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Abstract
Categorizing patents into different classes is an essential step in processes such as monitoring competitors,
managing patent portfolios, and landscaping existing inventions. In practical applications, classifiers are often
trained on limited data and then applied to out-of-distribution documents, i.e., samples that are quite different
from what the classifier was trained on. This may result in incorrect and nonsensical classification results. In this
work, we explore lightweight methods for detecting such out-of-distribution (OOD) samples before classification.
We show that a simple nearest neighbor-based approach is highly reliable for OOD sample detection in general,
with the downside of having to store the embeddings of the training set to perform inference. We also introduce a
method based on probability density functions (PDF) and show that when combined with a custom thresholding
strategy, it effectively retains in-distribution samples and filters out anomalies, while requiring the storage of
only the mean and covariance matrix of the training data.
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1. Introduction

Classifying patent documents plays a central role in various industrial and legal processes. In practical
deployments, classifiers often operate on limited and evolving data, and may be applied to domains
different from those they were trained on. These conditions lead to distribution shifts between training
and test data, and therefore to the appearance of out-of-distribution (OOD) inputs, i.e., documents that
differ significantly from those seen by the model during training.

Our previous work addressed several of these challenges by utilizing search-based embeddings and
semi-supervised learning to improve classification with limited data [1, 2]. As a continuation, this paper
focuses on detecting OOD-inputs before classification to prevent unreliable predictions in mismatched
domains.

To this end, we evaluate several unsupervised OOD-detection methods operating in the embedding
space. In particular, we suggest a lightweight approach that: (i) has high in-distribution (ID)
retention: the method retains almost all relevant documents; (ii) is easy-to-use: the method requires
a minimal computation, i.e., only the empirical mean and covariance matrix of the training data are
computed, while test samples are scored via multivariate Gaussian probability density function (PDF);
(iii) and is OOD-agnostic: i.e., the detection threshold is calibrated using only provided by user
training ID-data.

2. Literature survey

Modern machine learning models are often developed under the assumption that training and test data
are drawn from the same underlying distribution [3], but this rarely holds in practice. In open-world
settings, models frequently encounter out-of-distribution (OOD) inputs –samples that differ significantly
from the training data [4].
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As discussed in [5], distributional shifts in tasks based on textual data representations can generally
be categorized into two types: (i) semantic shift, where the OOD samples belong to entirely new
categories and should not be mapped to any existing class; (ii) non-semantic shift, where OOD
samples differ in a domain or style but share the same class semantics as the ID samples.

Our task falls under the semantic shift scenario, where the OOD documents may come from previously
unseen patent categories and must not be forced into known classes. As mentioned in [5], we can
thus utilize the following taxonomy of OOD-detection methods to detect semantic shift: (i) the OOD
samples available for the training; (ii) the OOD samples are unavailable, but the ID labels available;
(iii) both the OOD data and the ID label unavailable.

In our setting, while the training set is labeled for further classification, the labels do not contribute
to the OOD-detection step, which is inherently unsupervised. This leads us to conclude that the OOD-
detection task in our case falls back to the third option, which is a well-known classic anomaly detection
problem [6].

3. Methodology

Although various strategies can be applied to perform OOD-detection, in this work, we focus on
evaluating lightweight, unsupervised OOD-detection methods in the embedding space. Specifically,
we compare a PDF-based likelihood approach with common baselines such as 𝑘-NN, Local Outlier
Factor, and Isolation Forest (see the discussion in Section 3.1). As thresholding heavily impacts final
performance, we also examine different threshold selection strategies (Section 3.2).

3.1. Baseline and Proposed Methods

As discussed in Section 2, our task falls under unsupervised OOD-detection, which requires no OOD
samples or class labels during training. We prioritize lightweight methods with continuous scores,
allowing us to control the strictness of OOD-detection by adjusting the decision threshold, while
keeping training costs low. The goal of OOD-detection is to suppress unreliable classification outputs
for inputs that deviate significantly from the training data. Thus, detected OOD-samples can be withheld
from further classification or flagged for manual review. We selected the following methods for our
evaluations:

1. Distance-based methods, such as 𝑘-nearest neighbors (𝑘-NN), which compute the average distance
of a test point to its 𝑘 closest training embeddings [7]. The idea behind nearest-neighbor methods
is that ID (in-distribution) data are more likely to be closer to its neighbors than OOD data. After
computing the scores, a threshold is applied (the threshold selection is covered in Section 3.2).

2. Density-based methods, such as Local Outlier Factor (LOF) and Isolation Forest (IF), which
estimate how isolated a test sample is compared to the ID data[8, 9]. Both methods compute
continuous anomaly scores and require a threshold.

3. Likelihood-based models, which estimate the probability of a sample under a distribution fitted
to the training data. In our case, we adopt a custom Probability Density Function (PDF)-based
approach. By computing the mean and covariance of the in-distribution (ID) training set, we
evaluate the likelihood of each test sample under this distribution. The method is described in
detail in Algorithm 1.

We use implementations provided by the scikit-learn library for the 𝑘-Nearest Neighbors, Local
Outlier Factor, and Isolation Forest algorithms [10]. Meanwhile, our PDF-based approach works as
presented in Algorithm 1.

3.2. Threshold computation

Threshold selection plays a crucial role in OOD-detection, as it directly influences the final result;
therefore, it should be considered an important part of the overall approach. A common practice is to
set the threshold to achieve a high true positive rate (TPR) on in-distribution data and then report the
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Algorithm 1 OOD-Detection via PDF

Input: Training dataset 𝐷in, test sample 𝑥*, threshold 𝜆
Training Stage:
1. Compute mean 𝜇𝑖𝑛 and covariance matrix Σ𝑖𝑛 of train dataset 𝐷in.
Inference Stage:
1. Compute the OOD-score of the test sample 𝑥* by computing the probability density (i.e., 𝑝(𝑥*)) un-
der the multivariate Gaussian distribution 𝑃in defined by the training data’s mean 𝜇𝑖𝑛 and covariance
Σ𝑖𝑛.
2. Compare computed OOD-score to the threshold 𝜆; if 𝑝(𝑥*) ≥ 𝜆 the sample is considered in-
distribution (ID), otherwise it is flagged as out-of-distribution (OOD).
Output: Binary decision whether 𝑥* is from the same distribution 𝑃in as training data 𝐷in (ID) or
not (OOD).

corresponding false positive rate (FPR) on OOD data. While many works report FPR@95%TPR meaning
the threshold is set so that 95% TPR on the validation set is achieved [5, 7], in our case, retaining the
relevant documents is the priority, so we instead use a 99% TPR score threshold.

Additionally, for the PDF-based method (Algorithm 1), we utilize a custom threshold selection
algorithm. The method aims to avoid using unstable low-probability outliers as the threshold, while
also not enforcing arbitrary strictness, such as discarding a fixed percentage of data. To achieve this,
we smooth the normalized likelihoods and identify approximate inflection points. The lowest such
point serves as a cutoff, and all values below this point are considered to be outliers. The fact that the
cutoff is not the global minimum is crucial, since inflection point detection is approximate due to the
smoothing used, and the global minimum is often unusable due to zero-likelihood artifacts. See Fig. 1
for the intuition behind this approach. The final threshold is set as the minimum of the outlier-cleaned
set. The full procedure is detailed in Algorithm 2.

Algorithm 2 Custom Threshold Selection

Input: Validation set 𝐷val, mean 𝜇𝑖𝑛, covariance matrix Σ𝑖𝑛 of train dataset 𝐷in

Threshold Selection:
1. Compute likelihoods of 𝐷val using mean 𝜇𝑖𝑛 and covariance matrix Σ𝑖𝑛 as presented in Inference

Stage of Algorithm 1, resulting in a set 𝐿val.
2. Normalize values in 𝐿val to the range [0, 1].
3. Apply Gaussian smoothing with bandwidth 𝜎 to normalized likelihood set 𝐿val. The parameter

𝜎 controls how much the curve would be smoothed. We use 𝜎 = 2.0, selected empirically.
4. Compute second derivative of smoothed scores.
5. Identify inflection points: locations where second derivative changes sign. Note that the

inflection points are approximate due to normalization and computational artifacts.
6. Identify the minimum among the inflection points. Use this value as a cutoff: remove all

likelihood values in 𝐿val that are equal to or lower than this point, yielding a cleaned set 𝐿val-clean.
7. Set threshold 𝜆 = min {𝐿val-clean}.

Output: Threshold 𝜆.

3.3. Graph-based embeddings trained for patent search

We use embeddings generated as described in [13, 14], where each patent document is first converted
into a graph that represents the key features of the invention and their relationships. The resulting
graphs are significantly smaller than the original documents, which enables efficient processing of large
documents while still preserving relevant information required for prior art searches. The graph is then
embedded into a vector space using a graph neural network (GNN) trained to perform prior art searches
using patent examiner citation data. Using citation data enables the model to recognize semantically
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Figure 1: Illustration of the idea behind the inflection point search. The method identifies two approximate
inflection points (red stars), which are sufficient to isolate low-probability outliers in the validation set. While all
true inflection points are detected, the approach separates unstable scores near zero.

Dataset Train Validation Test
Qubit [11] 896 224 280
Cannabinoid [12] 941 235 293
Mechanical eng. 2868 717 896
Chemical 810 202 253

Table 1
Number of samples in the datasets used for training and evaluation. Only one document per family is kept in
each data set to avoid overrepresentation of large patent families.

similar inventions despite differences in terminology, placing them close together in the embedding
space. The resulting embeddings may used as input to a lightweight classification model, as shown in
[1, 2].

3.4. Datasets

Four datasets were chosen for this study: two public and two proprietary. The public datasets are the
Qubit [11] and the Cannabinoid patent datasets [12]. The proprietary ones originate from distinct
domains: one from the mechanical engineering patent domain and the other from the chemistry field.
Only one document per family is kept in each data set to avoid over-representation of large patent
families (refer to Table 1 for the dataset sizes).

For the purpose of evaluation, we simulate an OOD-detection setup by selecting one dataset (e.g.,
Qubit) to serve as the in-distribution (ID) set and treating samples from the remaining datasets as
out-of-distribution (OOD). All four datasets originate from different domains, which reflects realistic
domain shift scenarios in patent classification.

3.5. Experiment setup and evaluation

Each model is trained using a training set extracted from the complete dataset. The models take
document embeddings as input and generate OOD-scores for each test sample as output. Validation
sets are fixed for every dataset. For the experiments on the subsets of data we partition the training set
by randomly sampling 𝑝 percent of the data points with 𝑝 ranging from 5 to 100.
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Figure 2: False Negative Rate (FNR) for ID samples (top) and False Positive Rate (FPR) for OOD samples (bottom)
on the Qubit training dataset and Mechanical test dataset. While the 𝑘-NN algorithm shows robust results for
all subsets of data, ID and OOD cases, PDFcustom achieves similar performance for the bigger train data subsets.

ID (Qubit) OOD (Mechanical) OOD (Chemical) OOD (Cannabinoid)
PDFcustom PDF 𝑘-NN PDFcustom PDF 𝑘-NN PDFcustom PDF 𝑘-NN PDFcustom PDF 𝑘-NN%
FNR FNR FNR FPR FPR FPR FPR FPR FPR FPR FPR FPR

5 0.0 0.0 0.007 1.0 1.0 0.226 1.0 1.0 0.407 1.0 1.0 0.362
15 0.0 0.0 0.0 1.0 1.0 0.287 1.0 1.0 0.162 1.0 1.0 0.167
30 0.007 0.018 0.0 0.875 0.459 0.344 0.261 0.261 0.107 0.993 0.335 0.201
50 0.004 0.0 0.0 0.029 0.712 0.124 0.06 0.099 0.08 0.205 0.28 0.106
100 0.004 0.004 0.0 0.181 0.465 0.137 0.032 0.134 0.047 0.038 0.12 0.058

Table 2
Evaluation results with Qubit as the training dataset (in-distribution, ID) and Mechanical, Chemical, and
Cannabinoid as out-of-distribution (OOD) test sets. The percentage symbol (%) indicates the portion of
the Qubit dataset used during training. Lower FNR (for ID) and FPR (for OOD) are preferred. The PDF
and 𝑘-NN scores were computed using a standard TPR99% threshold (Section 3.2), while PDFcustom uses
a threshold computed via Algorithm 2.

When training on a subset of the data, we repeat random sampling and model training 𝑛 times to
reduce the noise caused by the data splits, where 𝑛 ranges from 6 for the largest subsets to 100 for the
smallest. The metrics from multiple sampling iterations for the same percentage are then averaged.

To make a binary decision based on the OOD-score, we compute the threshold based on the ID
validation set so that 99% TPR is achieved, as discussed in Section 3.2. Additionally for the PDF-based
approach, a custom threshold is utilized based on the Algorithm 2.

Evaluations for all subsets of data were conducted using a separate holdout test set, independent of
the training data. We report FPR@99%TPR–the false positive rate at the threshold that achieves a 99%
true positive rate. For the ID test samples FNR@99%TPR is shown.

4. Results and discussions

The results of all methods are shown in Fig. 2, with the Qubit dataset chosen as the in-distribution data
set. The false negative rate (FNR) hovers around 1% for all methods, which is to be expected since we
selected the threshold to achieve 99% TPR. The 𝑘-NN algorithm has a low false positive rate (FPR) on
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all training data set sizes, while our PDF-based method combined with the custom threshold selection
achieves similar or lower FPR as 𝑘-NN when at least 50% of the training data set is used. The other
algorithms have significantly higher FPR.

Table 2 presents how the 𝑘-NN and PDF algorithms perform using other OOD data sets. The 𝑘-NN
algorithm is the most stable, performing well even with small amounts of training data, while the PDF
method combined with the custom threshold selection performs well when at least 50% of the training
data is used. The results also demonstrate the usefulness of the custom threshold selection algorithm. If
the threshold for the PDF method is set to achieve 99% TPR then the FPR is significantly higher with
large data sets.

Future work could explore various thresholding strategies for the 𝑘-NN method and explore modifi-
cations that reduce the need to store the entire training set to calculate distances between test samples
and 𝑘-nearest-neighbors. Perhaps, the method could be adapted to operate using the mean vector or a
set of representative cluster centers instead.

5. Conclusions

In this work we analyzed algorithms for detecting OOD-samples in classification. We demonstrated
that using nearest neighbors achieves the best trade-off between detecting OOD-samples and keeping
ID-samples, especially with small training sets. We also introduced a PDF-based method and showed
that it, when combined with a custom threshold selection algorithm, works well with large training
sets while avoiding the need to store the entire training set to perform inference.
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responsibility for the publication’s content.
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