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Abstract
Large Language Models (LLMs) are increasingly used for tasks involving Knowledge Graphs (KGs), whose
evaluation typically focuses on accuracy and output correctness. We propose a complementary task char-
acterization approach using three complexity frameworks from cognitive psychology. Applying this to the
LLM-KG-Bench framework, we highlight value distributions, identify underrepresented demands and motivate
richer interpretation and diversity for benchmark evaluation tasks.
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1. Introduction

Large Language Models (LLMs) are increasingly applied to structured knowledge tasks involving query
generation, data interpretation and interaction with Knowledge Graphs (KGs) [1, 2]. As a result, the
LLM-KG-Bench has been introduced [3, 4] that aim to assess model performance in KG-related context
in an automated way. Evaluation for such benchmark tasks typically focuses on correctness and
surface-level output features, but provide limited insight into the deeper nature of the tasks themselves,
specifically, what kinds of knowledge and operations they demand. In this paper, we propose a task
characterization framework for evaluation benchmarks using cognitive complexity frameworks. These
allow us to describe each task in terms of the minimal operational and structural requirements expected
for successful task completion. Our aim is to support deeper understanding of task diversity and
complexity and complement performance-oriented evaluation with structure insight, extending our
previous work [5].

2. Background and Related Work

Understanding the difficulty and structure of tasks often requires going beyond surface-level features.
In cognitive science and educational research, several frameworks have been developed to describe
the complexity of tasks based on the type of knowledge involved and the mental operations required.
One of the most well-known is Bloom’s Taxonomy [6], which was originally developed for classification
of educational goals based on the required cognitive complexity level. The taxonomy is grounded on
behavioral observations of learning processes and classifies cognitive processes from simple recall to
higher-level reasoning and creative generation. A revision was made in order to better fit modern views
of cognitive psychology [7], which also introduced a complementary dimension. The new Knowledge
Dimension distinguishes between types of knowledge required for completing different tasks. In parallel,
Relational Complexity Theory [8] originates from developmental and comparative psychology and draws
the notion of relational arity from formal systems in logic and computer science, including relational

SEMANTiCS’25: International Conference on Semantic Systems, September 3–5, 2025, Vienna, Austria
*Corresponding author.
$ sara.todorovikj@informatik.tu-chemnitz.de (S. Todorovikj)
� 0000-0002-2418-1358 (S. Todorovikj); 0000-0001-5260-5181 (L. Meyer); 0000-0003-0762-8688 (M. Martin)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sara.todorovikj@informatik.tu-chemnitz.de
https://orcid.org/0000-0002-2418-1358
https://orcid.org/0000-0001-5260-5181
https://orcid.org/0000-0003-0762-8688
https://creativecommons.org/licenses/by/4.0/deed.en


Table 1
Overview of cognitive complexity frameworks and possible values.

Framework Values

Bloom’s Taxonomy - Cognitive Processes [6] Remember, Understand, Apply, Analyze, Evaluate, Create
Knowledge Dimensions [7] Factual, Conceptual, Procedural, Metacognitive
Relational Complexity [8] Low, Medium, High

database theory. It formalizes task difficulty in terms of the number of entity and relations that must be
simultaneously processed.

These frameworks form the basis for our task characterization approach, which we apply to LLM-KG-
Bench as an illustration. The LLM-KG-Bench framework was developed to address the lack of scalable
evaluation tools for LLMs targeting KG tasks such as RDF serialization, SPARQL query generation and
structured extraction. The framework supports a wide range of tasks with built-in correction cycles and
output validation, emphasizing automated, reproducible evaluation across a broad selection of models.
Here, we provide a short overview and description of the task groups used in LLM-KG-Bench, for more
details, see [3, 9, 10, 11, 4, 5].

RDF-related Tasks

FactExtractStatic Extract facts from a textual fact sheet and create a KG [3, 9].

RdfConnectionExplainStatic Find the shortest connection between two nodes in an RDF graph [9, 4].

RdfFriendCount Identify the node with the most incoming edges [9, 4].

RdfSyntaxFixList Correct a syntactically invalid RDF graph [4].

TurtleSampleGeneration Generate small Turtle KGs satisfying given requirements [3, 9].

SPARQL-related Tasks

Sparql2AnswerList Given a small KG and a SPARQL SELECT query, return the respective
result set for the query [11].

Text2AnswerList Return the result set answering a given textual question on a given KG
(withot a SPARQL SELECT query) [11].

Text2SparqlList Given a KG and its description, construct a SPARQL SELECT query corre-
sponding to a given natural language query [11].

SparqlSyntaxFixingList Given a SPARQL SELECT query with syntax errors, return a corrected
query [11].

3. Task Characterization

To understand what kinds of abilities and operations are required by benchmarking tasks, we apply
structured characterization criteria drawn from the three established frameworks, as introduced above.
While we adopt terminology from cognitive psychology, we do not claim that LLMs engage in these
processes in a human sense. Rather, we assess the extent to which their outputs reflect behavior
consistent with such operations. Table 1 provides an overview of all possible values across the three
frameworks. In the following, we describe the interpretation and assignment criteria for each value.



Table 2
Characterization of Benchmark Evaluation Tasks, first submitted at [5]

Task Cognitive Process Knowledge Dimension Relational Complexity

RDF related:
FactExtractStatic Understand, Create Conceptual, Procedural Medium
RdfConnectionExplainStatic Understand, Analyze Conceptual Medium
RdfFriendCount Apply Procedural Low
RdfSyntaxFixList Understand, Apply Factual, Procedural Low
TurtleSampleGeneration Understand, Create Conceptual, Procedural Medium

SPARQL related:
Sparql2AnswerList Understand, Apply Conceptual, Procedural Low
Text2AnswerList Understand, Apply Conceptual, Procedural Low
Text2SparqlList Understand, Create Conceptual, Procedural Low
SparqlSyntaxFixingList Understand, Apply Factual, Procedural Low

Bloom’s Taxonomy - Cognitive Processes

Remember The task depends primarily on “mechanically” recalling facts or definitions without
further processing.

Understand The task requires interpreting given information, structures or queries without funda-
mentally transforming or generating new representations.

Apply A known procedure or pattern must be correctly executed, such as retrieval or following
syntactic rules.

Analyze The task demands recognizing or decomposing relationships between data, especially
when multiple elements or steps must be coordinated.

Evaluate A task involves judging the correctness, relevance or quality of a result.
Create The task involves generating new content, such as generating queries or data structures.

Knowledge Dimensions

Factual Task execution success depends on recalling or recognizing specific terminology, syntax
elements or concrete information.

Conceptual Structural or relational understanding is necessary, such as schema structure, data
models or logical organization.

Procedural The task requires a correct application of known methods, routines or transformation
steps.

Metacognitive Awareness and control over one’s strategies and thinking processes, such as selecting
appropriate approaches, planning task execution or monitoring correctness, which
might be relevant for more complex or interactive settings.

Relational Complexity

Low The task involves interpreting or manipulating individual binary relations or isolated,
simple structures with minimal dependencies.

Medium Multiple relations and entities must be processed simultaneously, such as coordinating
several triples or variables in a query.

High The task involves multiple interrelated entities or nested dependencies that must be
simultaneously considered, often requiring more abstract or hierarchical reasoning.



3.1. Application to Benchmark Tasks

The assigned values for each task are displayed in Table 2. Note that not all values across the frameworks
are represented, as the current set of tasks does not span the full theoretical space. The assigned values
represent the minimal operational and structural requirements. Some variability in the relational
complexity dimension is certainly possible given a prompt that requires more complex operations.

We can observe several recurring value combinations. Most tasks fall into a characterization combin-
ing Understand and Apply as cognitive processes with Conceptual and Procedural knowledge dimensions
and a Low level of relational complexity. This reflects the prevalence of tasks requiring interpretation
and rule application without substantial structural coordination. Tasks involving generation (FactEx-
tractStatic, TurtleSampleGeneration and Text2SparqlList) are naturally the only ones annotated with the
Create process. Among them, only the RDF-based generation tasks are assigned Medium relational
complexity, reflecting the need to coordinate multiple entities and their relationships when constructing
a graph. In contrast, SPARQL generation tasks tend to result in single triple pattern and are thereby
assigned Low relational complexity.

A consistent, expected dependency can be observed between some processes and knowledge types.
Factual and Conceptual knowledge always coincide with Understand, as interpreting a meaning in-
herently involves factual or structural knowledge. On the other hand, Procedural knowledge always
coincides with Apply, Analyze or Create, since carrying out a certain procedure by definition requires
knowing the necessary steps. In the current task set, Factual and Conceptual knowledge do not co-occur,
distinguishing between surface-level terminology and deeper structural comprehension. Similarly,
Apply, Analyze and Create do not co-occur, as they all describe mutually exclusive operations that either
follow a procedure, decompose a structure, or generate new ones.

4. Discussion and Outlook

In this paper we proposed a task characterization that provides a complementary perspective on
benchmark design and evaluation beyond accuracy metrics, inspired by theories of cognitive complexity.
This can guide the creation of more balanced and targeted benchmarks by ensuring diversity across the
different dimensions. Moreover, it enables identification of potential blind spots in model behavior for
tasks that require similar processing.

We demonstrate how to assign the characterization values on a set of evaluation tasks from the LLM-
KG-Bench framework. Several values do not appear in the task set due to current design preferences,
but that does not imply that such dimensions are irrelevant or unassignable. In cognitive processes, we
note Remember which would describe a task that asks for reproduction of terminology or exact syntax,
e.g., listing reserved SPARQL keywords from memory, while Evaluate would require making judgments
between alternative options, e.g., selecting the most efficient query. One knowledge dimension was not
assigned, Metacognitive knowledge, which might be tackled by tasks that require justification, such as
explaining the reasoning behind a generated query. Finally, High relational complexity would emerge
in tasks requiring coordination of more than two entity roles simultaneously, like multi-dimensional
event data or nested dependencies. This suggests a direction for extending task design to capture a
broader range of structural demands.

The proposed framework could be applied to other benchmarks in the semantic web and beyond,
allowing for cross-benchmark comparisons of task complexity profiles. It could also be integrated into
such evaluation pipelines, helping understand the types of processes the models succeed or struggle
with. In turn, this could support more systematic error analysis, design, and task selection.
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