Semantic-loT Framework: Knowledge Graph Generation
from loT Platforms

Junsong Du’*, Yunheng Tian!, Max Berktold’, Rita Streblow’ and Dirk Miiller!

IRWTH Aachen University, E.ON Energy Research Center; Institute for Energy Efficient Buildings and Indoor Climate,
Germany

Abstract

Semantic technologies, and knowledge graphs (KGs) in particular, show promising potential for enhancing
interoperability among diverse IoT systems, especially in the building sector. However, the extensive manual effort
required for semantic modeling limits the widespread adoption of these technologies in engineering practice. This
paper introduces Semantic-IoT, a framework that generates KGs from IoT platforms using the RDF Mapping
Language (RML). By employing a semi-automated approach for declaring RML rules alongside fully automated
KG generation, the framework reduces the manual effort associated with semantic modeling. The generated KGs
comprehensively represent both system information and data interactions, thereby facilitating the development
and deployment of cross-platform applications. A building automation use case is presented to demonstrate the
feasibility and effectiveness of the proposed approach.

Keywords
[oT Platform, Interoperability, Building Automation, RML

1. Introduction

The Internet of Things (IoT) and IoT platforms enable efficient data management and flexible service
deployment in the building sector. However, the wide adoption of such technologies is hindered by the lack
of interoperability, especially semantic interoperability, across different IoT platforms [1]. Specifically,
the use of proprietary data structures, vocabularies, and different application programming interfaces
(APIs) requires individual development efforts to bridge the gaps between different platforms [2].

Semantic Web technology (SWT) shows promising potential to address the interoperability issue [3].
However, the creation of KGs often relies on expert knowledge and the use of tools like Protégé', which
requires significant manual effort during the initial setup [4]. Therefore, further approaches for generating
KGs need to be explored.

In this context, this paper proposes to use IoT platforms as a source of information to generate KGs that
describe the underlying systems and the data interactions via platform APIs. This approach is based on the
fact that many modern IoT platforms, such as FIWARE?, 0penHAB3, and OpenRemote4, can incorporate
semantic information. Consequently, we introduce the Semantic-IoT framework, which integrates
semantic technologies with conventional IoT architectures. This framework facilitates the generation of
KGs for IoT systems and enables the use of SWT, such as reasoning and SPARQL, to improve information
exchange between 10T platforms and application providers. In this way, cross-platform applications can
be developed and deployed more efficiently, thereby enhancing the interoperability.

CEUR-WS.org/Vol-4064/PD-paperl2.pdf

SEMANTICS’25: International Conference on Semantic Systems, September 3-5, 2025, Vienna, Austria

*Corresponding author.

& junsong.du@econerc.rwth-aachen.de (J. Du)

® 0000-0003-2247-2423 (J. Du)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
https://protege.stanford.edu/

Zhttps://fiware.org/

3https://www.openhab.org/

“https://openremote.io/

CEUR
E Workshop
Proceedings

mailto:junsong.du@eonerc.rwth-aachen.de
https://orcid.org/0000-0003-2247-2423
https://creativecommons.org/licenses/by/4.0/deed.en
https://protege.stanford.edu/
https://fiware.org/
https://www.openhab.org/
https://openremote.io/

2. Proposed Framework

Figure 1 illustrates the Semantic-IoT framework, which employs the RDF Mapping Language (RML) [5]
and comprises two primary modules: the RML Generation and the Knowledge Graph Construction
Pipeline (KGCP). The implementation and an example use case are available at https://github.com/
N5GEH/semantic-iot.

RML Generation Knowledge Graph
Construction Pipeline
Datamodels of the [3=| _Load] _>[RML J [JSON Je
IoT platform - preprocessor preprocessor
Data from
Resource type, IoT platforms

data source

|- - - - -

Y

Domain ontology Load _ _ . _)@
(e.g., brick) ?&: Terminology matching RML engines)
o«
Validation & 0 :r‘
@ S g completion

R D F

.
7
Ce{

(- -~---+

--------- - - - > Report b]
IoT engineers <
[RML generator } BEl - TR E‘f’q KG for

RML IoT systems

Mapping rules

One-time .

------- > . —> Information flow
Configuration

Figure 1: Functional overview of the Semantic-loT framework

The RML Generation module is designed to semi-automatically create RML mapping rules for various
IoT platforms. Initially, this module loads a dataset that represents the data models of an IoT platform.
Typically, such a dataset comprises a list of virtual entities that encapsulate sensor data, actuation
functions, and semantic information about the underlying system. From this dataset, information required
by RML is extracted by dedicated submodules, as shown in Table 1.

Table 1
Overview of information retrieval in the RML Generation module. The Mode indicates whether the information
is generated automatically or requires manual input or validation.

RML Section Information Required | Submodule Mode
logicalSource JSONPath RML preprocessor Automatic
Resource type RML preprocessor Automatic
subjectMap IRI template RML preprocessor Automatic
Subject terminology Terminology matching | Semi-automatic
Predicate terminology Terminology matching | Semi-automatic
predicateObjectMap | Interrelationship RML preprocessor Automatic
Data access RML generator Manual input

The RML preprocessor first identifies unique resource types from the dataset based on the type field
of each entity. For each resource type, the corresponding JSONPath to locate entities of that type (e.g.,
3[?(@.type=="TemperatureSensor’)]) and the IRI template for the RDF subject are generated. The
extraction of interrelational information requires more complex processing as illustrated in Algorithm 1.
Simply put, the RML preprocessor traverses the JSON object of each entity and identifies substructures
that contain references to other entities. In this way, a structural skeleton of the specific data model is
created.

https://github.com/N5GEH/semantic-iot
https://github.com/N5GEH/semantic-iot

Algorithm 1 Find interrelationship for a given entity
1: Input: An JSON object entity, a list of JSON objects allEntities

2: Output: A list foundRelationships for the given entity

4315 foundRelationships < an empty list

5: for otherEntity in allEntities do

6: if entity.id # otherEntity.id then

7: for (path, value) in TRAVERSEJSON(entity) do

8: for value = otherEntity.id do

9: record <— new record with fields {path, relatedType}

10: record.path < path

11: record.relatedType < otherEntity.type
12: Add record to foundRelationships

13: return foundRelationships

Subsequently, the subject and predicate terminologies are matched against the domain ontologies. This
submodule loads the serialized domain ontologies and then uses the Levenshtein algorithm to compute
string similarities between the terms of the data model and those in ontologies. Based on the highest
similarity scores, matching suggestions are generated. These suggestions, along with the previously
extracted information, are populated into a report for engineers to validate. Currently, manual intervention
is required to validate the suggested terminology matches and to specify URL patterns for accessing API
endpoints of the [oT platform, specifically when a resource type provides sensor data or supports actuation
functions. Once the report is finalized, the RML mapping rule can be generated automatically, thereby
eliminating the need for manual handling of RML syntax. In comparison to YARRRML [6], which
enables a human-friendly declaration of RML mapping rules, the proposed framework is specifically
tailored for IoT platforms and offers a higher degree of automation for this specific use case.

Once the RML mapping rule is generated, a platform-specific KGCP is established. This KGCP can
be reused to automatically generate KGs from various datasets and across different platform instances.
While the JSON preprocessor ensures the general applicability of the KGCP by normalizing the data
from IoT platforms, the RML engine, MorphKGC [7], is employed to generate KGs. It is important not
to confuse the proposed KGCP with a runtime virtualization layer. While the virtualization approach
offers direct access to database [8], it often demands custom development, especially when integrating
NoSQL databases like MongoDB. The KGCP, in contrast, is created through a lightweight configuration
process based on the established RML mechanism. By relying solely on the exposed structural data of
APIs, this approach is inherently more flexible for modern IoT platforms.

3. Use Case

The proposed framework is planned to be applied in the building sector as illustrated in Figure 2. Currently,
the deployment of promising smart building applications—such as for automation, fault detection, and
energy monitoring—is often a laborious task due to the heterogeneity of underlying building systems
and their [oT platforms. Semantic-IoT addresses this challenge by facilitating the generation of KGs,
which provide a unified, semantic representation of the available information. By leveraging SWT, such
as reasoning and SPARQL, the deployment process can ultimately be automated.

3.1. Framework Demonstration

The proposed framework is demonstrated through a building automation use case”. In this use case, an
IoT system has been developed for hotel buildings based on the FIWARE platform. Platform-specific data

Shttps://github.com/N5GEH/semantic-iot/tree/main/examples/fiware

https://github.com/N5GEH/semantic-iot/tree/main/examples/fiware

Various applications
IoT Platform .
‘.&
3 Sensor data Interaction
Actuations IoT Platform via APIs H

Deployment

IoT Platform _
Information E‘,‘
Generated KGs retrieval .

l

1 Extended
Semantic-IoT R D F Nl | KGs

Framework
Reasoning

Figure 2: Use case of the Semantic-loT framework in building sector.

b2 I 7

models® have been designed in accordance with the NGSIv2 specification of FIWARE. To fully unlock
the flexibility to connect different building automation services, the Semantic-IoT framework is used.

With the RML Generation module, twelve resource types are identified from the data models, includ-
ing locations, sensors, and actuators. Brick’, a widely-used ontology for building energy systems, is
used to provide the semantic foundation for the terminology matching. Although Brick can theoreti-
cally be applied to all identified resource types, the current terminology matching achieves less than
60% accuracy. For example, while the resource type PresenceSensor should ideally match the class
brick:Occupancy_Count_Sensor, the similarity score between them is only 0.5. Consequently, identifying
suitable terminologies remains largely a manual work. In total, the complete RML mapping rules consists
of 344 lines, with manual intervention limited to 18 lines for validation and 7 lines for manual input.
Thus, the proposed framework significantly simplifies the declaration of RML mapping rules for IoT
platforms.

With the generated RML mapping rules, a KGCP for the FIWARE-based platform is established,
enabling the construction of KGs for any hotel that utilizes the same platform. To test its applicability, we
then provisioned a range of virtual hotels, from a small 2-room layout to a large 1000-room one. For
each hotel, we fetched the available data from the FIWARE NGSIv2 API to create the test datasets®. As a
result, the KGCP generates KGs that represent the hotel buildings—including their rooms, sensors, and
actuators—and integrate URLs for data interaction via the platform APIL

3.2. Automatic Service Deployment

Subsequently, we demonstrate the possibility to automate the deployment of automation services for
ventilation control”. The tasks are mainly twofold: first, to decide on control strategies based on the
available sensors and actuators; and second, to establish reliable data interactions via the platform API.
To optimize information retrieval, we employ OWL-RL[9] to infer the generated KGs. Numerous class
subsumption is added; for example, the class brick: Ventilation_Air_System is inferred to be a subclass of
brick:Air_System and brick: HVAC_System. Thus, generalized SPARQL queries can be applied to retrieve
any possible actuators in the hotel air systems. The availability of sensors can also be queried in a similar
way. As a result, configurations for the ventilation controller can be automatically generated.

Shttps://github.com/N5GEH/n5geh.data_models/tree/main/example_building_automation
Thttps://brickschema.org/
8https://github.com/N5GEH/semantic-iot/tree/main/examples/fiware/hotel_dataset
“https://github.com/N5GEH/semantic-iot/tree/main/examples/fiware/application_deployment

https://github.com/N5GEH/n5geh.data_models/tree/main/example_building_automation
https://brickschema.org/
https://github.com/N5GEH/semantic-iot/tree/main/examples/fiware/hotel_dataset
https://github.com/N5GEH/semantic-iot/tree/main/examples/fiware/application_deployment

4. Conclusion and Future Work

In this paper, we introduce a framework that automates the generation of knowledge graphs (KGs) from
IoT platforms. By integrating system information and data interactions into the generated KGs, our
approach enhances interoperability across diverse loT systems, thus simplifying the development and
deployment of cross-platform applications.

In future work, we aim to leverage the HTTP Vocabulary'” to enrich the semantic representation of
platform APIs. Moreover, the current string similarity based terminology matching exhibits limited
accuracy. Consequently, we plan to investigate alternative approaches, such as word embedding models.
Ultimately, we intend to conduct comparative case studies that deploy advanced building automation
programs across different IoT systems with various representative loT platforms.

Acknowledgments

We gratefully acknowledge the financial support provided by the Federal Ministry for Economic Affairs
and Climate Action (BMWK), promotional reference 03EN1030B.

Declaration on Generative Al

During the preparation of this work, the authors used Gemini in order to: Grammar and spelling check,
Paraphrase and reword. After using these tools/services, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s content.

References

[1] M. Noura, M. Atiquzzaman, M. Gaedke, Interoperability in Internet of Things: Taxonomies
and Open Challenges, Mobile Netw Appl 24 (2019) 796-809. URL: https://doi.org/10.1007/
s11036-018-1089-9. doi:10.1007/s11036-018-1089-9.

[2] A. Hazra, M. Adhikari, T. Amgoth, S. N. Srirama, A Comprehensive Survey on Interoperability for
[IoT: Taxonomy, Standards, and Future Directions, ACM Comput. Surv. 55 (2021) 9:1-9:35. URL:
https://dl.acm.org/doi/10.1145/3485130. doi:10.1145/3485130.

[3] M. Ganzha, M. Paprzycki, W. Pawtowski, P. Szmeja, K. Wasielewska, Semantic interoperability
in the Internet of Things: An overview from the INTER-IoT perspective, Journal of Network and
Computer Applications 81 (2017) 111-124. URL: https://www.sciencedirect.com/science/article/pii/
S1084804516301618. doi:10.1016/j.jnca.2016.08.007.

[4] H. Dibowski, J. Ploennigs, K. Kabitzsch, Automated Design of Building Automation Systems, IEEE
Transactions on Industrial Electronics 57 (2010) 3606-3613. URL.: https://doi.org/10.1109/TIE.2009.
2032209. doi:10.1109/TIE.2009.20322009.

[5] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, RML: a
generic language for integrated RDF mappings of heterogeneous data, in: Proceedings of the 7th
Workshop on Linked Data on the Web, volume 1184 of CEUR Workshop Proceedings, 2014. URL:
http://ceur-ws.org/Vol-1184/1dow2014_paper_01.pdf.

[6] D. Van Assche, T. Delva, P. Heyvaert, B. De Meester, A. Dimou, Towards a more human-friendly
knowledge graph generation & publication, in: International Semantic Web Conference (ISWC) 2021:
Posters, Demos, and Industry Tracks, 2021. URL: https://rml.io/yarrrml/assets/pdf/iswc2021.pdf.

[7] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. S. Pérez, O. Corcho, Morph-KGC: Scalable
knowledge graph materialization with mapping partitions, Semantic Web 15 (2024) 1-20. URL:
https://doi.org/10.3233/SW-223135. doi:10.3233/SW-223135.

Ohttps://www.w3.org/TR/HTTP-in-RDF10/

https://doi.org/10.1007/s11036-018-1089-9
https://doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.1007/s11036-018-1089-9
https://dl.acm.org/doi/10.1145/3485130
http://dx.doi.org/10.1145/3485130
https://www.sciencedirect.com/science/article/pii/S1084804516301618
https://www.sciencedirect.com/science/article/pii/S1084804516301618
http://dx.doi.org/10.1016/j.jnca.2016.08.007
https://doi.org/10.1109/TIE.2009.2032209
https://doi.org/10.1109/TIE.2009.2032209
http://dx.doi.org/10.1109/TIE.2009.2032209
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://rml.io/yarrrml/assets/pdf/iswc2021.pdf
https://doi.org/10.3233/SW-223135
http://dx.doi.org/10.3233/SW-223135
https://www.w3.org/TR/HTTP-in-RDF10/

[8] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Ontology-Based Data Access and
Integration, in: Encyclopedia of Database Systems, Springer, New York, NY, 2018, pp. 2590-2596.
d0i:10.1007/978-1-4614-8265-9_80667.

[9] 1. Herman, OWL-RL: OWL-RL: A simple OWL2 RL reasoner on top of rdflib, Zenodo, 2014. URL:
https://doi.org/10.5281/zenodo.14543. doi:10.5281/zenodo . 14543.

http://dx.doi.org/10.1007/978-1-4614-8265-9_80667
https://doi.org/10.5281/zenodo.14543
http://dx.doi.org/10.5281/zenodo.14543

	1 Introduction
	2 Proposed Framework
	3 Use Case
	3.1 Framework Demonstration
	3.2 Automatic Service Deployment

	4 Conclusion and Future Work

