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Abstract
State-of-the-art multimodal models, namely Vision-Language Transformers, have revolutionized automatic image
and text generation through the fusion of these two information media. Multimodal generation tasks, such as
Medical Image Report Generation (MIRG), benefit greatly from these architectures, which are increasingly being
adopted. However, MIRG is a safety-critical task, raising pressing concerns when it comes to Responsible AI
development practices being adhered to. Any models that support clinical decision-making — in which MIRG can
play an important role — must be highly reliable, interpretable, and trustworthy. As such, Explainable AI (XAI)
methodologies are crucial for the correct development and usage of these models. We argue that XAI can help
unlock further Responsible AI practices for MIRG multimodal model development, namely by serving as a guide
for Stress Testing — a testing procedure that requires systematic probing of AI models with specific inputs to
derive application and robustness limitations. By leveraging visual, example, and textual-based explanations, it
is possible to better understand what input characteristics reduce the generation quality in MIRG models, thus
guiding the stress testing process towards those worse-performing scenarios. We believe that XAI contributes
both to the interpretability and reliability of MIRG approaches by offering tools that help develop more complex
Responsible AI practices.
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1. Introduction

State-of-the-art generative transformer models have revolutionized the landscape of image-text mul-
timodal Artificial Intelligence (AI), achieving superior capabilities than previously seen by compre-
hensively fusing information from these two media [1]. One domain that benefits greatly from this is
healthcare, namely medical imaging diagnostics, an inherently multimodal domain.
For every medical imaging exam, there is a complete report with a textual analysis and diagnosis.

Typically, a radiologist must analyze the medical image and, based on their observations and acquired
medical knowledge, compose a complete report with their findings. However, given that most hospital
patients have to perform at least one type of imaging exam to aid their diagnosis, thousands of reports
are written every day. As it is a time-consuming and fundamental process, an increased research
effort in Medical Image Report Generation (MIRG) as a multimodal generation task has spurred the
development and deployment of specialized AI models to aid healthcare professionals [2].
Recently, several concerns have been raised about Responsible AI usage, namely in safety-critical

domains and tasks that involve sensitive information, such as MIRG. It is of the utmost importance that
AI models used for any healthcare application be transparent, interpretable, reliable, privacy-preserving,
and, all in all, trustworthy. Responsible AI practices should be followed when developing models for
safety-critical applications, and special attention is given to this issue when analyzing AI regulation
documents, such as the European Union AI Act. 1
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Explainable AI (XAI) methods are crucial when striving for interpretable and thus Responsible AI
models. A clear issue with state-of-the-art Transformer-based multimodal models is their inherent
complexity, which is what grants the model a higher degree of encoding of information and better
performance, but requires billions of parameters. This large model size makes model interpretation
difficult, and tracing the model’s decision-making process nearly impossible, so Post-Hoc XAI techniques
are necessary to safeguard interpretability. In MIRG, model interpretation also serves a bigger purpose,
which is to boost model reliability and trust. The ability to correctly describe a diagnosis in a report, using
the necessary information to justify a decision, is crucial for healthcare professionals and, ultimately,
patients to effectively trust an AI model and its decisions [3].

Another important feature for MIRG models is their high degree of reliability, which can ultimately
only be achieved by safeguarding model robustness. If a model performs correctly and as expected in all
scenarios, then the user can rely on the model more easily. Most MIRG model deployment information
only reports on performance metrics and model characteristics, yet lacks details about the model’s
limitations. To fully rely on a model, the user should know the scope of its application and the scenarios
in which the model might function incorrectly or output a prediction with a low degree of confidence,
in order to avoid those scenarios and use the model in a responsible fashion.
In our perspective, XAI methods serve as a guide to finding model limitations and employing an

essential Responsible AI development practice for MIRG: Stress Testing. By understanding the model’s
behavior on each prediction, it is possible to single out the inputs that cause the model to generate
incorrect or low-quality reports and further localize its limitations. For example, understanding which
visual features have the most impact on report generation can guide the stress testing process to focus on
those features and further study the degradation of model performance when changes or perturbations
are introduced. Ultimately, XAI will also help interpretation when stress testing is employed, by
providing insight into the model’s decision-making process when exploring underperforming scenarios.
Thus, XAI methods can aid model explainability in two ways: explanations can be used to guide stress
testing and to provide insight into the model’s worst-performing areas.

Our stance is structured around three positions. The first is all-encompassing, while the second and
third are complementary:

1. XAI can unlock Stress Testing as a Responsible AI practice for multimodal models in MIRG.
2. XAI can guide the stress testing process by providing insight into the model’s inner workings and

finding the most impactful changes that might degrade model performance.
3. XAI can aid the interpretation of model limitations by explaining model behavior when used in a

worst-performing scenario.

This paper is structured as follows. Section 2 gives a brief overview of the related work on multimodal
models for the MIRG task. Section 3 relates to our previously stated first and main position, describing
existing works in the areas of XAI, robustness, and stress testing. Section 4 details existing works
that support the development of stress testing approaches using XAI, justifying our second and third
positions. Finally, Section 5 concludes this paper with a short overview of the discussed topics.

2. Related Work

MIRG is an image-to-text generation task, with the most used multimodal model architecture being
the encoder-decoder stack, composed of a visual encoder and a language decoder [1]. Mostly used in a
pre-trained fashion [4], state-of-the-art MIRG models often leverage the Transformer architecture and
adopt the nomenclature of Vision-Language (VL) Transformers, generating a detailed medical textual
report based solely on a medical imaging exam and, optionally, a prompt.

MIRG models are often trained on large task-specific datasets or generalist medical domain datasets.
Some representative radiology-specific models include R2Gen-CMN [5] and RGRG [6]. MAIRA-1 [7],
LLM-RG4 [8], and DART [9] are three of the newest MIRG-specific models proposed for this task.

1Full-text available at https://artificialintelligenceact.eu/chapter/3/



Among the generalist biomedical models, which include MIRG as a sub-task, it is worth highlighting
Med-PaLM Multimodal [10] and BiomedGPT [11]. These models are often trained and tested on large,
anonymized, and publicly available medical image and textual report datasets, with MIMIC-CXR [12],
CheXpert [13], IU-CX [14], and ROCOv2 [15] among the most commonly used.

There are also some challenges in the evaluation of MIRG, given its domain-specific requirements for
clinical validity, which surpass the common evaluation schemes for text generation. Recently, task-
specific evaluation schemes such as RadGraph-F1 [16] and CheXprompt [17] have been proposed to
further evaluate report quality, completeness, and diagnosis accuracy, leveraging large language models
as evaluators, entity labeling schemes and other more advanced methods to encompass task-specific
requirements.

3. MIRG: a Responsible AI perspective and approaches

As a safety-critical task, MIRG approaches have to adhere to Responsible AI practices and values.
Among those values, the ones we will focus on are reliability and interoperability, inherently connected
to robustness and XAI approaches. The following section will mention key concepts and works directly
related to our positions on XAI and stress testing.

3.1. Robustness for Reliability

Chander et al. [18] define robustness with respect to technical robustness and safety of healthcare
systems, stating that “Healthcare is compassionate, and unconditionally, the AI schemes need to produce
consistent and reliable results since human lives could be on the line if anything goes wrong. [...] AI
systems, while executing, may generate fault outcomes, so designers must build methods that efficiently
handle issues and conflicts if any arise”. Technical robustness, in general, refers to the model’s ability to
provide accurate results while withstanding attacks, threats, or generally unforeseen scenarios/inputs.
Performance benchmarking on a task-specific dataset is the most common way to measure model

robustness, but it is commonly limited to general or ideal application scenarios. Authors commonly
report model performance on these datasets – such as MIMIC-CXR [12], CheXpert [13] and IU-CX [14],
– to better position their work and compare it to other existing approaches. As benchmark datasets for
MIRG do not often contain adversarial, perturbed, or out-of-distribution examples, which provide a
more complete insight into the technical robustness of a model, there is a need for curated datasets that
probe MIRG models under such conditions.
MedMNIST-C [19] aims to tackle this gap by offering a robustness benchmark on common image

corruptions for medical imaging, leveraging 5 different corruption categories with several intensity
levels. There are also a multitude of adversarial attack methods to probe the adversarial robustness of
medical imaging analysis models and perform adversarial training, but only a few have been applied
to MIRG. Dong et al. [20] report on diverse adversarial attacks for medical image analysis and further
explore adversarial defense mechanisms for MIRG, showcasing their applicability potential. Among
these adversarial attacks, the usage of Generative Adversarial Networks (GANs) is highlighted as a
preferred attack method that allows for the conditioned generation of adversarial images.
Technical robustness and model explainability suffer from a trade-off. Complex models are shown

to obtain good performance and high robustness across several domains, which comes at the cost of
explainability. On the other hand, by decreasing the complexity of models to maintain a high degree of
explainability, technical robustness decreases significantly. A balance must be achieved to prioritize
these two values, both of which are crucial to the responsible development of MIRG models.

3.2. XAI for Interpretability

MIRG models must prioritize a high degree of explainability, namely by providing clinically meaningful
explanations. A plurality of surveys on XAI methods for medical image analysis and MIRG have been



published, with a particular focus on Post-Hoc methods that leverage visual, example, and textual-based
explanations [18, 21, 22].

Perturbation XAI approaches, namely SHAP [23] and its variations, focus on observing the effect that
input perturbations have on model behavior, further studying feature importance and ”cooperation” in
the model’s final prediction. Van der Velden et al. [24] use Deep SHAP to explain the image regions
that contributed to the volumetric density estimation on breast MRI images.
Saliency map XAI methods are commonly used to explain which regions or features of a medical

image are most relevant to produce the model output, providing a visual explanation. Approaches
such as Grad-CAM [25], Integrated Gradients [26], Deep Taylor Decomposition [27], among others,
can provide an attention map as an explanation that gives insight into the most important regions and
features of the image. Raghavan et al. [28] propose an attention-guided Grad-CAM, focusing on both
channel and spatial attention, to extract saliency maps for breast cancer detection that leverage the
attention weights from the model. Sayres et al. [29] leverage Integrated Gradients to explain diabetic
retinopathy predictions from retinal fundus images, but found that the explanations suffered from a
bias for positive features. Yoon et al. [30] use Deep Taylor Decomposition on MRI images to explain the
model’s predictions regarding temporomandibular joint anterior disk displacement.
Example-based explanations can commonly be obtained using three categories of XAI techniques:

prototypes and criticisms, counterfactuals, and adversarial examples [31]. MMD-Critic [32] is a ”pro-
totypes and criticisms” approach, using maximum mean discrepancy to obtain representative class
example images that both support and contrast the model’s prediction. cGAN [33], meaning conditional
GAN for Counterfactual image generation, incorporates object detection and image segmentation
information into a gradual generation process to produce interpretable images that preserve clinically
relevant radiographic features. TraCE [34], which stands for “Training Calibration-based Explainers”, is
an uncertainty-based interval calibration counterfactual image generation model, showcasing good
results for the task of chest x-ray anomaly detection.
Textual explanations fulfill a different role in MIRG. MIRG is inherently multimodal, and models

generate a textual output comprised of the radiology report based on visual information. One could
argue that a textual explanation for MIRG is an approximation to the generated medical image report,
a position that several authors adopt. Van der Velden et al. [22] and Patrício et al. [21] divide textual
explanation methodologies into three different categories with regard to medical imaging: image
captioning/reporting, image captioning/reporting with visual explanations, and concept attribution.
As such, the usage of MIRG models – included in Section 2 – can provide an explanation in itself.
A high-quality medical image report must be descriptive and contain all relevant information for a
diagnosis, thus giving insight into what the model perceives in the image and derives from it.

All the aforementioned XAI techniques provide insights into multimodal models’ mode of functioning
and justify their generation process, leveraging different kinds of explanations, which can also be
combined.

3.3. Our Position: XAI to Unlock Stress Testing

Stress testing for AI is a recent field, although this concept has been explored in different contexts/do-
mains, such as software engineering, finance, and materials science, among many others [35, 36, 37]. In
the specific case of software engineering, stress testing involves targeted tests on a software application,
exploring its edge-case usage scenarios to probe if there are any deviations from its programmed
behavior under non-ideal circumstances. While transferring this notion to generative AI, a different set
of challenges is imposed, as generative AI behavior is not deterministic, and edge-case usage scenarios
are more difficult to define.

Some initial attempts at defining stress testing in AI mention the following: “evaluations that probe
the properties of a predictor by observing its outputs on specifically designed inputs” [38]; ”Large
Language Model (LLM) stress testing includes identifying logical gaps within the LLM by giving it
inferential rules for it to discern some general compositional or primitive rule.” [39]; and, ”quantify
model robustness [...], complementing more qualitative tools for explainable AI” [40].



Figure 1: Normal versus Stress Testing MIRG pipelines. Images and report in the Normal MIRG pipeline from
the ROCOv2 [15] dataset.

As defined by existing works and depicted in Figure 1, AI stress testing is a complex practice that
requires exploring specifically engineered out-of-distribution, perturbed, or adversarial inputs [38],
observing and documenting changes in model behavior and performance, and finally extracting a
comprehensive list of model limitations that clearly establish robustness and application boundaries,
thus enhancing model explainability [40].

As such, stress testing is highly connected to XAI and robustness research, relying on the key concepts
of both and, more importantly, on their approaches. Yet, it is in XAI that stress testing finds its meaning,
since XAI methods can guide the stress testing process into the models’ worst-performing areas, and
help interpret the results of stress testing as well.
Our first stated and main position is: XAI can unlock Stress Testing as a Responsible AI

practice for multimodal models in MIRG. As a novel Responsible AI practice, stress testing still
lacks a consensual definition and standard practices, yet the existing works concur in exploring model
limitations with specifically built inputs [38, 40]. This procedure requires understanding a model’s
mode of functioning in order to guide the input construction, which is the reason why XAI methods
can unlock stress testing. Instead of developing AI stress testing approaches from scratch, we argue
that there already exist approaches within the XAI field that should act as the basis for the development
of stress testing procedures, specifically for multimodal models, as described in the following section.
We take MIRG as an example domain in which XAI methods are crucial, and there is an increased need
for new Responsible AI practices, such as stress testing.

The usage of GANs, adversarial and perturbed examples, and counterfactuals aligns with the already
perceived notions of stress testing. But while XAI’s goal is limited to explaining a model prediction
and mode of functioning, stress testing involves the continuous application of these techniques to
approximate and derive model limitations with the aim of thoroughly defining the model’s application
and robustness boundaries.

4. Resources and Methods

In this section, some existing works that support our second and third positions are explored and
detailed.



4.1. XAI to Guide Stress Testing

As previously stated, XAI can guide the stress testing process by providing insight into the
model’s inner workings and finding the most impactful changes that might degrade model
performance. XAI methods that rely on feature perturbations [23, 24] and adversarial or counterfactual
examples [34, 33] derive explanations by analyzing how modifications to the initial input might affect
model performance or the final prediction itself. This perspective of identifying which features most
impact the model prediction can be leveraged to understand the scenarios that negatively influence the
model’s performance and which feature changes will achieve this.
If applied systematically to MIRG’s generative use case, these approaches can help identify increas-

ingly more challenging or stress-inducing inputs in a progressive and guided manner, in order to
effectively understand what impacts report generation the most. The usage of adversarial robustness
benchmarks, such as MedMNIST-C [19], can also help by exposing the model to inherently perturbed
inputs, approximating the idea of systematically probing the models but without the direction that XAI
methods can provide.
Both XAI and robustness research fields often employ GANs for adversarial example generation,

simulating inputs that target the model’s weaker-performing cases. In an early attempt at stress-testing,
GASTeN [41] (Generative Adversarial Stress Test Networks) aims to generate realistic adversarial data
that will increasingly approximate the decision boundary of a model, allowing for better visualization
of which data is classified with the lowest confidence by the model and, thus, derive model limitations.

Additionally, in the previously mentioned TraCE [34], Thiagarajan et al. argue that their counterfac-
tual generation technique can be used to approximate model decision boundaries through the guided
generation of counterfactual images.
RadEdit [40] is a stress testing approach specifically developed for medical images that generates

synthetic examples using masks to protect regions of the image that should not be altered, while
locating regions that should, so as to mimic plausible dataset shifts. This stress testing approach aims
to complement XAI methods by probing models on their robustness against data distribution shifts. To
guide the mask placement during generation, the authors used already existing masks from the data
itself or trained separate segmentation models to generate the masks. One future work direction that
the authors report is the need for quantitative evaluations for the introduced image changes when
generating stress testing inputs, to better guide the generation process towards high-quality changes
that can effectively showcase meaningful model limitations.

4.2. XAI to Interpret Model Limitations

Our final position is thatXAI can aid the interpretation ofmodel limitations by explainingmodel
behavior when used in a worst-performing scenario. Deriving a definition of model limitations
from the inputs used during stress testing is important in order to provide some interpretation to the
stress testing findings. Thus, XAI methods’ role in stress testing is twofold: to guide the stress testing
process and to interpret its final results.

Building upon GASTeN [41], Gomes et al. [42] use this GAN-based stress testing technique and then
apply XAI approaches to build prototypes that demonstrate which type of inputs fall under model
limitations, highlighting the features that negatively affect the confidence of the models the most. They
do so by leveraging prototype generation and GradientSHAP [23].

Moreover, the intrinsic explainability that the generated medical image reports offer can also provide
some insight into model limitations. Although quantifying the model’s performance drop based on the
report quality can be quite challenging, by observing the changes in the generated outputs from the
MIRG methodologies, we can also derive some in-domain explanations for model shortcomings. As this
is a less explored area, there are only a few works that surround these ideas. Baia et al. [43] perform
black-box attacks on multimodal models to understand the effect certain perturbations on the image
can have on the generated explanation, introducing attacks that lead the models to provide unfaithful
explanations, thus showcasing the model’s susceptibility to certain changes in the input.



5. Conclusion

This paper offers a novel perspective on the role of XAI for multimodal models, with a particular
focus on the MIRG task. Responsible AI practices are increasingly necessary to better understand
model behavior and obtain information on these technologies, so XAI methods play a crucial role in
developing novel Responsible AI practices, such as Stress Testing. Our expressed positions offer research
perspectives yet to be explored, while placing XAI at the center of a new approach for reporting on
multimodal model limitations and, ultimately, increasing model explainability and trust.
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