
CONTO: An Ontology-based Approach for Interoperable
Configuration Knowledge
Stefan Bischof1,*, Andreas Falkner1, Erwin Filtz1, Patrik Schneider2, Simon Steyskal1 and
Mihaela Topa3

1Siemens AG Österreich, Vienna, Austria
2Siemens AG, Munich, Germany
3Siemens SRL Romania, Bucharest, Romania

Abstract
CONTO (CONfiguration ONTOlogy and TOols) addresses the challenges of vendor lock-in and costly evaluations
in product configuration systems through an ontology-based semantic framework that establishes interoperability
without reinventing existing solver technologies. Our approach provides dual representations–instance-based
Configuration Vocabulary and OWL DL-based formalism–with tooling to transform product models into programs
for various platforms. By decoupling modelling from configuration processing, CONTO creates an abstraction
layer that preserves existing investments while enabling integration with emerging AI tools. Our implementation
shows practical applications supporting both commercial and open-source configurators.

1. Introduction
CPQ (Configure, Price, Quote) solutions provide the means for organizations to automate the sales
process by allowing customers to choose between a manifold of product variants (configure step) and
calculate/show marked dependent prices of configured products (price/quote step) to them. However,
organizations face a significant challenge: selecting optimal configuration systems requires substantial
resources, while the risk of vendor lock-in for configuration tools threatens long-term adaptability and
cost-effectiveness. Vendor lock-in occurs due to different approaches to describe configuration know-
ledge, which can include rule-based, constraint satisfaction-based, and proprietary (legacy) approaches.

This paper introduces CONTO (CONfiguration ONTOlogy and TOols), our semantic framework
for product configuration: an approach that establishes interoperability by uplifting domain-specific
product specification to an domain-independent, exchangeable semantic model based on two possible
representations. Our framework provides a comprehensive semantic model for product lines and
configurations, supported by tools for the creation, maintenance, and processing of these models.
Through a system of vendor-specific exporters, our framework transforms product models into the
appropriate formats required by diverse configuration systems.

The significance of this approach lies in the creation of an abstraction layer that effectively decouples
product modelling from configuration processing. This separation enables organizations to maintain
flexibility in their configuration ecosystem while preserving existing technological investments. Fur-
thermore, our framework facilitates integration with emerging AI technologies for automated model
generation, with the aim of reducing manual modelling efforts.

In this paper, we present the conceptual foundations of our framework (Section 3), outline the current
tooling that allows us to create a semantic model for product lines (Section 4), and discuss limitations
and future work (Section 5).

2. Related Work
The need to represent product configuration models using ontologies was identified in the 1980s. Over
time, the work started with process descriptions that identified the most important aspects of the product

SEMANTiCS’25: International Conference on Semantic Systems, September 3–5, 2025, Vienna, Austria
*Corresponding author.
� 0000-0001-9521-8907 (S. Bischof); 0000-0003-3445-0504 (E. Filtz); 0009-0003-8803-9523 (M. Topa)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0001-9521-8907
https://orcid.org/0000-0003-3445-0504
https://orcid.org/0009-0003-8803-9523
https://creativecommons.org/licenses/by/4.0/deed.en


(a) Example of instance-based approach

cdl:hasRoot

cdl:ConfigurationContext

cdl:EnumValue

cdl:hasEnumFeature

cdl:Component

cdl:dataFeature

cdl:hasAssociationFeature

cdl:hasPart

lis:InformationObject

lis:Object

lis:QualityDatum

(b) OWL DL-based approach

Figure 1: Ontology visualisation of the two different CONTO representations

configuration [1]. Around the turn of the millennium, first works regarding a general ontology for
product configuration were presented, already defining a class hierarchy of concepts (e.g., components,
attributes, constraints and their relations) using OWL [2]. Later, the idea of generic models is refined to
more domain-specific configuration models and also adding additional rule languages such as Semantic
Web Rule Language (SWRL) to represent constraints [3, 4]. All these developments have recently been
reviewed and a new meta-model for product configuration has been proposed [5]. Industry is slowly
adopting product configuration ontologies, which need to be adjusted to the specific industrial domain
and meet their requirements while keeping the advantages of Semantic Web technologies, which allow
for the easier integration of product data across platforms used in configuration tasks [6, 7].

3. Requirements and Proposed Framework/Ontology
The goal of CONTO is a tool-independent product model representation that includes also
configured products of these models. As shown in Fig. 2, CONTO acts as the mediator
between domain-specific product model representation that is often maintained in legacy tools
and formats, and vendor-specific representations such as those required by state-of-the-art tools
such as the Tacton configurator or open source constraint languages such as MiniZinc [8].

Figure 2: CONTO workflow

With CONTO, we propose an ontology-based
representation of an ‘universal’ product model.
The general elements of such a product model
were introduced by Soininen et al. [2] and
include (a) kind-of- as well as part-of-hierarchies of model components (including cardinalities), (b) at-
tribute features with value ranges for the data types: string, enum, doubles, and decimal, including
defaults, (c) association features, (d) feature cardinalities, (e) various types of constraints (such as
logic-based, and rule-based), and (f) clear distinction between product line specifications and (real)
configured products. Based on the above requirements and features, we provide an instance-based and
an OWL-DL-based starting point for a product modeler. The starting points represent two different
modeling paradigms that are currently not interchangeable, since in the former the constraints are
defined as RDF-based tables and in the latter as OWL axioms. However, both approaches are aligned
with the ISO-standard industrial data ontology (IDO), thus use the same upper ontology and classes.1

Instance-based Representation In this representation, product specifications are defined as in-
stances (i.e., the assertions), where the ontology (i.e., the terminology) provides the basic classes/prop-
erties as guidance. The base ontology is called Configuration Vocabulary (ConfigVoc) and is bounded by
the expressivity of RDFS. A modest extension of ConfigVoc is provided by the ‘Config Lite Ontology’,
which adds lightweight reasoning using axioms such as inverse roles, role chains, and restrictions.

1Industrial Data Ontology: https://rds.posccaesar.org/ontology/lis14/ont/core/

https://rds.posccaesar.org/ontology/lis14/ont/core/


With ConfigVoc, our aim is to capture two important ‘dimensions’ of product configuration, namely,
the first dimension of (a) product-independent vs. (b) product-dependent configuration model, and the
second dimension of (c) product line specifications vs. (d) configured products. In Fig. 1a, we show the
dimensions in an example, where the classes of (a,c) are given by the ConfigVoc ontology and (b) are the
instances of our wagon product line specification. Note that in (b) we define the full variant space via
constraints; hence, product configuration tools will take this information as an input, whereas (d) is an
example of a successful run of a configuration tool. ConfigVoc has over 90 classes and over 100 object/data
properties. In the following, we describe the usage of the most important classes and properties:
(a) ConfigurationContext is the starting point for any model and usually defines different product lines,
thus introducing modularity into product lines; (b) ComponentTypes defines the structural elements of
a product line capturing part-of hierarchies or more complex associations. The product hierarchy of
ComponentTypes is unfolded by the hasPart property; (c) FeatureTypes introduce the product features
(e.g., color) linked to a specific ComponentType and define the possible variant space by the associated
values. Several subclasses of FeatureType allow value typing, for instance, the EnumFeatureType
only allows only certain EnumValues as possible choices; (d) Object properties connect the above
classes via domain/range and include hasRoot (ConfigurationContext/ComponentType), hasFeature
(ComponentTyp/FeatureType), and hasPossibleValue (EnumFeatureType/EnumValue).

Constraints are the most important means to define (technical) requirements and reduce
the state space induced by all possible features and values. Since constraints can come
in various flavours, the most common are logic-based, formula-/rule-based, and table-based.

Figure 3: Example of con-
straint table

The focus of this work is on the latter, and we represent a Table-
Constraint using TableRow(s) that are made of TableCell(s) that
refer to FeatureType(s). One TableConstraint resembles a spread-
sheet but allows multiple cell values and negation, and can be
rewritten into propositional formulas. This offers a more gen-
eric and universally translatable representation that can be seam-
lessly exported to various configurators without being tied to any
validation framework such as SHACL2. The table shown in Fig. 3 is as a propositional formula:
(𝑠𝑒𝑎𝑡𝐾𝑖𝑛𝑑(𝑆𝑝𝑒𝑐𝑖𝑎𝑙) ∧ (𝑠𝑒𝑎𝑡𝐶𝑜𝑙𝑜𝑟(𝑅𝑒𝑑) ∨ 𝑠𝑒𝑎𝑡𝐶𝑜𝑙𝑜𝑟(𝐵𝑙𝑢𝑒)) ∨ ¬𝑠𝑒𝑎𝑡𝐾𝑖𝑛𝑑(𝑆𝑝𝑒𝑐𝑖𝑎𝑙).

OWL DL-based Representation OWL 2 DL provides native representations for many features
essential to product configuration. In our approach, we leverage OWL 2 DL as a second representation
for both product lines and configurations, building upon McGuinness and Wright’s concept of using
Description Logics for product configuration [9]. In this representation, the TBox (terminological box)
encapsulates the product line model, while the ABox (assertional box) represents concrete configurations.

Our semantic model maps key product configuration concepts to OWL constructs: classes (com-
ponents), inheritance of classes (kind-of hierarchy), data properties (attribute features), custom data
types (attribute feature ranges), object properties (association features), property cardinality restrictions
(feature cardinalities), value (number) ranges, enumerations are represented as enumerated classes, and
enumeration values as named individuals. Table constraints are expressed through class expressions
(a disjunction of conjunctions), while part-of hierarchies use dedicated object properties. We address
two representational challenges: formula constraints (beyond OWL’s native capabilities and still a
work-in-progress) and default values (represented as annotation properties to enable UI display while
acknowledging OWL’s monotonic semantics). Fig. 1b illustrates the ontology structure.

This OWL-based representation offers several benefits. We leverage OWL’s established formalization
rather than creating a new logical framework. OWL reasoners can perform consistency checking for
both product lines and configurations, and satisfiability testing on the product line model. In certain
scenarios, the reasoner can automatically derive appropriate values. We can apply transformations to
simplify or optimize constraints, or translate them to other representations. The resulting configurations
have efficient representations. The approach supports component and feature libraries through standard

2SHACL standard, https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/


(a) (b)

Figure 4: (a) CONTO tools architecture and (b) user interface

OWL import mechanisms, and OWL’s native versioning features facilitate version management of
product models. This representation establishes a solid foundation for our product configuration
framework while maintaining compatibility with existing semantic web technologies and tools.

4. Tooling
CONTO Tools facilitate the creation of ontologies for product lines utilizing ConfigVoc. These product
ontologies function as primary data sources for exporters, which subsequently generate models com-
patible with various configurator engines. Product configuration is then performed through dedicated
configuration tools or solvers. Fig. 2 shows the product line data flow.

Importers and User Interfaces for Modelling Product lines can be represented through multiple
formalisms, including UML-based representations, feature models, domain-specific languages, matrix-
based representations, and decision diagrams. CONTO Tools offers an API for importing product
structure from an UML diagram and product variants, as well as table and formula constraints from
spreadsheets. Fig. 4a depicts the architecture.

Product parts are defined as UML classes and are organized in a hierarchy (part-of ) using UML
composition. Part features are defined as class attributes, each with a type (long, double, decimal, string,
boolean or enum), and may have a domain and a default value. Inheritance (type-of ) is supported
to define attributes common to multiple parts. Constraints and variants require context, so they are
associated with product parts. They are defined using component attributes. Formula constraints can
be defined using a basic constraints definition language, whereas table constraints and variants are
represented as tables.

In addition to the CONTO tools we also create a user interface as not everybody is familiar working
with UML or other diagrams evolving with the ontology. In addition, it also limits the potential pitfalls
that can occur when giving users the possibility to use the full potential of diagrams. Users can create
and modify product models with the functionality implemented in the UI, which is aligned with the
ontology and therefore reduces the risk of introducing wrong data. A snippet of the current version
of the UI is shown in Fig. 4b. It allows users to enter components, enumerations, part structure and
constraints, which are directly stored in a knowledge graph. Furthermore, the UI supports the export of
product configuration models into RDF as well as dedicated exporters defined in the CONTO tools.

Exporters and Configuration Engines for Configuration CONTO represents the product line
independently of the business domain and any configurator vendor, so the logic of exporters is based
solely on ConfigVoc. The CONTO API provides a list of all supported configurator engines. The current
implementation generates models for both the commercial Tacton configurator (TCX models) and the
open-source Constraint Programming Language MiniZinc [8]. However, it can be extended to other
commercial tools such as Configit, Encoway, feature models like Universal Variability Language, or
logic programming languages such as Answer Set Programming. It could also send product data to



CPQ systems, such as TactonCPQ, if APIs are available. Although various configurator engines are
supported, not all engines support all features of CONTO. Conversely, CONTO does not support all the
features of every existing configurator engine.

5. Conclusions & Future Work
CONTO provides semantic models and tools that transform product models into executable configuration
programs while decoupling product modeling from configuration execution. This decoupling improves
flexibility and reduces vendor lock-in risks.

We recognize that our approach has limitations. Product configuration systems often contain special-
ized features that don’t generalize well across platforms, such as procedural attachments. We made
the design decisions in developing CONTO to prioritize declarative, semantic product models with
broadly applicable features, while intentionally excluding specialized capabilities that would comprom-
ise cross-platform compatibility. This deliberate scope management ensures that CONTO remains
versatile across different configuration environments.

Our future work focuses on four directions: (a) extending the ontologies, (b) developing export-
ers for additional configurators, (c) creating a tool-independent product configurator interface, and
(d) leveraging AI systems to enhance product modelling using CONTO’s formal structure. We hope
that CONTO represents a significant advancement toward interoperable product configuration systems
that adapt to diverse organizational needs while maintaining semantic integrity.

Declaration on Generative AI
During the preparation of this work, the authors used Sonnet 4.0 in order to: paraphrase and reword,
improve writing style, and grammar and check spelling. After using this tool, the authors reviewed and
edited the content as needed and take full responsibility for the publication’s content.

References

[1] S. Mittal, F. Frayman, Towards a generic model of configuraton tasks., in: IJCAI, volume 89, Citeseer,
1989, pp. 1395–1401.

[2] T. Soininen, J. Tiihonen, T. Männistö, R. Sulonen, Towards a general ontology of configuration,
Artif. Intell. Eng. Des. Anal. Manuf. 12 (1998) 357–372.

[3] D. Yang, R. Miao, H. Wu, Y. Zhou, Product configuration knowledge modeling using ontology web
language, Expert Systems with Applications 36 (2009) 4399–4411.

[4] M. M. Amini, T. Coudert, E. Vareilles, M. Aldanondo, Integration of Ontologies and Constraint
Satisfaction Problems for Product Configuration, in: 2021 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM), 2021, pp. 578–582.

[5] E. K. Abbasi, T. Leclercq, P. Heymans, A meta-model for product configuration ontologies, in:
Proceedings of the 26th ACM International Systems and Software Product Line Conference –
Volume B, ACM, 2022, pp. 166–173.

[6] A. Smirnov, N. Shilov, A. Kashevnik, T. Jung, M. Sinko, A. Oroszi, Ontology-driven product
configuration – industrial use case, in: Proceedings of the International Conference on Knowledge
Management and Information Sharing, SciTePress, 2011, pp. 38–47.

[7] H. Haav, R. Maigre, A semantic model for product configuration in timber industry, in: Databases
and Information Systems X, volume 315 of Frontiers in Artificial Intelligence and Applications, 2018,
pp. 143–158.

[8] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, G. Tack, MiniZinc: Towards a standard
CP modelling language, in: Principles and Practice of Constraint Programming, 2007, pp. 529–543.

[9] D. L. McGuinness, J. R. Wright, Conceptual modelling for configuration: A description logic-based
approach, AIEDAM 12 (1998) 333–344.


	1 Introduction
	2 Related Work
	3 Requirements and Proposed Framework/Ontology
	4 Tooling
	5 Conclusions & Future Work

