behavior must account not only for decision-making and emotional
responses but also for the underlying drivers of action namely, goals, needs, and motivational states. In
intelligent agents, these constructs interact dynamically, shaping how individuals prioritize behaviors
in response to both internal states and external stimuli.

Goals are typically conceptualized as mental representations of desired end states. In agent-based
modeling, they are often structured hierarchically and can vary in abstraction, from long-term objectives
(e.g., catching a specific train, arriving at a destination) to immediate subgoals (e.g., finding a restroom,



purchasing a ticket). Cognitive architectures like BDI explicitly encode this hierarchical structure,
allowing agents to adopt and revise intentions based on evolving beliefs and circumstances. However,
real-world behavior is rarely governed by goals alone; other internal pressures frequently intervene.

Physiological needs —such as hunger, thirst, fatigue, the need for elimination, or the desire for
comfort represent fundamental internal drives that can significantly modulate or even override cogni-
tively defined goals. These needs introduce time-sensitive pressures that often lead to deviations from
planned behavior, particularly in high-density, resource constrained environments like train stations.
For instance, an agent whose main goal is to board a train may instead seek food or a restroom when
physiological thresholds are reached, delaying or rerouting their planned trajectory. The urgency
of these needs often correlates with their intensity, demanding immediate attention and influencing
behavioral prioritization.

Motivation acts as the crucial bridge between needs, goals, and subsequent action. It refers to the
processes that initiate, guide, and maintain goal oriented behaviors. Theories such as Maslow’s hierarchy
of needs [32] propose a hierarchical structure for human needs, suggesting that lower-level physiological
needs must be met before higher-level psychological needs become primary motivators. More recent
models, like the self-determination theory [33], highlight that human motivation is shaped by both
biological imperatives and psychological factors, including autonomy, competence, and relatedness. In
cognitive agent modeling, this translates into utility functions or dynamic weighting mechanisms that
guide behavior selection based on the agent’s internal state, the saliency of various needs and goals,
and the contextual environment.

Crucially, the interplay between goals, needs, and motivation introduces variability and non-linearity
into agent behavior. A fatigued agent under time pressure may opt to forego rest to pursue a high-priority
goal, while another might re-prioritize their actions due to a sudden increase in stress or discomfort.
This dynamic re-weighting of drives is central to generating realistic behavioral trajectories, especially
under conditions of uncertainty, crowding, or resource scarcity. Existing models often simplify this
interplay, leading to agents that are either overly rational or driven solely by basic urges.

In our framework (which will be discussed in the next section), we operationalize goals and needs
as concurrent, interacting influences on agent decision-making. Each is modulated by a dynamically
evolving motivational intensity and contextual salience. This approach allows for emergent behaviors
that more closely mirror those of real humans navigating complex, high-stakes environments, where
decisions are frequently a negotiation between immediate physical states, emotional responses, and
longer-term objectives.

2.4. Decision-Making Framework for Agents

Decision-making systems within cognitive agents have conventionally been used to represent rational
goal pursuit, usually by means of rule-based, utility-based, or planning deliberative systems. BDI
architectures employ a deliberative loop where beliefs and desires are evaluated to construct intentions,
which guide behavior by means of goal achievement and plan execution [8]. This approach is especially
suited to reasoning on logical deduction, strategic planning, and social interactions in multi-agent
systems as in applications ranging from logistics to automated negotiation. It has a tendency to
downplay the broad effects of dynamic internal states like tiredness, urgency, or emotional excitement,
which have profound implications in human decision-making in real applications.

Other agent systems, particularly those used in crowd simulation, pedestrian flow, and emergency
egress simulation, generally use simplified reactive strategies [34]. These are typically rule-based
systems or threshold reasoning (e.g., “if local density is higher than x, reroute,” or "always move
toward the nearest exit"). While computationally efficient and capable of generating macroscopic crowd
behavior, these models typically exclude the richer complexities of human motivation and the subtle
inter-trading of multiple desires and requirements made by individual agents. Reactive agents like these



would not typically have the capacity for anticipation, dynamic re-evaluation of goals, or the refined
behavioral modulation typical of human actors.

More recent hybrid approaches attempt to combine the reactive and deliberative approaches in
an effort to build more sophisticated decision processes. For instance, dual-process models, that are
founded on cognitive psychology, simulate rapid, intuitive (affective or heuristic) reactions alongside
slower, more deliberative (rational) decision processes [35]. Dual-process models recognize that humans
have a tendency to operate on numerous levels of cognition simultaneously, making rapid judgments in
standard situations while developing lengthy reasoning for new or complex problems. The majority of
uses of such dual-process models, though, do limit themselves to focusing on the interplay between
cognition and affect and usually reject major physiological drives that predominate in actual time-
limited situations such as train stations, where physical discomfort or tiredness can radically alter
priorities for action.

These limitations point to the promise of a more integrated and comprehensive decision-making
model one that can dynamically weigh a greater number of impactful factors, including physiological
needs, affective states, and goal priority, to guide realistic, situational behavior. Current models are
often seen to struggle with accounting for phenomena like interruption of behavior (e.g., deviating
from a path to use a restroom), spontaneous generosity (e.g., helping a tourist despite personal goals),
or breakdown under stress.

Our proposed model builds on these prior foundations with utility-based functionality to enable
smooth prioritization, disruption of behavior, and emergent adaptation as a function of the interaction
between internal (physiological and affective) and environmental (spatial, social, temporal) states. By
offering dynamic utilities for potential actions in terms of the agent’s current needs, emotions, and
goals, we aim to implement a more diverse set of human-like behavior in complex, dynamic worlds.
This technique allows for a more ecologically valid simulation, simulating the way people react and
make choices with the multifaceted pressures present in high-density, high-stress public settings.

3. Cognitive Modelling of Agents

3.1. Proposed Decision-Making Framework

The proposed decision-making framework for agents operating in a train station environment is designed
to emulate human-like reasoning under bounded rationality and fluctuating internal states. It integrates
emotional dynamics, physiological needs, knowledge, and goals to produce adaptive and context aware
behavior. At its core, the framework hinges on two primary modes of operation: opportunistic fulfillment
during surplus time and reactive prioritization in response to urgent needs. Agents continually monitor
their internal states including emotional valence and frustration, need levels, and temporal constraints
and use this information to dynamically select actions. Their overarching behavior is driven by a
hierarchical goal structure, where the main goal (e.g., boarding a train) may be temporarily overridden
by urgent needs. The transition between these states is governed by predefined thresholds. When
agents possess sufficient surplus time, they evaluate potential secondary actions using a utility-based
mechanism. This involves computing the utility of visiting known Points of Interest (POIs), factoring in
the intensity of each active need, the satisfaction potential of each POI, and personalized movement
costs influenced by agent specific characteristics (e.g., age, mobility, emotional state). Needs are filtered
using soft and hard thresholds to determine their eligibility for utility computation or immediate
prioritization.

If no POIs meet the utility requirements or time constraints, agents suspend action selection until their
internal or external conditions change such as discovering a new POI, receiving updated knowledge, or
experiencing a shift in need urgency. When no known POI can satisfy an active need, agents consider
“unknown POIs” using expected distance and uncertainty penalties to guide exploration behavior. In
contrast, if any need exceeds its hard threshold, the agent’s behavior transitions into a reactive mode:
a temporary main goal is established to resolve the urgent condition. In this mode, agents forgo



utility-based evaluation and instead seek the closest known POI capable of satisfying the urgent need,
resuming regular goal processing only after the need falls below the hard threshold.

This dual-mode framework combining strategic opportunism with reactive prioritization enables
agents to exhibit flexible, human-like behavior while remaining computationally tractable. The inclusion
of anticipated post departure satisfaction (e.g., restroom or food availability on the train) and incomplete
knowledge about the environment further enhances the realism of agent decision-making.

Emotions
Valence/Frustration

Needs

Persona

Actions

Goals/Planning

Knowledge Base

Figure 1: The figure illustrates how the internal states of an agent influence one another. Personal and agent-
specific characteristics (persona) shape the evolution of emotions for example, by determining the rate at which
emotions decay. These characteristics also affect the prioritization of needs through the definition of soft and
hard thresholds. Additionally, they influence action planning via the spatial decay function, and directly impact
physical actions, such as walking speed. Planning determines the actions an agent takes, while actions, in turn,
influence both needs and emotions. Emotions also feed back into the planning process through their effect on
spatial perception. This interconnected system highlights the dynamic and recursive nature of decision-making
in agents.

3.2. Agents’ Internal State

3.2.1. Emotions

Our emotional model focuses on two key dimensions: Valence and Frustration. Each emotion is
represented as a continuous scalar value with a defined range and neutral point:

• Valence ranges from−1 (extremely negative affect) to 1 (extremely positive affect), with neutrality
at 0.

• Frustration ranges from 0 (absence of emotion) to 1 (maximum intensity), with neutrality at 0.

A core property of the model is that emotional states tend to decay toward their respective neutral
values over time. This behavior is modeled using the following exponential decay function:

𝐸(𝑡+ 1) = 𝐸(𝑡) + 𝜆 · (𝐸neutral − 𝐸(𝑡)), where 0 < 𝜆 < 1 (1)

where:

• 𝐸(𝑡) is the current emotion value,
• 𝐸neutral is the neutral point for the specific emotion,
• 𝜆 is the Emotional Decay Quotient (EDQ), a parameter defined per agent.



As we have only considered valence and frustration and 0.0 is considered to be the neutral point for
these emotions, the equation is simplified to :

𝐸(𝑡+ 1) = (1− 𝜆) · 𝐸(𝑡), where 0 < 𝜆 < 1 (2)

This formulation ensures that emotional states gradually stabilize in the absence of external stimuli.
For example, a strongly negative valence (e.g., −0.8) will decay toward 0 (neutral mood), while high
frustration (e.g., 0.9) will decay toward 0 over time. To maintain emotional realism and numerical
stability, both emotional values are clamped to their defined bounds after each update step:

• Valence: [−1, 1]
• Frustration: [0, 1]

This prevents overshooting caused by decay dynamics or numerical artifacts. The decay mechanism
allows emotions to serve as temporally extended signals that modulate agent behavior without growing
unbounded.

3.2.2. Needs

An agent’s needs are categorized into two groups: physiological requirements and informational
needs. Each physiological need is represented on a continuous scale from 0 to 1, where the interpretation
depends on the type of need.

• Physiological Needs: Thirst, Hunger, Nicotine, Restroom, and Energy.
• Informational Need: A binary value where 1 indicates that the agent requires information and
0 means that the need is satisfied.

Each physiological need is governed by two thresholds:

• A soft threshold, beyond which the need becomes a candidate for the agent’s decision-making
process.

• A hard threshold, which forces the agent to temporarily abandon the main goals and prioritize
satisfying the need.

3.2.3. Goals

The goal system is structured hierarchically to manage agent objectives:

→ Main goal: The primary objective for agents in the train station environment is either boarding
a train or departing the station after disembarking. While other motivations for visiting a train
station exist, they are considered less common and are not explicitly modeled.

→ Secondary Goal: These represent secondary objectives that agents may pursue concurrently
with their main goal. For example, an agent with 20 minutes before train departure may choose
to drink a cup of coffee.

→ Temporary main goal: When a physiological need surpasses its hard threshold, addressing that
need becomes the agent’s temporary main goal. Temporary main goals override the main goal
until the need is sufficiently satisfied.

3.2.4. Knowledge Base

The agent’s knowledge base is represented as a vector, where each element corresponds to a POI
and contains a pair of values: (𝐴Location, 𝐴State). The first value, 𝐴Location, indicates whether the agent
knows the POI’s location (1 for known, 0 for unknown). The second value, 𝐴State, represents the POI’s
operational status (1 for open, 0 for closed).

Initially, the agent assumes all known POIs are open. As the agent explores the environment, it
updates the state of each POI based on its interactions, ensuring that the knowledge base reflects the
current open/closed status of each POI.



3.2.5. Persona

This component encapsulates attributes of an agent. This includes age, basic mobility (representing
physical fitness), EDQ, and luggage. Attributes of persona influence the agent’s movement speed and
decision-making.

3.3. Actions

Agents are equipped with a set of predefined actions that they can execute within the environment,
such as sitting on a bench, purchasing coffee, or navigating toward a platform. Each action modifies the
agent’s internal state. For example, the action of ‘eating a sandwich’ reduces the agent’s hunger and
energy need.

Figure 1 provides a conceptual overview of how an agent’s internal states, including emotions, needs,
and actions, interact and influence one another. It illustrates how personal characteristics (persona),
such as the EDQ, shape the evolution of emotions, affecting the rate at which they decay and the
prioritization of needs. The figure also highlights the feedback loop between emotions, action planning,
and physical actions, such as walking speed. These dynamic relationships underscore the complex and
recursive nature of decision-making in agents, laying the groundwork for the detailed discussions on
needs, goals, and planning that follow.

3.4. Decision Making

The decision-making process in agents is generally divided into two situations. When they have excess
time on their hands and if they have urgent needs. In the first case, an agent realizes that they can use
the time in their hands to address some of their needs that are not urgent. In the second case, a need
has passed the hard threshold, and that need has become so important to the agent that they decide to
postpone acting on main goal and rather take addressing the urgent need as a temporary main goal and
try to address it. The decision-making process is illustrated in Figure 2.

3.4.1. Case: Surplus Time in Hand

When agents have surplus time in hand, and they might be able to address some of their needs that
have exceeded soft threshold, they employ a utility-based mechanism to rank and select which need to
address at each decision point. This mechanism integrates the agent’s internal state and spatial context.

Need Filtering and Priority Escalation Each need is associated with a soft threshold and a hard
threshold. Needs exceeding the soft threshold are considered in the utility evaluation. Needs exceeding
the hard threshold immediately become temporary main goals and they do not follow the same process
as the needs between soft and hard threshold.

Utility Function for Needs and POIs The utility 𝑈𝑖(𝑃𝑂𝐼) of a POI for need 𝑖 is defined as:

𝑈𝑖(𝑃𝑂𝐼) = 𝑛𝑖 · 𝑠𝑖(𝑃𝑂𝐼) · 𝑓(𝑑) (3)

where:

• 𝑛𝑖 is the current need level for 𝑖.
• 𝑠𝑖(𝑃𝑂𝐼) is the satisfaction potential of the POI for need 𝑖.
• 𝑓(𝑑) is a spatial decay function based on perceived distance 𝑑.
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Figure 2: The figure illustrates the decision-making process of an agent considering whether to visit a POI
before a scheduled train departure. The process begins by checking whether the agent has any urgent needs
whose priority exceeds that of the main goal (i.e., catching the train). If no such urgent needs are present, the
agent evaluates whether they have sufficient surplus time defined here as more than five minutes to address
less critical needs. These are needs whose priority falls between predefined soft and hard thresholds. If surplus
time is available, the agent considers fulfilling one or more of these intermediate priority needs. The five minute
threshold is configurable and can be tailored per agent. The agent then evaluates the utility of all candidate
POIs, ranking them from highest to lowest. They assess each POI in turn to determine whether they have the
necessary resources (time) to visit it. If none are deemed feasible, the agent follows the path that prioritizes the
main goal proceeding directly toward catching the train.

Example Consider an agent with the following need levels:

• Thirst: 𝑛thirst = 0.6

• Hunger: 𝑛hunger = 0.7

• Restroom: 𝑛restroom = 0.8

• Nicotine: 𝑛nicotine = 0.5

• Energy: 𝑛energy = 0.9

Assume the agent is aware of the following POIs, each characterized by a satisfaction potential
𝑠𝑖(𝑃𝑂𝐼) for the different needs and the distance from the agent:

Given a mobility factor 𝑚 = 1.5, the spatial decay factor 𝑓(𝑑) for each POI is calculated using the
following formula:

𝑓(𝑑) =
1

1 +𝑚 · 𝑑
The computed values of 𝑓(𝑑) for each POI are as follows:

• Vending Machine: 𝑓(20) = 1
1+1.5·20 = 1

31 ≈ 0.03226



POI Distance (m) 𝑠thirst 𝑠hunger 𝑠Restroom 𝑠nicotine 𝑠energy
Vending Machine 20 0.5 0.3 0.0 0.0 0.1
Shop 50 0.8 0.8 0.0 0.0 0.2
Restroom 100 0.0 0.0 1.0 0.0 0.0
Smoking Area 50 0.0 0.0 0.0 1.0 0.1

Table 2
Example POI characteristics

• Shop: 𝑓(50) = 1
1+1.5·50 = 1

76 ≈ 0.01316

• Restroom: 𝑓(100) = 1
1+1.5·100 = 1

151 ≈ 0.00662

• Smoking Area: 𝑓(50) = 1
1+1.5·50 = 1

76 ≈ 0.01316

The utilities 𝑈𝑖(𝑃𝑂𝐼) for each need per POI are then computed as the product of the satisfaction
potential and the spatial decay factor:

POI 𝑈thirst 𝑈hunger 𝑈restroom 𝑈nicotine 𝑈energy Total Utility
Vending Machine 0.00968 0.00677 0 0 0.00290 0.01935
Shop 0.00632 0.00737 0 0 0.00237 0.01606
Restroom 0 0 0.00530 0 0 0.00530
Smoking Area 0 0 0 0.00658 0.00118 0.00776

Table 3
Computed utilities per need per POI (with 𝑚 = 1.5)

Interpretation In this example, the agent would prioritize visiting the Vending Machine first, as it
has the highest total utility (0.01935), driven by the thirst, hunger and energy needs and proximity.
After addressing the restroom need, the agent would re-evaluate the updated utilities. In a subsequent
evaluation, the Shop would be the next most attractive POI, as it offers a good combined utility for
thirst, hunger, and energy simultaneously too.

This example highlights how the utility-based mechanism enables agents to dynamically balance
multiple needs and adapt their decisions based on both internal state and environmental constraints,
including perceived movement effort through the personalized mobility factor.

Personalized Distance Cost The perceived cost of distance varies across agents. To model this, we
introduce an agent-specific mobility cost factor 𝑚:

𝑓(𝑑) =
1

1 +𝑚 · 𝑑
(4)

𝑚 = 𝑚0·𝑓𝑎𝑔𝑒(𝐴𝑔𝑒)·𝑓𝑚𝑜𝑏(𝐵𝑎𝑠𝑖𝑐𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦)·𝑓𝑛𝑒𝑒𝑑(𝐸𝑛𝑒𝑟𝑔𝑦)·𝑓𝑙𝑢𝑔𝑔𝑎𝑔𝑒(𝐿𝑢𝑔𝑔𝑎𝑔𝑒)·𝑓𝑒𝑚𝑜𝑡𝑖𝑜𝑛(𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛)
(5)

• 𝑓𝑎𝑔𝑒(𝐴𝑔𝑒) = 1 + 𝛼𝑎𝑔𝑒 ·
(︁
𝐴𝑔𝑒−30

30

)︁
• 𝑓𝑚𝑜𝑏(𝐵𝑎𝑠𝑖𝑐 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦) = 1

𝐵𝑎𝑠𝑖𝑐 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦

• 𝑓𝑛𝑒𝑒𝑑(𝐸𝑛𝑒𝑟𝑔𝑦) = 1 + 𝛼𝑒𝑛𝑒𝑟𝑔𝑦 · 𝐸𝑛𝑒𝑟𝑔𝑦

• 𝑓𝑙𝑢𝑔𝑔𝑎𝑔𝑒(𝐿𝑢𝑔𝑔𝑎𝑔𝑒) = 1 + 𝛼𝑙𝑢𝑔𝑔𝑎𝑔𝑒 · 𝐿𝑢𝑔𝑔𝑎𝑔𝑒
• 𝑓𝑒𝑚𝑜𝑡𝑖𝑜𝑛(𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛) = 1 + 𝛼𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 · 𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛



Agent Age Basic Mobility Energy(Need) Luggage Frustration Resulting𝑚
Young, fit 25 1.2 0.1 0 0.0 1.2012

Middle-aged, sedentary 40 0.3 0.7 1 0.2 9.9984
Elderly, tired 70 0.8 0.6 2 0.2 6.5220

Stressed commuter 35 1.0 0.2 1 0.6 2.9165
Relaxed tourist 50 1.0 0.0 0 0.0 2.0000

Table 4
Example agent profiles and resulting mobility cost factor𝑚. The calculation are done, considering these parameter
values: 𝛼𝑎𝑔𝑒 = 0.5, 𝛼𝑒𝑛𝑒𝑟𝑔𝑦 = 0.5, 𝛼𝑙𝑢𝑔𝑔𝑎𝑔𝑒 = 0.3 , 𝛼𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 0.4 , 𝑚0 = 1.5

Aggregated POI Utility and Decision Process The total utility of a POI is computed as:

𝑇𝑜𝑡𝑎𝑙_𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑃𝑂𝐼) =
∑︁
𝑖

𝑈𝑖(𝑃𝑂𝐼) (6)

Agents rank POIs by total utility and select the POI with the highest value as their next action target.
This mechanism enables agents to exhibit adaptive, heterogeneous behavior, dynamically balancing
need urgency, movement costs, and environmental constraints.

Reasoning About Unknown POIs Agents are aware that certain types of POIs (e.g., Restrooms,
Shops) are highly likely to exist in a train station, even if they do not know their precise location. To
model this, we introduce "Unknown POI" entries for each such POI type. These entries are included in
the utility evaluation with an expected distance 𝑑expected and an additional uncertainty cost 𝐶uncertainty:

𝑓(𝑑unknown) =
1

1 +𝑚 · 𝑑expected + 𝐶uncertainty

The uncertainty cost discourages agents from preferring unknown POIs when known alternatives
are available, while still allowing agents to actively explore when no known POIs satisfy a given need.
If the agent discovers the actual location of the POI during exploration, the entry is updated in the
Knowledge Base, and the uncertainty cost is removed. This mechanism enables agents to exhibit realistic
exploratory behavior and reason about incomplete knowledge in the environment.

Suggested Parameter Values for Unknown POIs Table 4.2 provides suggested initial values for
𝑑expected and 𝐶uncertainty for typical POI types. These values can be tuned empirically to reflect specific
station layouts or agent behavior patterns.

POI Type 𝑑expected (meters) 𝐶uncertainty

Restroom 20 0.5
Shop 25 0.7
Smoking Area 30 0.3
Vending Machine 20 0.6
Bench 15 0.3

Table 5
Example of initial parameters for unknown POIs

3.4.2. Incorporating Anticipated Need Fulfillment on the Train

Some needs such as restroom use or hunger can be fulfilled either in the station or on the train. To
model rational anticipation, agents are penalized for addressing such deferrable needs in the station
when they could instead be satisfied later on the train.



To implement this, we introduce an indicator addressability 𝑎𝑖 ∈ {0, 1} for each need 𝑖, where
𝑎𝑖 = 1 if the need can also be satisfied on the train, and 𝑎𝑖 = 0 if it must be satisfied in the station. The
utility function for visiting a POI is modified as follows:

𝑈𝑖(POI) = 𝑛𝑖 · 𝑠𝑖(POI) · 𝑓(𝑑) · (1 + 𝛾 · (1− 𝑎𝑖))

Here:

• 𝑛𝑖 is the current intensity of need 𝑖

• 𝑠𝑖(POI) is the POI’s suitability for satisfying need 𝑖

• 𝑓(𝑑) is a distance-based decay function
• 𝛾 is a scaling parameter that increases the relative utility of station only needs

This formulation ensures that agents strategically prioritize needs that cannot be deferred, while still
considering deferrable needs if convenient.

3.4.3. Case: Agent Has an Urgent Need

When a need exceeds its predefined hard threshold, the agent immediately designates addressing that
need as a temporary main goal. In this situation, the agent’s cognitive and decision-making processes
prioritize satisfying the urgent need over all other objectives, including the main goal and temporary
main goal. Unlike the surplus time scenario, where multiple needs may be weighed and ranked using a
utility-based mechanism, the presence of an urgent need triggers a focused behavior pattern. The agent
does not evaluate competing needs or optimize across multiple POIs. Instead, the agent identifies the
nearest available and known POI that satisfies the urgent need and navigates directly toward it.

This reactive behavior continues until the need is sufficiently addressed either by fully or partially
lowering the need level below the hard threshold at which point the agent resumes normal goal
processing. If the original main goal remains time-sensitive (e.g., catching a train), the agent assesses
whether sufficient time remains to continue pursuing it or adjusts its priorities accordingly.

This mechanism ensures that highly urgent physiological needs are treated with appropriate behav-
ioral dominance, mirroring real-world human prioritization in similar contexts.

4. Implementation and Results

4.1. Modeling Basis of the Simulation

The cognitive modeling framework is embedded within a 3D agent-based simulation designed to capture
realistic passenger behaviour in train station environments [36]. The simulation replicates Hamburg-
Harburg station and enables controlled evaluations of human decision-making, emotional dynamics,
and environmental interaction under dynamic constraints.

Simulation Framework The extensible architecture of the simulation supports 3D visualisation,
agent cognition, and multi-layered behavioral modeling. Agents’ behaviour is driven by a state-based
logic system that governs the selection of primary goals (e.g., catching a train) and the pursuit of
secondary needs (e.g., rest, food, or information). Their behavior dynamically adapts to environmental
inputs, internal needs, and time constraints. The simulation and thus the cognitive modelling framework
are implemented with the GoDot Engine v4.4.

Environment and Points of Interest (POIs) The station environment is modeled with segmented
navigation zones and manually placed POIs, including restrooms, vending machines, seating areas,
shops and information panels. Agents may interact with these POIs depending on their physiological
or informational needs. Queue dynamics and POI-specific capacities are modeled to support crowding
behaviour.



Agent Cognition and Behavior Agents are initialized with distinct persona traits that influence
mobility, knowledge levels and decision-making preferences. Cognitive behaviour emerges from a
utility-based mechanism that evaluates potential actions based on internal (e.g., thirst, hunger) and
external conditions (e.g., POI location, crowding). When needs exceed soft thresholds and the agents
have more than 5minutes of time until train departure, agents may fulfill them if they get the opportunity
to do so; above hard thresholds, behaviour will change to prioritise satisfying the urgent condition.
Emotional state influence both behaviour and path planning.

Model Parameters Key parameters of the model include:

• Agent population sizes derived from real-world train schedules with subject to external factors
(day of week, time of day, weather, events in the area).

• Various POIs, each with configurable capacity and satisfaction values.
• Persona-based attributes (e.g., mobility and luggage burden).
• Soft and hard threshold for needs.
• Initial distribution/values of need and emotion values

Evaluation and Logging The system logs individual and global metrics including movement paths,
goal success rates, queue times, segment-specific density distributions and state transitions. This data
enables detailed analysis of flow patterns and system-wide effects of interventions.

4.2. Configurations

Due to the complex interaction between physiological and emotional needs, as well as the rich envi-
ronment, the framework can be adjusted to fit a variety of scenarios. In the following section, we will
introduce the parameters for the scenarios specified later on.

Utility Calculation The utility function of POIs can be adjusted by tweaking its parameters to have
more realistic modeling. The satisfaction potentials of POIs were used as presented in Table 3.4.1. The
𝛼−values for personalized distance cost were used as in the example provided in Table 3.4.1

Table 4.2 shows different types of trains and the types of needs they can fulfill for an agent. Regarding
𝛾, the scaling parameter that increases the relative utility of station-only needs, we use a value of 0.5.

Train Type 𝑎thirst 𝑎hunger 𝑎restroom 𝑎nicotine 𝑎energy
ICE 1 1 1 0 1
ME/FLX 0 0 1 0 1
City Train/S-Bahn 0 0 0 0 1
Unknown 0 0 0 0 0

Table 6
Train types and the types of need they can satisfy. (𝑎need = 1 indicates the possibility of fulfilling the need)

Needs and Emotions The aforementioned needs are implemented and the soft and hard threshold
are set to 0.4 and 0.9 respectively. They are increased every 20 seconds by 𝜖 ∽ 𝒩 (0.0625, 0.01). This
corresponds to an increase of the needs from 0 to 0.9 in 8 hours. Through interaction with various
POIs, such as vending machines or restrooms, the needs can also change. Furthermore, the emotions
valence and frustration are implemented. Both emotions decay every 20 seconds with the rate of the
EDQ to their neutral point of 0.

Different events can trigger a change of emotions. This includes for valence: completing a secondary
goal (+0.2), reaching the primary goal (+0.1), getting useful information from other agent or informa-
tion board (+0.1), reaching the soft/urgent threshold of a need (−0.1/ − 0.3) or missing their train
(−0.3).



The frustration emotion changes with the following events: sitting on a bench (−0.2), missing train
(+0.3), POI queue full (+0.2), finishing their navigation without reaching their goal (+0.1) and waiting
for elevator/train doors (1𝑒−5 every physic tick).

Points of Interest (POIs) Multiple POIs are placed in the 3D model of the Hamburg-Harburg train
station. This includes a total of 47 benches, 8 vending machines, 5 smoking area, 4 shops and 1 restroom
area. The following table presents a breakdown of the usage time and capacity of POIs. The capacity of
the POI is defined as the maximum number of individuals who can utilise the POI concurrently. In the
event of maximum capacity, the agent can begin queuing at the most of the POIs.

POI Type Usage time Capacity
Restroom 4 min 9
Shop 5 min 4
Smoking Area 5 min 9
Vending Machine 2 min 1
Bench 7 min 2-6

Table 7
Configuration of POIs in the simulation model; For each type of POI, a usage time and a capacity is set in the
model.

4.3. Scenarios

In order to showcase the implementation and evolution of the agent’s internal state, we have looked into
some agents’ lifespans in the model. In the following, we have looked at these data more precisely. At
the start of the simulation, we have set the initial values for needs, emotions, knowledge base, persona,
and the train they want to catch. They decide the rest themselves, based on their needs. All of the
scenarios take place at 30th October of 2024.

4.3.1. A tourist’s visit to the train station

The agent is spawned with these initial values:

• Needs: Thirst, Hunger, Nicotine, Restroom, Energy, Information respectively 0.44, 0.20, 0.25, 0.30,
0.37, True(1)

• Emotions: Valence and frustration, respectively -0.10 and 0.20
• Persona: Luggage, Age, Basic Mobility, EDQ, Smoker: No luggage, 50, 1, 0.0039, True(1)
• Knowledge base : He is a tourist and totally new to the station, therefore he does not know about

the POIs in the station.
• Goal: Taking the ICE 881 to Munich train station at 14:13
• Spawn time and planned departure: 13:43 and 14:13 respectively

The agent arrives at the station at 13:43. His primary objective is to catch train 881, scheduled to
depart at 14:13. Shortly after arrival, the agent retrieves platform information from a display board.
Recognizing that he has sufficient time before departure, he begins addressing secondary needs. At
13:45, he notices a vending machine and quenches his thirst, reducing his thirst level to zero. He then
proceeds to a platform but realizes it is incorrect. After consulting the information board again, he
navigates to the correct platform. Given the combination of initial physiological states and recent
fluid intake, he visits a restroom at 14:00. At 14:08, he rests briefly on a bench before successfully
boarding the train at 14:13. The agent’s valence level fluctuates throughout the episode due to various
factors such as acquiring needed information, achieving secondary goals, or encountering obstacles
(e.g., discovering the incorrect platform). Frustration levels increase in response to negative experiences
in the environment but, like valence, tend to decay over time toward a neutral baseline. This work
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Figure 3: Temporal evolution of emotion and need levels for an agent in the simulation model. The figure
illustrates how the agent’s internal states emotions and physiological needs dynamically change in response to
situational factors and decision-making processes within a goal-oriented scenario.

also models agent interactions, including behaviors such as requesting information from other agents,
which happens at the first minute of the scenario, and exhibiting increased frustration when obstructed
by them. The latter did not occur during this particular agent’s run, as the station was not crowded at
the time.

5. Discussion

In this paper, we proposed an approach to cognitive modeling of agents in a train station environment,
incorporating both emotional states and individual needs. Each agent is assigned a persona that
differentiates it from others. Agents begin with a baseline understanding of their environment, and their
knowledge base is updated as they explore the simulated environment. Building on this foundation,
we introduced a decision-making mechanism that allows agents to make choices based on both their
internal states and external factors, such as the availability of POIs. This cognitive modeling approach
was implemented in a simulation environment, where it demonstrated realistic and coherent agent
behavior. Validating cognitive models remains a complex challenge due to the inherently intricate and
variable nature of human cognition, as well as the unpredictability of external conditions. Our work
represents an effort to rationally approximate a basic decision-making process that accounts for both
internal and external influences. There is significant room for future improvement, including enhanced
detail in agent modeling, parameter optimization, and refinement of the decision-making algorithms.

We believe our approach offers a foundational step toward more realistic cognitive modeling of
agents in simulations. Accurate modeling of this kind can enhance our understanding of human
behavior in complex environments like train stations, enabling better prediction and planning. Potential
applications are wide-ranging, including disaster preparedness, crowd management, and architectural
or environmental planning.

6. Conclusion & Future Work

In this work, we presented a cognitive modeling framework for simulating agents in a train station
environment, incorporating individual personas, emotional states, and evolving knowledge bases. By



designing a decision-making mechanism sensitive to both internal factors (such as needs and emotions)
and external stimuli (such as environmental dynamics and POI availability), we aimed to move toward
more realistic agent-based simulations. Our implementation demonstrated that cognitively informed
agents can exhibit believable and diverse behaviors within a dynamic environment. While the model
simplifies many aspects of real human cognition, it serves as a promising foundation for more complex
and robust simulations of human-like decision-making.

Looking ahead, there are several promising directions for future work: (i) enhancing agent complexity
by incorporating richer emotional models, social dynamics, and learning mechanisms; (ii) refining the
decision-making process through more advanced heuristics or probabilistic reasoning models; (iii) pa-
rameter optimization and calibration, possibly using empirical data or machine learning techniques; and
(iv) validation against real-world behavior, such as through observational studies or crowd simulation
benchmarks.

Furthermore, applying this framework to more diverse environments such as airports, shopping
centers, or emergency evacuation scenarios could broaden its applicability and test its generalizabil-
ity. Ultimately, we hope that continued development in this area can contribute to more accurate,
interpretable, and useful simulations for planning, design, and emergency preparedness.
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