
Semantically-Enabled Data Spaces for Intelligent Data Asset
Discovery⋆

Harry Nakos, Theodore Dalamagas, Stelios Sartzetakis, Nikos Kapetanas, Danae Pla Karidi,
and Yannis Stavrakas

Information Management Systems Institute, Athena Research Center, Athens, Greece

Abstract
We demonstrate KnowDS, a system that extends Data Spaces with semantic search capabilities. We show how
KnowDS can leverage the minimal descriptive metadata of the data assets in a Data Space to construct a
relevance graph, and how it uses Steiner trees to find relevant items that do not contain any of the query terms.
We describe the KnowDS system in detail, and present a running example that showcases its functionality.

Keywords
Data Spaces, semantic search, Steiner tree

1. Introduction and Motivation

Data Spaces (DS) represent a paradigm shift in data sharing, enabling secure, sovereign, and
interoperable exchange of data across organizations. Unlike traditional centralized platforms, data
remains with the data owner, ensuring control over its usage. This decentralized model is facilitated by
standardized technical frameworks and common governance rules.

Key components in the Data Space architecture [1] include trusted connectors, identity management
services, metadata catalogs, and policy enforcement engines. These components ensure data findability,
accessibility, and adherence to pre-defined usage agreements. Data Spaces foster collaboration,
allowing participants to create new data-driven services and business models. Initiatives like the
International Data Spaces (IDS) [1] and Gaia-X [2] are driving the development and adoption of these
interoperable ecosystems, that are crucial for unlocking the full potential of the data economy.

Discovering data assets (namely datasets, together with usage rules) in a Data Space is an essential
first step for data consumers. It relies heavily on structured metadata catalogs, often leveraging
standards like DCAT [3]. Users can search and filter these catalogs using descriptive metadata to
identify relevant data offerings. The underlying connectors within the Data Space ensure secure access
and facilitate subsequent data transactions for the acquisition of the selected data assets.

Such discovery of data assets through filtering is marginally adequate, and leaves a lot of room for
improvement. The capability for semantic search would significantly enhance data discovery in Data
Spaces. By leveraging knowledge graphs and conceptual understanding, semantic search would bridge
the gap between human language and machine processing, leading to an easier and more productive
user experience. Towards this end, we envision semantically-enabled Data Spaces for efficient
discovery of data assets. Such a Data Space would:

 use not only the descriptive metadata of the data assets, but also external semantic sources, to
construct and maintain knowledge graphs,

 guide the data consumer to formulate a search query based on natural language,
 leverage the knowledge graphs to identify the data assets that best match the query criteria,
 prompt the data consumer to examine the results and initiate the Data Space process for

acquiring the desirable data asset(s).

⋆SEMANTiCS 25: 21st International Conference on Semantic Systems, September 03–05, 2025, Vienna, Austria
 xnakos@athenarc.gr (H. Nakos); dalamag@athenarc.gr (T. Dalamagas); stelios@athenarc.gr (S. Sartzetakis);

nkapetanas@athenarc.gr (N. Kapetanas); danae@athenarc.gr (D. Pla Karidi); ys@athenarc.gr (Y. Stavrakas)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ys@athenarc.gr
mailto:danae@athenarc.gr
mailto:nkapetanas@athenarc.gr
mailto:stelios@athenarc.gr
mailto:dalamag@athenarc.gr
mailto:xnakos@athenarc.gr

In this demonstration, we present KnowDS, a system that implements an important first step towards
semantically-enabled Data Spaces. KnowDS is implemented as an extension of the sovity Data Space
(Community Edition) [4], currently one of the leaders in the field, but could be easily adapted to other
Data Space products. KnowDS demonstrates how semantic search capabilities can be introduced into
Data Spaces.

Challenges. With KnowDS we address the following challenges: (a) how to retrieve more – but
still relevant – results than those returned by a simple filtering, (b) how to rank the results according
to their semantic relevance, (c) how to employ a simple method of querying that does not require a
model of the domain knowledge of the Data Space, (d) how to take advantage of the simple metadata
of the assets that are already present in the Data Space, and (e) how to remain domain-agnostic and
readily adapt to different DS and different types of data assets.

Contribution. KnowDS is a prototype that integrates with the sovity Data Space, and adds semantic
search capabilities on Data Spaces, without modifying the DS source code or configuration. Two key
points on DS integration are: (a) to keep the KnowDS internal database in sync with the data assets of
the Data Space (see section 2.1), and (b) once a data asset is selected, to provide the user with a pointer
to acquire the data asset through the Data Space procedures. Moreover: (c) KnowDS shows how to
create a semantic graph from minimal DS asset metadata (see section 2.2), and (d) uses a Steiner tree
[5] to identify additional relevant data assets, which would not have been included in the results by a
simple keyword search (see section 2.3).

An evaluation of the KnowDS approach is planned for the immediate future, which will cover testing
against real datasets, assessment of the improvement of asset discoverability, efficiency issues, and
adaptability to different DS technologies.

2. System Overview

A typical data asset retrieval in a Data Space involves two major steps:

 As a first step, the data consumer examines the available data assets through the web interface
of the sovity Dataspace Portal. The Dataspace Portal (formerly called Authority Portal) is a
centralized catalogue managing authorized users and available data assets. Although the data
remains with its owner (namely the data provider) in a distributed fashion, the Dataspace Portal
maintains a list of asset metadata enabling the discovery of data assets. This list is kept in a
PostgreSQL [6] database.

 Then, as a second step, having found the desired data asset in the list, the data consumer is
directed to the provider of the data asset in order to acquire it. This is done through a process
in which the consumer and the provider Connector modules communicate and carry out the
transaction.

KnowDS enhances the discovery of the data asset in the first step. The second step (data acquisition)
is not affected by KnowDS. In what follows, we present some key functions of KnowDS.

2.1. Data Synchronization

KnowDS needs the asset metadata stored in the DS in order to implement its search method. sovity DS
keeps those metadata in a PostgreSQL database, while KnowDS uses Apache Solr [7] as its data
repository. The challenge is twofold. First, to keep KnowDS in sync with the Data Space metadata.
KnowDS should be notified about any change to DS asset metadata, and update its own data repository
and internal structures to reflect this change. The second challenge is to do this without interfering
with the internal workings of the DS. This will allow KnowDS to easily adapt to other DS platforms
and products.

To this end, KnowDS uses Debezium [8], an open-source platform for capturing changes in data.
Debezium monitors the log files of a target database (in this case the sovity PostgreSQL log files) and
notifies KnowDS of any changes that occur. Debezium supports a number of popular data repositories,

therefore it should be straightforward to adapt KnowDS to other DS products. Essentially, the
parameterization of Debezium is the only step needed for adding KnowDS to some existing DS.

2.2. Semantic Graph Creation

Each data asset in a Data Space is associated with descriptive metadata that is available throughout the
DS. This metadata consists of simple fields, usually based on DCAT. KnowDS uses only a few of those
fields, namely the title, the tags, and the description. The title and description are self-explanatory. The
tags field is a set of keywords related to the data asset. Moreover, a couple of identifiers are used: the
connector endpoint identifies the connector of the data provider, and the asset ID identifies the data asset
itself. Those two identifiers allow the data consumer to start a negotiation for the specific data asset
with the data provider, through their respective connectors.

KnowDS uses the tags fields to build a relevance graph connecting data assets.

 Each node in the relevance graph represents a data asset. An edge between two nodes
represents the tags that the nodes have in common, and the label of the edge is the common
tags separated by commas (see Figure 1 for an example, the different node colors become
meaningful in section 3).

 Each edge has a number attached, indicating the number of common tags that the edge
represents. This number is called relevance strength and denotes the relevance between the
nodes connected by the edge. The more common keywords between two assets, the higher the
relevance strength between them. Obviously, if two nodes do not share any tag, they are not
connected by an edge.

We assume that the tags have a semantic orientation and refer to the concepts that characterize the
data asset. It will also be beneficial, although not necessary, if the tags are selected from a curated,
controlled vocabulary, which is a reasonable assumption.

2.3. Data Asset Matching

To find a data asset, the data consumer provides KnowDS with a set of query terms. KnowDS aims to
find the relevant data assets in the DS, and rank them according to their semantic proximity to the
terms, using the relevance graph. The task proceeds in three steps:

 First, we find the set of nodes in the relevance graph that contain one or more of the provided
terms in their tags, title, or description. We call this set the set of direct results.

 Then, we construct the Steiner tree [5] that contains all the nodes in the direct results set. The
Steiner tree is the least-cost connected subgraph of the relevance graph that contains these
nodes (see Figure 1). We set the cost between two nodes connected by an edge with relevance
strength N to be 1 / N. Intuitively, a node that connects two or more of the nodes in the direct
result set will be part of the Steiner tree, even if this node is not part of the direct result set. The
result of the query will consist of all the nodes of the Steiner tree, and will include the direct
result set plus the nodes that act as in-betweens. This way, the results may contain nodes that
are indeed relevant, but do not contain any of the initial terms. When constructing the Steiner
tree, we also consider the case that the relevance graph is a disconnected graph.

Figure 1: The Steiner tree of the relevance graph from the movies running example.

 Finally, we rank the results. The nodes of the Steiner tree are ranked by combining two score
components. The first score is the text relevance score, which reflects how well the textual
content of each node matches the query terms. This score captures the fact that nodes
containing more search terms are more relevant. The second score is the connectivity score
that indicates the importance of each node within the Steiner tree. This score is calculated as
the sum of the relevance strength of all edges of the node. Higher connectivity score means that
the node exhibits stronger connections with its neighbors, constituting a more central node that
bridges many related nodes. The final ranking score for each node, called combined relevance
score, is then computed by multiplying the (normalized) text relevance score by the
(normalized) connectivity score. Therefore, a node must have both a high textual relevance
score, and a high connectivity score to be ranked high.

The result of the query is the nodes of the Steiner tree, ranked according to the combined relevance
score explained above.

3. User Interface and Demonstration

We used a dataset about movies for our running example. We set up a simple DS consisting of two
connectors, one for the data provider and another one for the data consumer. The data assets in our
example are movie trailers (short video files). The DS descriptive metadata includes some basic
information about the respective movies, namely the movie type, the movie title, and a short textual
description. Each data asset has an asset ID, identifying the asset, and a connector endpoint, pointing to
the connector in charge of the asset (in our trivial case, this is always the data provider connector).

The KnowDS UI with the running example is depicted in Figure 2. The user (data consumer) enters
the search terms “hacker” and “storytelling”, with the OR operator assumed. Note that the user may
select a query term from a drop-down list of the existing tags (i.e., “hacker”), or insert a different term
(i.e., “storytelling”). In future versions of KnowDS we plan to add more operators and expand the set of

Figure 2: The KnowDS User Interface demonstrating the running example.

query terms by adding synonyms: for each term we will consult external sources such as WordNet [9]
and DBpedia [10] to get a list of relevant words, that would maximize the possibility to find relevant
content in the DS by searching the title and description metadata fields. The results of this query
correspond to the nodes of the Steiner tree in Figure 1. The white nodes in Figure 1 form the set of
direct results, while the gray nodes are in-between nodes that connect the white nodes. The results are
presented ranked, as already discussed. For brevity, Figure 2 depicts only the first and the last items of
the result list, with a thick black line representing the rest of the results. The last result item corresponds
to a gray node in the Steiner tree, meaning that it does not include any of the query terms, and is
denoted by the flag “Steiner point” on the UI.

Assuming the user is interested in the first item, titled “Privacy Breach”, the matching asset ID and
connector endpoint can be used by an authorized data consumer to negotiate the corresponding data
asset, through the sovity DS connectors as depicted in Figure 3.

The KnowDS installation with the running example presented in this paper is available at:
https://knowds.imsi.athenarc.gr/

Acknowledgements

This work is partially funded by the UNDERPIN project (Digital Europe Program, Grant Agreement no.
101123179), and the DataBri-X project (Horizon Europe Research and Innovation Program, Grant
Agreement no. 101070069).

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] International Data Spaces, https://internationaldataspaces.org/, June 2025.
[2] Gaia-X, https://gaia-x.eu/, June 2025.
[3] Data Catalogue Vocabulary (DCAT), https://www.w3.org/TR/vocab-dcat-3/, June 2025.
[4] sovity, https://sovity.de/, June 2025.
[5] Dreyfus, S. E., & Wagner, R. A. (1971). The Steiner problem in graphs. Networks, 1(3), 195-207.
[6] PostgreSQL, https://www.postgresql.org/, June 2025.
[7] Apache Solr, https://solr.apache.org/, June 2025.
[8] Debezium, https://debezium.io/, June 2025.
[9] WordNet, https://wordnet.princeton.edu/, June 2025.
[10] DBPedia, https://www.dbpedia.org/, June 2025.

Figure 3: Data consumer ready to negotiate a data asset with the data provider connector.

https://knowds.imsi.athenarc.gr/
https://www.dbpedia.org/
https://wordnet.princeton.edu/
https://debezium.io/
https://solr.apache.org/
https://www.postgresql.org/
https://sovity.de/
https://www.w3.org/TR/vocab-dcat-3/
https://gaia-x.eu/
https://internationaldataspaces.org/

	1. Introduction and Motivation
	2. System Overview
	2.1. Data Synchronization
	2.2. Semantic Graph Creation
	2.3. Data Asset Matching

	3. User Interface and Demonstration
	Acknowledgements
	Declaration on Generative AI
	References

