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Abstract
The  SPARQL  ecosystem  has  become  increasingly  fragmented  as  engines  introduce  valuable  but 
incompatible  language  extensions.  This  growing  diversity  undermines  query  portability,  tooling 
reliability, and the pace of innovation. To address this, we designed a modular parser architecture that  
supports  dynamic  extension  and  modular  grammar  definitions.  This  paper  presents  a  builder-based, 
TypeScript-native parser framework inspired by Chevrotain and the modular principles of Comunica. Our 
prototype demonstrates that key SPARQL extensions can be integrated, altered, or removed with minimal  
effort and strong type safety. These results suggest that modular, declarative parsing is not only feasible 
but essential for keeping pace with evolving SPARQL standards. Looking forward, we identify the need  
for  round-trippable  ASTs,  Babel-inspired  generators  and  transformer  pipelines  to  enable  a  complete,  
future-proof SPARQL toolchain.
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1. Introduction

The SPARQL query language [1], a cornerstone of the Semantic Web stack, has evolved through 
both standardisation and real-world innovation. While SPARQL 1.1 defines a clear and extensible 
foundation,  the  ecosystem  has  gradually  diverged  as  implementers  introduced  powerful  but 
engine-specific extensions. For example, Virtuoso offers full-text search capabilities [2],  Apache 
Jena  supports  CONSTRUCT  QUAD  queries  [3],  and  Oxigraph  provides  extended  date-time-
functionality including the ADJUST function [4]. These features are often highly valuable, but also 
incompatible, creating a heterogeneous landscape where queries that run on one engine may fail  
on another.

This  diversity  presents  a  serious  challenge  for  SPARQL  portability,  tooling  and  federated 
querying. With the finalisation of the SPARQL 1.2 specification [5], the gap between supported 
language features is likely to widen further, since migration to SPARQL 1.2 is not trivial, requiring 
substantial updates to the datasets representation and underlying RDF store [6]. The RDF1.1 to 
RDF1.2 update is substantial mainly because of the introduction of a new triple term, specifically 
the object of a triple can now be a triple itself, allowing for the recursive definition of triples since 
the triple contained in the object can again have a triple in the object spot.

Moreover, the working group has announced that after SPARQL 1.2 finalisation, they plan to 
move toward a  more  agile  “maintenance  and new features”  mode,  which hints  at  even faster 
iteration  cycles  in  the  future.  As  a  result,  there  is  a  growing  need  for  tooling  that  embraces 
extensibility and modularity by design.
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In this work, we show the need for a modular parser and what such a parser could look like.  
Unlike  traditional  parser  generators  such  as  ANTLR [7]  or  Bison  [8],  which  rely  on  Domain 
Specific Languages (DSLs) and generate static parsing code — our parser should be defined entirely 
within a host programming language. This would eliminate the compile step, enable programmatic 
extension, and leverage strong typing to provide a safer, more developer-friendly API. The parser 
should not be a handwritten parser either, instead it should use declarative rules such as present in  
the Typescript-based Chevrotain parser toolkit [9].

A modular parser, that allows you to add, override, or swap grammar fragments at runtime, 
would empower both researchers and practitioners to create a new generation of language-aware 
SPARQL tools. This opens the door to use cases such as heterogeneous query tooling (e.g., adapting 
editors like YASGUI [10]  to custom SPARQL dialects),  while  keeping maintainability in check. 
Additionally,  it  would allow SPARQL version translation,  and rapid experimentation with new 
language features. In an ecosystem where SPARQL flavors are growing rather than converging, we 
believe modularity is not just a nicety—it’s a necessity.

The next section touches lightly on the related work,  while Section 3 describes the system 
architecture.  Section  4  sketches  the  demonstration  that  we  will  provide  to  the  work‐shop.  In 
Section 5 we conclude the future work and desired impact of this research.

2. Related Work

In  this  section,  we  examine  prominent  software  packages  in  the  SPARQL  ecosystem  that 
implement parsing capabilities. Our findings are summarized in Fig. 1.

Notably, all discussed major open-source SPARQL parsers rely on either parser generators or 
parser-building toolkits to define their grammars. In compiled languages such as Rust or Java, the 
parser generation step can be integrated directly into the main build step—e.g., Oxigraph uses rust-
peg for  this  purpose.  Interestingly,  in our survey only Stardog’s  Millan does not  use a  parser  
builder. Instead, it uses Chevrotain without constructing an Abstract Syntax Tree (AST); it appears  
to focus solely on validation rather than full syntactic analysis.

This  highlights  a  broader  pattern:  while  parser  generators  dominate  SPARQL  tooling,  few 
systems are designed with modularity or extensibility as a first-class concern. In particular, full  
modularity—including the ability to  remove grammar rules—is not  supported in current public 
implementations, making adaptation or evolution of these parsers difficult. 
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Figure  1: Each row lists a widely used software package, its associated parsing library, and the 
parser  generator  employed.  When the  parsing  software  is  omitted,  the  parser  is  implemented 
directly within the project.

3. Software Architecture

Parsers are typically implemented in one of three ways:
1. Hand-built  parsers: These  are  manually  implemented  parsers  tailored  to  a  specific 

grammar.  While  they  can  be  highly  performant  due  to  low-level  optimizations  and 
language-specific design, they are often difficult to maintain, extend, or modularize.

2. Parser  generators: Tools  such  as  ANTLR  [7]  and  Bison  [8]  use  a  Domain  Specific 
Language  (DSL),  typically  based  on  Extended  Backus–Naur  Form  (EBNF),  to  define  a 
grammar. These grammars are then compiled into standalone parser code. While powerful,  
such approaches introduce a compile step and tend to be rigid, making modular extensions 
cumbersome.

3. Parser  building  toolkits: Libraries  such  as  Chevrotain  [9]  offer  a  hybrid  approach, 
enabling declarative grammar specification within a host programming language. These 
toolkits  eliminate  the  compile  step  and  allow  for  flexible,  programmatic  grammar 
definitions with fine-grained control over behavior and integration.

To support modularity while keeping the mental model approachable, a modular parser should 
be build using a parser building toolkit. Parsing itself is typically divided into multiple phases [11], 
of which the following are relevant to this work:

1. Lexical Analysis (scanning): A lexer transforms a character stream into a token stream.
2. Syntax Analysis (parsing): A parser transforms the token stream into an abstract syntax 

tree (AST).
3. Semantic Analysis: Performed during or after parsing, this phase validates constraints 

not enforced by grammar alone. For instance, SPARQL forbids binding to a variable which 
is already in scope.

Inspired by the Comunica modular  query engine [12]  codebase,  the codebase of  a  modular 
parser  should  not  be  a  big  monolith  but  instead use  many smaller  packages  that  can be  tied 
together  to  serve a  larger  purpose.  To facilitate the maintainability of  many small  packages a 
monorepo (https://monorepo.tools/) structure could be considered. Within the Comunica codebase, 
the usage of small packages allows it to define many different builds (eg. a minimal built for the 
web, and a general built with and without file system access). Similar benefits can be expected in  
the adoption of such a structure within the modular parser:

1. Engines: These are prebuilt, ready-to-use components such as SPARQL 1.1 and 1.2 parsers 
or generators.

2. Non-engine packages: These expose modular building blocks used to construct engines, 
such as grammar fragments or core construction utilities.

However,  unlike  Comunica  which  uses  Components.js,  a  dependency  injection  framework 
using RDF based config files, the modular query engine can be configured within the host language 
itself since components share a similar interface. We propose that a parser be build using a builder 
pattern and that parser packages export the builder used, so other may extend upon it. Using a 
builder pattern for the parser allows you to take a builder that is used to build one parser and 
manipulate the grammar rules to construct a new parser. Concretely, we propose a builder which 
allows rules to be registered by name into a rule map, thereby creating a loose coupling between 
registered rules. Each rule is defined as a ParserRule object, containing both a rule name and a rule 
implementation. Rule implementations can be expressed declaratively using Chevrotain’s grammar 
definition functions like:

1. SUBRULE : invokes another rule, registered under some name in the current parser,
2. MANY : matches zero or more occurrences of a pattern,
3. OR : matches one of several alternatives.

https://monorepo.tools/


We propose,  each rule  implementation returns  a  function that,  when invoked,  receives  the 
parsing context and any parameters, and outputs part of the final syntax tree. Listing 1 shows an 
example parser rule definition. The ParserBuilder can then be used for compositional construction 
and extension through methods like addRule , deleteRule , merge , and typePatch. The typePatch 
utility  would  enable  type  updates  to  existing  rules  —  particularly  useful  when  extending  or 
modifying  a  dependent  rule  without  altering  the  original  rule’s  implementation.  After  the 
construction of your parser, you can build it, as shown in Listing 2, returning a parser which allows 
you  to  start  parsing  a  string  from any  of  the  parser  rules  added  to  the  builder  -  a  property  
transferred from the underlying parser builder toolkit.

import type { SparqlRule } from '@traqula/core';
const iriOrNil: SparqlRule<'iriOrNil', URL | null> = <const>{
  name: 'iriOrNil',
  impl: ({SUBRULE, CONSUME, OR}) => () => OR<URL | null>([
    {ALT: () => SUBRULE(iri, undefined)},
    {ALT: () => {
      CONSUME(nilToken);
      return null;
    } },
  ]),
};

Listing 1: The definition of a parser rule parsing either a URI of the nil token, returning the parser  
URI or null respectively.

import { ParserBuilder } from '@traqula/core';
const parser = ParserBuilder
  .create([ iriOrNil, rule1 ])
  .addRule(rule2)
  .patchRule(rule1Alternative)
  .build({
    tokenVocabulary: myLexerBuilder.tokenVocabulary,
  });
// The argument and return types of the function are known,
// ast will thus be inferred to have the type `URL | null`.
const ast = parser.iriOrNil(myString, myContext, myParameters)

Listing 2:  The construction of a parser including the iriOrNil rule constructed in Listing 1. It also 
shows how to parse using the iriOrNil rule as the starting rule.

As for the lexer, a similar approach to the parser should be taken. Tokens should be coupled 
loosely  through  a  name-definition  map.  The  consumption  of  a  token  then  results  in  the  
consumption of the token with that name in the used lexer. Besides that our only requirement is 
that the tokens can be expressed through the definition of a regex.

4. Demonstration

In the workshop demonstration, we will showcase how our proof of concept modular parser-
builder enables straightforward modification and extension of the existing parsers. Starting from a 
prebuilt SPARQL 1.1 parser, we will incrementally evolve the grammar in four small steps using 
the described builder-based architecture. Each change will be demonstrated live, with code edits 
performed in an IDE and parser behavior verified in a browser-based UI. Specifically, we will:

1. extend SPARQL to support the ADJUST function [4],
2. add support for CONSTRUCT QUAD queries [3],
3. introduce full-text search capabilities [2], and
4. remove support for the OPTIONAL clause due to its impact on query complexity [13] .



These  modifications  will  demonstrate  how  the  modular  parser  architecture—built  around 
builders enables safe and modular grammar changes with minimal effort. The focus will be on how 
individual grammar components can be extended or replaced with‐out touching unrelated parts of 
the parser. We will also highlight how the use of strong typing improves the developer experience  
by surfacing integration errors at compile time.

For  each  of  the  extensions  we  alter  the  grammar  rules  in  accordance  to  the  SPARQL 1.1 
specification [1] (rule number shown between paratheses):

1. ADJUST function: We add an ‘ADJUST ’ token to the lexer and add a grammar rule for it,  
then patch the BuiltInCall (121) rule.

2. CONSTRUCT QUAD queries: Following Jena’s approach, we patch the ConstructQuery 
(10) and ConstructTriples (74) rules and introduce a ConstructQuads rule.

3. Full-text search: We patch the objectPath (86) and object (80) rules to allow an ‘ OPTION’ 
keyword followed by a scoring clause like ‘ ( score Expression ) ’.

4. Dropping  OPTIONAL: This  involves  deleting  the  OptionalGraphPattern  (57)  rule, 
patching the GraphPatternNotTriples (56), and removing the ‘OPTIONAL ’ token from the 
lexer.

While the demo is not interactive for attendees, all code and tooling will be made available for  
experimentation after the session. The demo will serve to illustrate how a modular parser builder 
enables a new generation of language-aware SPARQL tools with modular, declarative grammar 
support and a strong developer experience.

5. Conclusion

In this paper, we presented the need for a modular parser, and offered an initial prototype to 
cover  this  need.  Our  prototype  uses  a  builder-based  architecture  for  constructing  extensible  
SPARQL parsers. By embracing runtime modularity, declarative rule definitions, and strong typing,  
our approach enables a new class of SPARQL tools that can evolve alongside a rapidly diversifying 
query  ecosystem.  Through  our  demonstration,  we  showed  that  parser  modification  can  be 
performed with minimal overhead and high confidence in correctness.

Looking ahead, several important challenges remain:
1. In order to bootstrap the adoption of the modular parser, a robust, default parser with a 

well-defined  Abstract  Syntax  Tree  (AST)  format  should  be  created.  This  AST  should 
support round-tripping—ensuring that a query parsed into the AST and then regenerated 
from it  yields  a  string-identical  query.  This  requirement on the AST will  facilitate  the 
creation of language tools such as linters.

2. To support such round-tripping, we will need to design a corresponding generator. This 
generator could follow architectural patterns established by the Babel JavaScript compiler 
[14] combined with the builder pattern described in this work.

3. We envision the need for a flexible AST transformer system that makes it easy to map the 
AST  into  alternative  representations.  Such  a  transformer  will  facilitate  static  analysis, 
query-optimization, and translation to other query languages.

Together,  these  next  steps  would  complete  a  robust  pipeline:  from  parsing,  through 
transformation, to code generation—all powered by modular,  declarative components.  We hope 
this work provides a foundation for building SPARQL tools that are not only adaptable to change, 
but actively enable it.
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