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Abstract

Preterm births have been associated with altered neurological development for neonatal infants; this has been
implicated in certain neuro-developmental conditions in later life. Advances in brain imaging methods, such as
Magnetic Resonance Imaging, have allowed for the analysis of physical connectivity of brain matter in infants
shortly after birth. However, commonly used methods of investigating such data rely on a brain network analysis,
traditionally based on graph-theoretical approaches, which may fail to capture complex patterns involving both
local and global network structures and spatial information. Furthermore, many previous studies of infant brain
data rely on a priori selection of specific graph connectivity measures. We propose employing machine learning
models such as logistic regression and Graph Neural Networks (GNN) to provide a data-driven approach for
classifying preterm and term brain networks at birth. We utilize fuzzy logic, and explainability methods including
Shapley Additive Explanations (SHAP) to identify influential regions and connections in decision making. In
our analysis, brain regions are represented as spatially embedded nodes, with edges representing strength of
structural connections between areas. Using this setup, our model achieves a binary classification accuracy
of 88.57%. This performance is further enhanced using a fuzzy boundary between preterm and term classes,
achieving an accuracy of 96.19%. This demonstrates that the model can be assisted particularly by adding context
to “near-term” born infant cases. These analyses highlight important connections and key nodes, including deep
brain structures which are broadly consistent with biological literature.
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1. Introduction

Preterm births disrupt the critical final trimester of infants and carry the potential to affect infant
neuro-development, potentially leading to further complications later in life [1, 2, 3, 4]. Recent advances
in infant brain imaging methods applied shortly after birth [5], have allowed researchers to map brain
matter connectivity into structured network representations suitable for application of computational
methods. Traditionally, brain connectivity of infants has been studied using graph theoretical measures,
such as the rich-club coefficient and clustering coefficient to expose the structural differences between
term and preterm infant brains [5, 6, 7]. Various studies using traditional graph theoretical approaches
have suggested that preterm infants exhibit reduced connectivity between hub regions in the brain
when compared with term infants, specifically during early stages of birth when these measurements
are taken [6, 7, 5, 8].

MAI-XAI@ECATI’25: Multimodal, Affective and Interactive eXplainable Al

*Corresponding author.
https://github.com/Katherine-Birch/Explainable-Al-and-fuzzy-logic-for-preterm-term-structural-brain-connectivity

Q kbirch@surrey.ac.uk (K. Birch); albduranlopez@ugr.es (A. Duran-Lépez); danibolanos@ugr.es (D. Bolafios-Martinez);
c.pravin@surrey.ac.uk (C. Pravin); mbe@ugr.es (M. Bermudez-Edo); r.bauer@surrey.ac.uk (R. Bauer); s.de@surrey.ac.uk
(S. De)

& http://www.ugr.es/local/mbe (M. Bermudez-Edo); https://www.surrey.ac.uk/people/roman-bauer (R. Bauer);
https://www.surrey.ac.uk/people/suparna-de (S. De)

@ 0000-0002-1763-7396 (K. Birch); 0009-0005-8995-869X (A. Duran-Lopez); 0000-0003-0207-2908 (D. Bolafios-Martinez);
0000-0003-1530-0121 (C. Pravin); 0000-0002-2028-4755 (M. Bermudez-Edo); 0000-0002-7268-9359 (R. Bauer);
0000-0001-7439-6077 (S. De)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5



mailto:k.birch@surrey.ac.uk
mailto:albduranlopez@ugr.es
mailto:danibolanos@ugr.es
mailto:c.pravin@surrey.ac.uk
mailto:mbe@ugr.es
mailto:r.bauer@surrey.ac.uk
mailto:s.de@surrey.ac.uk
http://www.ugr.es/local/mbe
https://www.surrey.ac.uk/people/roman-bauer
https://www.surrey.ac.uk/people/suparna-de
https://orcid.org/0000-0002-1763-7396
https://orcid.org/0009-0005-8995-869X
https://orcid.org/0000-0003-0207-2908
https://orcid.org/0000-0003-1530-0121
https://orcid.org/0000-0002-2028-4755
https://orcid.org/0000-0002-7268-9359
https://orcid.org/0000-0001-7439-6077
https://creativecommons.org/licenses/by/4.0/deed.en

Many of these previous approaches, while providing valuable insights into certain preterm brain
connectivity patterns, have inherent limitations, namely, they require a priori selection of specific graph
connectivity measures [9]. The pre-selection of particular hypothesis-driven measures [10, 9] raises the
potential of overlooking complex or unexpected connectivity structures that may be captured using
more data-driven computational methods. Furthermore, these graph theoretic measures are sensitive
to the methodological choices, such as thresholding, network normalization, and hub definition [10].
Combined, these methodological variations contribute to a lack of reproducibility across studies and
datasets [10].

Beyond the classification of preterm and term infants, in this paper we are primarily interested in
identifying the differences in neurological structures that distinguish the two populations. To achieve
this, we apply machine learning (ML) explainability techniques that aid in visualizing and understanding
the models’ decision boundaries [11, 12]. Rather than relying solely on machine learning to extract
abstract patterns, we adopt a data-centric approach that iteratively maps model outputs back onto the
dataset, and validates neuro-developmental variance between preterm and term infants, as described in
the literature [13, 3, 6, 2, 14, 15, 16, 17, 4, 18]. Through our approach that focuses on explainability of
the classification task, we hope to enhance the understanding of the neuro-biological differences of
term and preterm infants. The findings from this paper have the potential to support future clinical
interventions and developmental support strategies. Our contributions are as follows:

+ We present an empirical comparison of different ML and GNN architectures for classifying preterm
versus term infants from structural brain data. This provides insights into the abilities of various
Al models applied to complex, real-world biological data.

« We investigate the impact of incorporating a biologically informed feature engineering strategy.
We use atlas-based spatial coordinates (centroids) as additional model inputs.

« We introduce a novel adaptation of fuzzy logic for label smoothing, specifically designed to
address continuous development in medical classification. This approach combats the noisy class
boundary and considers domain-specific priors, resulting in improved model accuracy.

« We provide insights into model decision-making through the use of SHAP explainability. We
do this by aggregating node-level attributions and edge-importance matrices, and projecting
them onto the brain atlas to visually interpret the models’ decisions. We critically discuss the
consistency across different architechtures, and discuss consistency with known neuroscientific
literature.

« All code is available on GitHub .

2. Related work

Due to the way structural brain data is processed, it often takes the form of a connectivity matrix, with
nodes representing brain regions and edges representing connections between them. Graph theoretical
measures are commonly used to analyze such brain connectivity data. For example, studies investigate
connectivity patterns and population differences by comparing values of graph metrics derived from
the structural connectome. In the context of preterm birth, researchers have used measures such as
the rich club coeflicient, betweenness centrality, and small worldness. These metrics aim to identify
important brain regions, developmental patterns, and network efficiency. However, they are often
difficult to interpret. When combined, it becomes unclear how much each measure contributes to the
observed similarity or difference between networks. For instance, in studies comparing preterm and
term infants, findings on the prominence of the rich club are inconsistent. Some report greater [7],
while others report lesser [19] rich club organization in preterm infants. These discrepancies may
result from differences in normalization, metric definitions, or how multiple measures are integrated.

'https://github.com/Katherine-Birch/Explainable-Al-and-fuzzy-logic-for-preterm-term-structural-brain-connectivity
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Figure 1: Brain connectivity visualizations from different perspectives. Nodes represent the centroid
coordinate of each brain region, and edges denote the connections between them. Here, edges are
shown based on their strength (darkness and thickness). Node color scale is showing regions from
front-brain (blue) to top-back (green) and lower-back (yellow). These provide coordinate location of
nodes relative to each other.

In addition, many of these metrics do not account for the spatial location of brain regions and often
require extra graph-based or post hoc analyses to support hypothesis-driven interpretations.

Outside the context of preterm birth, some studies have applied ML models to analyze infant brain
data [20, 21]. Support Vector Machine (SVM) was applied to functional brain connectivity data from
infants in order to predict between preterm and term [22]. This study had a low sample size, with
only 50 infants, and considered functional rather than structural connectivity. One recent study [5] did
consider both preterm and term brains; however, it focused on predicting gestational age rather than
directly classifying preterm versus term brains. Additionally, the study suffered from a significant lack
of data, with only seven infants in each group. The regression model also showed poor performance,
with a very low R? score, and the authors did not report standard ML metrics, making comparisons
difficult.

Recently, researchers have proposed that Graph Neural Network (GNN)-based models may be well
suited for tasks involving structural brain data. This approach has been applied in some contexts
with varying degrees of success. However, differences between preterm and term brains have not
been explored using GNNs. Cui et al. [9] proposed using GNNs and highlighted several ways brain
connectivity data can be transformed into graph format. However, the reported results showed low
accuracy. Messaritaki et al. [23] also explored this idea, demonstrating various methods for defining
structural brain data as a graph. They noted that, despite the apparent suitability for GNNs, brain
network nodes often lack meaningful values. They emphasized the importance of considering the
strength of connections. Importantly, their work did not address differences between preterm and term
infant brains.

Medical literature shows that identifying and predicting differences in infants born before their
estimated due date can be challenging. This is due to several factors, including the difficulty of accurately
estimating due dates and the common assumption that all pregnancies should ideally last the same
amount of time. In reality, gestational age (GA) at birth varies widely, with many births occurring within
a window around the estimated due date [16]. Researchers have noted that assessing the potential risks
for preterm infants born near the full-term threshold is particularly difficult [18, 14, 17]. In classifying
stages of prematurity, fuzzy logic has been proposed in both the biological domain [24, 25, 26] and
neuroscience [27, 28]. However, this approach has not yet been applied in the context of infant brain
network connectivity.



3. Method

We frame the task of distinguishing preterm from term infant brains as a binary classification problem
using structural connectomes derived from Diffusion Tensor Imaging (DTI). Each subject’s brain is
represented by a connectivity matrix A; € R”", where the rows and columns correspond to defined
brain regions, and the entries reflect connection strengths between those regions [5]. Since connectomes
may differ between preterm and term births, we explore two complementary modeling perspectives:
one that operates directly on the matrix representation of A;, and another that interprets it as a graph
structure.

3.1. Matrix-Based Approach

Each structural connectome is encoded as a symmetric adjacency matrix A; € R™", where where n is
the number of nodes, representing distinct regions in the brain. The entry A;[u, v] gives the strength of
the connection between region u and region v. Since A; is symmetric and its diagonal entries carry no
information (they represent self-connections), we extract a feature vector by listing all entries above
the main diagonal, where u < v:

X; = (Al[l,Z], Ai[l,g], ceey A,-[n—l,n]). (1)
This vector contains exactly one entry for each unordered pair of regions, capturing all unique connection
strengths in the brain network. The resulting feature vector has length d = @

3.2. Graph-Based Approach

Alternatively, we interpret each structural connectome as a weighted, undirected graph G, =

(V, E;, Xéi), e(i)), constructed from its connectivity matrix A; € R™":

« Vis the fixed set of n nodes, each corresponding to a brain region.
« E; CV xVis the subject-specific edge set, defined by nonzero connections in A;.

. Xy) € R"™/f is the feature matrix for the i-th node.

. Xe(i) € REM js the edge feature matrix. Each edge (v;,v) € E; carries a connectivity strength
equal to A;[j, k].

This formulation transforms each structural connectome i into a graph G;, enabling the use of
graph-based learning models to perform binary classification.

3.3. Feature Augmentation and Preprocessing strategies

To improve model performance, we explore both feature augmentation and preprocessing strategies.
Table 1 summarizes the techniques applicable to both matrix-based and graph-based formulations.
Figure 1 shows brain connectivity visualizations using spatial coordinates from Table 1.

3.3.1. Spatial coordinates

In order to obtain spatial coordinates we calculate node centroids based on each brain region in the
infant brain atlas [29, 30] which was used in the initial processing of DTI scans. We first identify unique
non-zero integer labels within the atlas NIfTI 2 image. For each brain region (1-90) we identify all voxels
belonging to that region, and calculate the centroid of each giving us a mean X,Y,Z node coordinate per
region. Applying the affine transformation matrix from the NIfTI header, we are able to obtain the real
world spatial coordinates (in mm) from the voxel space centroids. These coordinates are approximate
central locations for the corresponding nodes in the already processed connectivity matrices. This

“File type: Neuroimaging Informatics Technology Initiative



allows us to take information such as the organisation of nodes relative to one another. The resulting
centroids are shown in Figure 1.

Table 1
Feature augmentations and preprocessing strategies.
Feature Description
Spatial Coordinates Adds (x, y, z) atlas-based centroids as node features, providing spatial
information.
Node Degree Adds the number of edges per node: d, = Y I[A[v,u] > 0], encoding
local connectivity.
Thresholding Removes weak edges below a threshold e: A[v,u] = 0if A[v,u] <e
Undersampling Balances class distribution by randomly removing samples from the

majority class. See Figure 6 in Appendix A for a histogram demonstrat-
ing distribution of GA in the dataset.

3.4. Fuzzy logic

In the standard formulation, the gestational age (GA) label is defined as y; = preterm if GA; < rand
y; = term if GA; > 7, with the cutoff set at 7 = 37 weeks [31]. However, GA is recorded in whole weeks,
and biological maturation is continuous, so infants at 3616days and 37704ays weeks often exhibit nearly
identical connectomes [16]. Recent studies have shown that functional brain development evolves
gradually around this gestational threshold, without a sharp boundary [15]. As a result, models trained
on these hard labels tend to struggle for subjects with GA; near 7, where small dating errors introduce
label noise and the decision boundary becomes arbitrary. To address this, we define a soft target:

y.SOft _ 0'( GAl - T) _ 1
! T _ GAi—T ’
1+ exp ( — )

where T'is a temperature parameter that controls the smoothness of the transition, as shown in Figure

(2)

2.

Training with these soft targets smooths the decision boundary around 37 weeks, which may reduce
the impact of GA-recording errors. This approach encourages the model to learn graded changes in
connectivity rather than an abrupt jump, and it aims to improve robustness in the late preterm window
(35-37 weeks), where clinical and connectomic differences lie on a continuum. A comparison of the
fuzzy and traditional boundaries is shown in Figure 3.

3.5. Explainability

While high classification performance demonstrates that structural connectomes carry discriminative
information, understanding why a model makes its decisions is important for trust and biological
insight. In brain networks, explainability reveals which connections or regions drive the prediction of
preterm versus term status, guiding neuroscientific hypotheses and potential biomarkers.

We employ SHapley Additive exPlanations (SHAP) [11] to decompose the prediction f(x) as:

d
f® =g¢o+ . ¢ (3)
j=1

where ¢ is the baseline output and ¢; is the SHAP value of feature j.
After computing the SHAP matrix ® € RN*? for N'subjects and d features (edges and global covariates),
we identify the most important edges and nodes as follows:



'
Probabilityl

$ss080s000000000s000000 000000000 0a

Figure 2: Sigmoidal mapping from gestational age to soft target y*°". This illustrates the variables transition
point (7) and steepness (T) and how they interact with GA. From this interaction we determine probability, and
this serves as the fuzzy label.
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Figure 3: The left-hand image shows traditional binary labels, where all subjects are classified as 0
(preterm) or 1 (term) based on the 37-week threshold. The right-hand image shows the same subjects
after applying fuzzy logic, with a smoothed transition around the threshold.

1. Edge importance matrix. We compute the mean absolute SHAP value for each edge feature:

: (4)

N
_ 1 @
Mu’V - K] Zl|¢jél’u’v)
i=

where j(i, u, v) maps the pair of regions (u, v) to the corresponding index in x. We then symmetrize
the matrix by setting M,,, = M,,,,.



2. Node-level aggregation. For each node v, we define:

1
I, = n_1 ZMuva (5)
u#v

which captures the average importance of all edges incident on v.

For SHAP importance threshold 6, edges with M,,, > § and nodes with top I, values identify the
most influential connections and regions driving the model’s decisions. This explainability pipeline
highlights the features that most strongly inform the classifier [12].

4. Experiments

4.1. Dataset

We use data from the Developing Human Connectome Project 2nd release [32] which was processed in
[5], and made available on their GitHub >. It comprises structural brain data from 524 infants, shortly
after birth, acquired via DTL Connectivity is represented as symmetric adjacency matrices between 90
cortical and subcortical regions. For each subject, we also have the following metadata: gestational
age at birth (GA), postmenstrual age at scan (PMA), sex, session ID, and subject ID. We derive the
preterm/term label using GA<37 weeks as preterm and GA>37 weeks as term. Table 2 summarizes all
variables, including their array shape and type.

Table 2
Description of dataset variables.
Variable Shape Description
SCmu (90,90, 524)  Connectivity matrices for 524 subjects
ga (524, 1) Gestational age at birth (weeks)
mu (1, 524) Mean edge weight
pma (524, 1) Postmenstrual age at scan (weeks)
ses (1,524) Session identifiers (string)
sex (524, 1) Sex (0 = female, 1 = male)
sub (1,524) Subject identifiers (string)

4.2. Design

We apply the proposed methodology to the dataset described above. We use four baseline ML models:
Logistic Regression (LR), SVM, Multi-Layer Perceptron (MLP), and Random Forest (RF) [33]. We also
evaluate three GNN architectures: Graph Convolutional Network (GCN), Graph Attention Network
(GAT) and Graph Isomorphism Network (GIN) [34, 35, 36]. Each execution uses 5-fold cross-validation
(CV), with hyperparameters selected as shown in Table 1. We use stratified sampling and use a 20% /
80% training/test split. Additionally, we integrate fuzzy logic into the best-performing models from both
the ML and GNN approaches. We use accuracy, precision, recall and F1-score as the evaluation metrics
for all experiments. In addition, we calculate weighted averages, in order to account for unbalanced
classes [37]:

. (Metric x Class sizey) + (Metric; x Class size)
Metricy, = . (6)

Class size + Class size;

*https://github.com/CoDe-Neuro/Predicting-age-and-clinical-risk-from-the-neonatal-connectome
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Table 3

Impact of Spatial Information on ML Model Performance. We show LR, SVM, MLP, RF. We also show GNN
variants: GCN, GAT, and GIN. Each model is assessed with and without the inclusion of spatial node coordinates.
All values are shown from 0 to 1. Best results are in bold. Weighted averages consider unbalanced classes [21
preterm; 84 term].

Model Class Precision Recall F1-score Overall (weighted average)
Accuracy Precision Recall F1-score

LR _l;:::rm 8;2 g:;g g;i 0.89 0.89 0.89 0.89
LR + Spatial _l;erf:rm 822 3:2; g:gz 0.93 0.93 0.93 0.93
SVM ?erffsrm 3:217 g:zg g;” 0.87 0.90 0.87 0.88
SVM + Spatial ?e“::rm 838 :)jgg g:gg 0.20 0.04 0.20 0.07
MLP ?;f:rm ggg g:;g g:z;’ 0.81 0.78 0.81 0.76
MLP + Spatial ?;f:rm 828 ff,?, g:gg 0.80 0.64 0.80 0.71
RF ?:::rm Ligg ?:(1)?) g;f 0.84 0.87 0.84 0.79
RF + Spatial ?:::rm Ligg :):(1)?) g:;; 0.82 0.85 0.82 0.75
GCN _igf:jrm giz; g:gg g:gi 0.89 0.89 0.89 0.87
GCN + Spatial _l;e“r’:rm 828 ?:g?) 3:23 0.80 0.64 0.80 0.71
GAT ?erffjrm 3:;3 g;; g:;i 0.90 0.90 0.90 0.90
GAT + Spatial ?e“::rm gzzg 3:3?; g:g;’ 0.89 0.88 0.89 0.87
GIN ?;f:rm 828 :):?)?) g:gg 0.80 0.64 0.80 0.71
GIN + Spatial ?g:rm 828 :):gg g:gg 0.80 0.64 0.80 0.71

Table 4
Performance metrics with fuzzy logic. We select the two best performing models from Table above: LR with
Spatial and GAT. Values are shown from 0 to 1.

Model Class Precision Recall F1-score Overall (weighted average)
Accuracy Precision Recall F1-score
. Preterm 0.95 0.86 0.90
LR + Spatial + fuzzy Term 0.97 0.99 0.98 0.96 0.96 0.96 0.96
Preterm 0.92 0.52 0.67
GAT + fuzzy Term 0.89 0.99 0.94 0.90 0.90 0.90 0.88

4.3. Results

In Table 3 we present the ML and GNN results alongside those obtained using the spatial-coordinate
(described in Table 1). We focus on those atlas coordinates from Table 1 because this strategy was
the only one to improve model performance. Based on these results, we select the best-performing
algorithms from each approach (LR with spatial coordinates and GAT) and apply fuzzy-logic labeling,
as shown in Table 4.



4.4. Explainability

We use SHAP Equations 4 and 5 to compute attribution scores, deriving edge-importance matrices
and aggregating node-level importances to interpret each model prediction. Figure 4 contrasts feature
importance in the LR and GAT models through both heatmaps and Atlas-based network plots. The
top row displays SHAP edge-importance heatmaps, highlighting which connections most drive each
model’s predictions. The bottom row renders nodes at their Atlas coordinates, sized and colored by
SHAP score to reveal the most (red) and least (green) influential regions (node indices correspond to
Table 5). Figure 5 presents the SHAP summary plot indicating influence of individual connections on the
LR model outcome. Negative SHAP values indicate the model is pushed towards class 0 (preterm) while
positive values classify towards class 1 (term). Red indicates high feature values while blue indicate low.
Finally, Table 5 presents the top 10 and bottom 10 nodes ranked by SHAP importance for both the LR
and GAT models. Regions shown in bold indicate agreement between the two models. LR and GAT
concur on 8 of the 10 least important nodes, whereas they align on 4 of the 10 most important regions.

Table 5

Top 10 and bottom 10 nodes by SHAP importance for both LR and GAT models, with bold indicating regions of
agreement (8/10 least important; 4/10 most important. SHAP values calculated through the combined metric.
These regions are displayed in Atlas coordinate space in Figure 4 panels (c) and (d).

LR | GAT
Top 10
Node  Node SHAP Node Node SHAP
Index Name Value Index Name Value
78 Thalamus R 0.22 90 Temporal Inf R 0.39
31 Cingulum Ant L 0.21 61 Parietal Inf L 0.38
32 Cingulum Ant R 0.20 7 Frontal Mid L 0.37
34 Cingulum Mid R 0.18 30 Insula R 0.35
36 Cingulum Post R 0.18 82 Temporal Sup R 0.33
30 Insula R 0.18 78 Thalamus R 0.33
68 Precuneus R 0.18 29 Insula L 0.33
8 Frontal Mid R 0.16 62 Parietal Inf R 0.33
74 Putamen R 0.16 74 Putamen R 0.33
7 Frontal Mid L 0.16 71 Caudate L 0.31
Bottom 10
54 Occipital Inf R 0.06 50 Occipital Sup R 0.09
21 Olfactory L 0.06 87 Hippocampus L 0.08
11 Frontal Inf Oper L 0.06 75 Palladium L 0.08
70 Paracentral Lob R 0.06 37 Frontal Inf Oper L 0.08
75 Palladium L 0.05 49 Occipital Sup L 0.07
69 Paracentral Lob L 0.05 54 Occipital Inf R 0.07
80 Heschl R 0.05 45 Cuneus L 0.07
49 Occipital Sup L 0.04 70 Paracentral Lob R 0.06
37 Hippocampus L 0.04 80 Heschl R 0.03
79 Heschl L 0.01 79 Heschl L 0.03

5. Discussion

From Table 3 and Table 4 we see that LR is the best performing algorithm overall. Most models do
well on average, but SVM, MLP and RF have trouble with the preterm class. Among the GNNs, GCN
achieves moderate performance across both classes. GAT outperforms GCN, likely because its attention
mechanism highlights the most informative graph connections. Adding spatial coordinates improves
LR performance, as the atlas location data provides useful information, but it does not benefit the
GNN models because it introduces additional complexity causing overfitting in some variants. For
example, we note that GIN overfits, suggesting that more complex GNN models do not necessarily
outperform simpler models like LR in this context. However, future work could broaden the scope
through further experimentation with alternative architectures. Moreover, incorporating fuzzy logic into
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Figure 4: The top panels show SHAP edge-importance heatmaps for LR (left) and GAT (right). The
bottom panels (LR - left; GAT - right) depict nodes in Atlas coordinates space colored red (top 10), green
(bottom 10), and yellow (others). The regions in lower panels (left) and (right) correspond to the region
names in Table 5 (NB// Node numbers here from 0-89).

LR further enhances its performance by allowing smoother transitions around the decision threshold
and better handling uncertainty in feature values. One prior study applied SVM to functional brain
data and reported an accuracy of 84% [22]. In our experiments, SVM achieved a comparable accuracy
of approximately 86% but was nonetheless outperformed by other methods. Although we focus on
structural rather than functional development, we observed that SVM exhibited a pronounced bias
toward the majority class, which is an important limitation given the relative scarcity of data in this
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Figure 5: SHAP summary plot visualizing each edge connection’s impact on the best model output (LR). Negative
SHAP values indicate the model is pushed towards class 0 (preterm) while positive values classify towards class
1 (term). Red indicates high feature values while blue indicate low.

domain.

In order to further understand these results, we consider the main regions and connections that con-
tribute to the classification. We note that while SHAP is not enough to confirm any causal relationships,
there are a number of interesting findings which are supported by biological literature. From SHAP
analysis of LR and GAT models, the regions indicated are predominantly from the deep brain structures
like putamen and thalamus, confirming previous findings [13, 38]. Additionally, it demonstrates that
the models consistently attend to specific regions, suggesting notable differences between preterm
and term brain connectivity. Many of the connections which were highlighted as important, were



between nodes which were also identified as important. Table 5 demonstrates that there are regions
consistently attended to regardless of LR or GAT model, but also indicates that the regions that are most
consistent across models are the ones least influential which provides valuable insights into the effect of
preterm birth on different brain regions. Moreover, regions least important in distinguishing between
the classes include regions which are generally understood to be well developed early before birth,
for example Heschl’s gyrus, occipital lobe areas, and the temporal pole, corroborating Gilmore et al.
[13]. These are associated with vision, hearing and other senses [38]. While regions most influential
in the classification are understood to be present early in development, connections between these
regions undergo significant development closer to the time of birth [39]. These regions have also been
suggested as contributors in conditions such as Autism Spectrum Disorder (ASD) [1]. The thalamus
is one key region highlighted in our results. Neuroscientific studies have suggested that connective
differences in the thalamus are linked to epilepsy [40], and it is well established that the risk for epilepsy
is increased by preterm birth [3, 2]. Another region which was particularly indicated in the LR model
was cingulum, which has previously been implicated in developmental conditions following preterm
birth [4]. Moreover, Figure 5 illustrates that the connections between certain regions are influential
in the classification, and demonstrates that higher feature values on certain edges can indicate either
preterm or term depending on which regions they connect. For example this suggests that for higher
feature values of the connection between Frontal_Sup_L and Frontal_Sup_Medial_L, the model predicts
cases of term infants. For the same edge with lower feature values, the model is more likely to classify
as preterm. Many of the regions indicated in Figure 5 are also indicated in Figure 4, suggesting that not
only are the nodes important, but suggesting that important nodes also connect to other important
nodes [8, 7].

Including fuzzy logic in the model is important, as not only does it improve the accuracy and precision
of the classification, but it allows for individual differences. Individuals close to the term cut off of 37
are difficult to classify, which may suggest that some are more similar to the term class than others of
the same GA. This is important for further studies to take into account, and may also explain why it is
difficult to predict pediatric outcomes for this particular group of infants [14, 17].

Future work could consider alternative explainable models, and compare the insights with those we
presented from SHAP, as well as comparisons to the neuroscientific knowledge. Moreover, our study is
limited by data scarcity, so future studies should aim to incorporate any further data which becomes
available. While we addressed the issue of class inbalance through undersampling, further work could
explore alternative methods for counteracting this.

6. Conclusion

In this paper, we compare matrix-based and graph-based classifiers for distinguishing preterm from term
infant brain connectomes and show that adding spatial atlas coordinates improves model performance.
We apply a fuzzy-logic boundary around 37 weeks’ GA to the best LR and GAT models to smooth the
decision threshold, raising accuracy from 88.57% to 93.33% with spatial coordinates and to 96.19% when
adding fuzzy logic, which lets the model learn gradual maturational changes. Among graph neural
networks, GAT outperforms GCN but still falls short of LR, demonstrating that a simple linear model
can separate both classes without added complexity.

Using SHAP edge and node importance scores, we identify a consistent set of deep-brain regions
(thalamus, putamen, cingulum) and their connections as the primary classification drivers, aligning
with known neuro-developmental findings on preterm risk. This interpretable mapping suggests
potential biomarkers for early developmental screening. Future work can expand the cohort and treat
gestational age as a continuous variable to refine sensitivity in the late-preterm window and support
more personalized assessments.
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A. Histogram of Gestational Age

Distribution of Preterm and Term Gestational Age
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Figure 6: Gestational age histogram (including cases between 35-37 weeks). Demonstrates class imbalance.
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