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Abstract

The transformation of energy distribution systems is fostering new models, like renewable energy communities,
which require complex, simulation-based feasibility assessments. Preparing these simulations is often labor-
intensive and error-prone due to heterogeneous actors and location-specific grid topologies. This paper proposes a
symbolic Al approach that combines SHACL (repairs) and Datalog (imputation) to semi-automatically detect, ex-
plain, and correct inconsistencies for grid and sensor data so it can serve as input for co-simulations. Applied within
the DataBri-X project and tested using Siemens BIFROST, the approach demonstrates promising improvements in
data quality and preprocessing efficiency.
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1. Introduction

Energy distribution systems are rapidly changing with the emergence of new technologies, actors, and
business models. Smart Grid simulation tools are crucial for analyzing the impact of these changes.
Several simulation platforms have been developed, each providing unique features [1]. These tools
require topological data (grid model) and time series inputs (e.g. weather data, load profiles) to run
co-simulations.

Preparing such simulations presents a challenge, because they are difficult to set up due to their
complexity and therefore require significant manual effort, making this process not only time-consuming
but also error-prone. This underlines the need for data management tools to organize and preprocess
simulation data in order to reduce the risk of errors that could require reruns or potentially lead to financial
losses due to incorrect simulation results.

For the co-simulations to work correctly, the grid topology needs to correctly reflect the real-world
situation regarding the components that form the energy grid. Sensor data consists of a series of data
points, called observations, which were measured at a certain point in time and yield some kind of value.
They are associated with a property of what is observed, such as the atmospheric temperature at a specific
location or the electric power consumed by a household. Problems with sensor data arise from missing
values, invalid measurements, and outliers.

This paper demonstrates how symbolic Al technologies can be leveraged for simulation data to detect
errors, highlight them, and correct erroneous or flawed data. We have developed a symbolic Al application
to detect and fix erroneous or incomplete data by first integrating all data relevant to the simulation
by mapping it to RDF and then applying a combination of SHACL repairs and Datalog rules on the
connected data to 1) delete data items representing sensor measurement errors or inconsistently assembled
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Figure 1: Overview of BIFROST Infrastructure Ontology

grid structures, ii) suggest missing structures in the energy grid topology, explaining to users how the grid
structure can be consistently completed, and iii) add data items for missing sensor data using missing
value imputation. Our application has been implemented and tested with real-world data in conjunction
with the co-simulation tool BIFROST [2], where its benefits for data quality could be observed, thereby
showing readiness for future field trials.

2. Related Work

The approach of replacing missing (or invalid) data values in observations is called imputation [3]. Bischof
et al. [4] extend Description Logic to calculate missing values by SPARQL query rewriting. Follow-up
work [5] uses statistical analysis of knowledge graph values to predict missing values. Finally, [6] presents
a methodology for imputing missing values from existing data in the knowledge graph. SHACL provides
a framework for defining and validating data requirements. In the smart grid context, SHACL has been
successfully employed for topology validation [7].

3. A Methodology for Co-Simulation Data Quality

To cope with the challenges for BIFROST smart grid co-simulations with respect to data quality, we
propose an approach which combines SHACL validation and repairs with methods of imputation using
Datalog [8], specifically the RDFox Datalog engine [9], into a hybrid symbolic Al application. We chose
these standardized technologies because they can be effectively applied to RDF data in combination.

3.1. Repairing the Grid Topology

Providing explanations for SHACL violations is highly beneficial, as it is important for users to understand
the problems in a given topology in order to select the best way to correct it.

We use the previously published SHACL repair program [10] for explaining such problems in the grid
topology and propose solutions. The proposed repairs show how grid data needs to be added to conform
to the constraints. They also propose deletions of invalid parts of the grid structure.

For the implementation, we first define terms for the simulation infrastructure based on the JSON
schema of the BIFROST infrastructure data as an OWL ontology. We deliberately refrained from using
existing ontologies in this context as this would increase the conversion efforts from and to the BIFROST
data model and the ontology will not be utilized outside of correcting the topology. Fig. 1 shows an
overview of the main classes and properties.

For time series data the SOSA/SSN' ontology is internally used as a schema for the RDF graph.

Several SHACL shapes enable the application to find invalid data and explain violations. Qualified
shapes ensure correct cardinalities of properties between different types of structures and dynamics, so
that they are correctly connected to each other. For example, every instance of :SOLAR-PANEL must have
exactly one dynamic :ACTIVE-POWER-3P associated via the property :hasDynamic, as shown in the
SHACL shape below:
node:SOLAR-PANEL a sh:NodeShape; sh:targetClass :SOLAR-PANEL;

sh:property property:hasDynamic_ACTIVE POWER 3P_1_1 .
property:hasDynamic_ACTIVE_POWER_3P_1_1 a sh:PropertyShape;

Thttps://www.w3.0rg/TR/2017/REC-vocab-ssn-20171019/
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sh:path :hasDynamic; sh:qualifiedMinCount 1; sh:qualifiedMaxCount 1;
sh:qualifiedvalueShape [ sh:class :ACTIVE-POWER-3P ] .

If violations are found, the application uses SHACL repairs to determine explanations for how to
change the data graph to achieve conformance with the constraints.

The user is shown the explanations and recommendations to help fix violations and ensure consistency
of the topology. For example, if a solar panel ex:sp1 a :SOLAR-PANEL is missing the active power
dynamic, the application would recommend to add the following triples, including adding a new node
ex:new1 with class member ship in :ACTIVE-POWER-3P to connect the structure:

ex:spl :hasDynamic ex:newl . ex:newl a :ACTIVE-POWER-3P .

3.2. Time Series Data Repair

We address the problem of missing time series observations as well as invalid and outlier values with a set
of Datalog rules to complement the SHACL repairs. The application uses a stepwise approach. First, we
remove invalid existing data using SHACL repairs. Second, we add missing observations using Datalog
rules. Third, we estimate missing values. In general, when imputing missing values in time series data,
one can choose from different existing strategies.

Step 1: Repairing existing Observation Values For fixing invalid values (NaN) and outliers (values
outside of an interval of 0 to 50) of the property sosa:hasSimpleResult, we use a SHACL shape and
let the SHACL repairs delete the violating values.
node :OBSERVATION_VALUES a sh:NodeShape;
sh:targetClass sosa:Observation;
sh:property [
sh:path sosa:hasSimpleResult;
sh:minInclusive "0"AAxsd:float; sh:maxInclusive "50"AAxsd:float; ] .

Step 2: Add missing Observations We use Datalog rules to create instances of sosa:Observation
for the missing observations with a corresponding timestamp. We perform date/time arithmetics, adding
15 minutes to timestamps of existing observations. If no observation with that following timestamp exists
(and the timestamp is not later than a defined maximum), a new observation is created by a rule.

Step 3: Imputing new Observation Values For adding missing values of observations, we chose
linear interpolation as a simple approach and added a Datalog rule, which implements the imputation for a
gap of one or more missing values. Basic arithmetic built-in functions, as found in many Datalog engines,
are sufficient for the calculation, and the values are guaranteed to be in the valid range. Generally, the
method of imputation can be adapted to different use cases by changing the calculation in the Datalog
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The variables are defined as: Tj,, is the time at the last gap start, T, is the time at the next gap end, T, is
the time of the missing value, R;4 is the result value at gap start, R, is the result value at gap end, and
Ry 18 the interpolated value. The following RDFox Datalog rule implements this linear interpolation:

[?0bs, sosa:hasSimpleResult, ?Rnew] :-
AGGREGATE(
[?obs, a, :Missing], [?obs, sosa:resultTime, ?T],
[?gapStart, a, :GapStart], [?gapStart, sosa:resultTime, ?Tgs],
FILTER(?Tgs < ?T) ON ?obs
BIND MAX(?Tgs) AS °?Tlgs
BIND MAX_ARGMAX(?gapStart, ?Tgs) AS ?lastGapStart
BIND MAX_ARGMAX(?T, ?Tgs) AS ?Tm),
[?lastGapStart, sosa:hasSimpleResult, ?Rlgs], [?lastGapStart, :hasGapEnd, ?nextGapEnd],



[?nextGapEnd, sosa:hasSimpleResult, ?Rnge], [?nextGapEnd, sosa:resultTime, ?Tnge],
BIND(?R1lgs*((?Tnge - ?Tm)/(?Tnge - ?Tlgs)) + ?Rnge*((?Tm - ?Tlgs)/(?Tnge - ?Tlgs)) AS ?Rnew) .

After this step, the time series data contains observations for every 15 minutes and each observation has a
valid value to be used in the co-simulation. The complete Datalog rule set for steps 2 and 3 is available
online.”

4. Evaluation

The evaluation was performed with a BIFROST grid topology and real-world time series data.
Topology Data: For the topological data, a low-voltage grid section was prepared for the BIFROST
co-simulation framework [2], which was derived from the smart grid benchmark dataset “SimBench” [11].
It corresponds to a rural settlement with a total of 13 buildings (which include PV and EV-charging). For
validation, the topology was altered by disconnecting 4 buildings (load and PV) from the grid. BIFROST
itself does not implement checks in this regard, meaning that disconnected loads will not be considered in
the load flow.

In Figure 2 (a) the impact of the loads that were disconnected on the load flow are shown: orange
shows a simulation with the buildings being connected, blue the result of a simulation when the 4 loads
are disconnected. As can be seen, disconnected loads and generations can have significant impacts on
the power flow in a grid. The SHACL repairs are able to identify the missing connections and report
back four violations, including proposals how to correct them as described in Section 3.1. Time Series
Data: For the time series data, a standard load profile for a household on a weekday from the the German
federal association of the energy and Water industry (BDEW) was used’. The time series constitutes the
load of a building during a workday with a time resolution of 15 minutes (i.e., amounting to a total of 96
data-points).

BIFROST implements error handling regarding time series and will use the last known value in the
simulation until an update occurs. An error was introduced into the time series by deleting the values
between 7:00 am and 9:30 am. The resulting evolution of the load original (green), last-known-value
(orange) and interpolation (blue) is shown in Figure 2 (b).
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Figure 2: (a) Evolution of active power at the transformer over half a year. Orange shows the active power (kW)
with all load being connected to the network; blue the counterpart with 4 loads not being connected (b) Time
Series under different repair strategies (Original - Blue, Last Known Value - Orange, Interpolation Green)

The last known and valid value leads to a deviation (approx. 60kW) from the ground truth. Linear
interpolation, such as that performed by our approach, reduces this difference significantly to 9 kW. The
application is also able to detect NaN’s as well as values which are clearly out of range. For the test data,
the time series was corrupted by changing the value at 04:00 in the morning to 115.19.

The corrupted time series was repaired using the application. The missing time point is added. The
invalid value, i.e. outlier, is removed. Then, missing values are imputed, resulting in observations as
shown below.

Zhttps://gitlab.com/stefanbischof/sosa-timeseries-repair
3https://www.bdew.de/energie/standardlastprofile-strom/ (accessed: 26.5.2025)
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[] a sosa:Observation ;
sosa:hasFeatureOfInterest <urn:uuid:1dd4760c-d5ee-5cd7-8ac4-8e08373fde78> ;
sosa:hasSimpleResult "15.0475006"AAxsd:float ;
sosa:resultTime "1970-01-01T04:00:00"AAxsd:dateTime .

5. Conclusions and Outlook

In this paper, we presented a symbolic Al application to manage data quality for energy co-simulations
using a combined approach of SHACL repairs and Datalog rules. We evaluated our approach with the
BIFROST co-simulation tool, where our symbolic Al application was able to identify, explain, and correct
errors. Future work will be to evaluate our approach in real-world scenarios and determine how well it
can solve erroneous simulation data in practice.
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