
Towards tackling SPARQL heterogeneity through
modular parsing

Jitse De Smet, Ruben Taelman

IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract
The SPARQL ecosystem has become increasingly fragmented as engines introduce valuable but
incompatible language extensions. This growing diversity undermines query portability, tooling
reliability, and the pace of innovation. To address this, we designed a modular parser architecture that
supports dynamic extension and modular grammar definitions. This paper presents a builder-based,
TypeScript-native parser framework inspired by Chevrotain and the modular principles of Comunica. Our
prototype demonstrates that key SPARQL extensions can be integrated, altered, or removed with minimal
effort and strong type safety. These results suggest that modular, declarative parsing is not only feasible
but essential for keeping pace with evolving SPARQL standards. Looking forward, we identify the need
for round-trippable ASTs, Babel-inspired generators and transformer pipelines to enable a complete,
future-proof SPARQL toolchain.

Keywords
SPARQL, SPARQL Tooling, Modular Parser

Source Code: https://github.com/comunica/traqula
 Demo: https://modular-parsing.demo.jitsedesmet.be/
 Canonical version: https://traqula-demo-semantics-2025.jitsedesmet.be/

1. Introduction

The SPARQL query language [1], a cornerstone of the Semantic Web stack, has evolved through
both standardisation and real-world innovation. While SPARQL 1.1 defines a clear and extensible
foundation, the ecosystem has gradually diverged as implementers introduced powerful but
engine-specific extensions. For example, Virtuoso offers full-text search capabilities [2], Apache
Jena supports CONSTRUCT QUAD queries [3], and Oxigraph provides extended date-time-
functionality including the ADJUST function [4]. These features are often highly valuable, but also
incompatible, creating a heterogeneous landscape where queries that run on one engine may fail
on another.

This diversity presents a serious challenge for SPARQL portability, tooling and federated
querying. With the finalisation of the SPARQL 1.2 specification [5], the gap between supported
language features is likely to widen further, since migration to SPARQL 1.2 is not trivial, requiring
substantial updates to the datasets representation and underlying RDF store [6]. The RDF1.1 to
RDF1.2 update is substantial mainly because of the introduction of a new triple term, specifically
the object of a triple can now be a triple itself, allowing for the recursive definition of triples since
the triple contained in the object can again have a triple in the object spot.

Moreover, the working group has announced that after SPARQL 1.2 finalisation, they plan to
move toward a more agile “maintenance and new features” mode, which hints at even faster
iteration cycles in the future. As a result, there is a growing need for tooling that embraces
extensibility and modularity by design.

SEMANTICS 2025 Developers Workshop at SEMANTiCS 2025
 jitse.desmet@ugent.be (J. De Smet); ruben.taelman@ugent.be (R. Taelman)
 0009-0002-6513-5013 (J. De Smet); 0000-0001-5118-256X (R. Taelman)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:t.princesales@utwente.nl
https://traqula-demo-semantics-2025.jitsedesmet.be/
https://modular-parsing.demo.jitsedesmet.be/
https://github.com/comunica/traqula

In this work, we show the need for a modular parser and what such a parser could look like.
Unlike traditional parser generators such as ANTLR [7] or Bison [8], which rely on Domain
Specific Languages (DSLs) and generate static parsing code — our parser should be defined entirely
within a host programming language. This would eliminate the compile step, enable programmatic
extension, and leverage strong typing to provide a safer, more developer-friendly API. The parser
should not be a handwritten parser either, instead it should use declarative rules such as present in
the Typescript-based Chevrotain parser toolkit [9].

A modular parser, that allows you to add, override, or swap grammar fragments at runtime,
would empower both researchers and practitioners to create a new generation of language-aware
SPARQL tools. This opens the door to use cases such as heterogeneous query tooling (e.g., adapting
editors like YASGUI [10] to custom SPARQL dialects), while keeping maintainability in check.
Additionally, it would allow SPARQL version translation, and rapid experimentation with new
language features. In an ecosystem where SPARQL flavors are growing rather than converging, we
believe modularity is not just a nicety—it’s a necessity.

The next section touches lightly on the related work, while Section 3 describes the system
architecture. Section 4 sketches the demonstration that we will provide to the work‐shop. In
Section 5 we conclude the future work and desired impact of this research.

2. Related Work

In this section, we examine prominent software packages in the SPARQL ecosystem that
implement parsing capabilities. Our findings are summarized in Fig. 1.

Notably, all discussed major open-source SPARQL parsers rely on either parser generators or
parser-building toolkits to define their grammars. In compiled languages such as Rust or Java, the
parser generation step can be integrated directly into the main build step—e.g., Oxigraph uses rust-
peg for this purpose. Interestingly, in our survey only Stardog’s Millan does not use a parser
builder. Instead, it uses Chevrotain without constructing an Abstract Syntax Tree (AST); it appears
to focus solely on validation rather than full syntactic analysis.

This highlights a broader pattern: while parser generators dominate SPARQL tooling, few
systems are designed with modularity or extensibility as a first-class concern. In particular, full
modularity—including the ability to remove grammar rules—is not supported in current public
implementations, making adaptation or evolution of these parsers difficult.

Software Package Parsing software Parser Generator

Comunica SPARQL.js Jison

Yasgui SWI Prolog

Apache Jena JavaCC

Oxigraph Rust-peg

Stardog – Millan Chevritain

Virtuoso Bison

Blazegraph JavaCC

GraphDB RDF4J JavaCC

Figure 1: Each row lists a widely used software package, its associated parsing library, and the
parser generator employed. When the parsing software is omitted, the parser is implemented
directly within the project.

3. Software Architecture

Parsers are typically implemented in one of three ways:
1. Hand-built parsers: These are manually implemented parsers tailored to a specific

grammar. While they can be highly performant due to low-level optimizations and
language-specific design, they are often difficult to maintain, extend, or modularize.

2. Parser generators: Tools such as ANTLR [7] and Bison [8] use a Domain Specific
Language (DSL), typically based on Extended Backus–Naur Form (EBNF), to define a
grammar. These grammars are then compiled into standalone parser code. While powerful,
such approaches introduce a compile step and tend to be rigid, making modular extensions
cumbersome.

3. Parser building toolkits: Libraries such as Chevrotain [9] offer a hybrid approach,
enabling declarative grammar specification within a host programming language. These
toolkits eliminate the compile step and allow for flexible, programmatic grammar
definitions with fine-grained control over behavior and integration.

To support modularity while keeping the mental model approachable, a modular parser should
be build using a parser building toolkit. Parsing itself is typically divided into multiple phases [11],
of which the following are relevant to this work:

1. Lexical Analysis (scanning): A lexer transforms a character stream into a token stream.
2. Syntax Analysis (parsing): A parser transforms the token stream into an abstract syntax

tree (AST).
3. Semantic Analysis: Performed during or after parsing, this phase validates constraints

not enforced by grammar alone. For instance, SPARQL forbids binding to a variable which
is already in scope.

Inspired by the Comunica modular query engine [12] codebase, the codebase of a modular
parser should not be a big monolith but instead use many smaller packages that can be tied
together to serve a larger purpose. To facilitate the maintainability of many small packages a
monorepo (https://monorepo.tools/) structure could be considered. Within the Comunica codebase,
the usage of small packages allows it to define many different builds (eg. a minimal built for the
web, and a general built with and without file system access). Similar benefits can be expected in
the adoption of such a structure within the modular parser:

1. Engines: These are prebuilt, ready-to-use components such as SPARQL 1.1 and 1.2 parsers
or generators.

2. Non-engine packages: These expose modular building blocks used to construct engines,
such as grammar fragments or core construction utilities.

However, unlike Comunica which uses Components.js, a dependency injection framework
using RDF based config files, the modular query engine can be configured within the host language
itself since components share a similar interface. We propose that a parser be build using a builder
pattern and that parser packages export the builder used, so other may extend upon it. Using a
builder pattern for the parser allows you to take a builder that is used to build one parser and
manipulate the grammar rules to construct a new parser. Concretely, we propose a builder which
allows rules to be registered by name into a rule map, thereby creating a loose coupling between
registered rules. Each rule is defined as a ParserRule object, containing both a rule name and a rule
implementation. Rule implementations can be expressed declaratively using Chevrotain’s grammar
definition functions like:

1. SUBRULE : invokes another rule, registered under some name in the current parser,
2. MANY : matches zero or more occurrences of a pattern,
3. OR : matches one of several alternatives.

https://monorepo.tools/

We propose, each rule implementation returns a function that, when invoked, receives the
parsing context and any parameters, and outputs part of the final syntax tree. Listing 1 shows an
example parser rule definition. The ParserBuilder can then be used for compositional construction
and extension through methods like addRule , deleteRule , merge , and typePatch. The typePatch
utility would enable type updates to existing rules — particularly useful when extending or
modifying a dependent rule without altering the original rule’s implementation. After the
construction of your parser, you can build it, as shown in Listing 2, returning a parser which allows
you to start parsing a string from any of the parser rules added to the builder - a property
transferred from the underlying parser builder toolkit.

import type { SparqlRule } from '@traqula/core';
const iriOrNil: SparqlRule<'iriOrNil', URL | null> = <const>{
 name: 'iriOrNil',
 impl: ({SUBRULE, CONSUME, OR}) => () => OR<URL | null>([
 {ALT: () => SUBRULE(iri, undefined)},
 {ALT: () => {
 CONSUME(nilToken);
 return null;
 } },
]),
};

Listing 1: The definition of a parser rule parsing either a URI of the nil token, returning the parser
URI or null respectively.

import { ParserBuilder } from '@traqula/core';
const parser = ParserBuilder
 .create([iriOrNil, rule1])
 .addRule(rule2)
 .patchRule(rule1Alternative)
 .build({
 tokenVocabulary: myLexerBuilder.tokenVocabulary,
 });
// The argument and return types of the function are known,
// ast will thus be inferred to have the type `URL | null`.
const ast = parser.iriOrNil(myString, myContext, myParameters)

Listing 2: The construction of a parser including the iriOrNil rule constructed in Listing 1. It also
shows how to parse using the iriOrNil rule as the starting rule.

As for the lexer, a similar approach to the parser should be taken. Tokens should be coupled
loosely through a name-definition map. The consumption of a token then results in the
consumption of the token with that name in the used lexer. Besides that our only requirement is
that the tokens can be expressed through the definition of a regex.

4. Demonstration

In the workshop demonstration, we will showcase how our proof of concept modular parser-
builder enables straightforward modification and extension of the existing parsers. Starting from a
prebuilt SPARQL 1.1 parser, we will incrementally evolve the grammar in four small steps using
the described builder-based architecture. Each change will be demonstrated live, with code edits
performed in an IDE and parser behavior verified in a browser-based UI. Specifically, we will:

1. extend SPARQL to support the ADJUST function [4],
2. add support for CONSTRUCT QUAD queries [3],
3. introduce full-text search capabilities [2], and
4. remove support for the OPTIONAL clause due to its impact on query complexity [13] .

These modifications will demonstrate how the modular parser architecture—built around
builders enables safe and modular grammar changes with minimal effort. The focus will be on how
individual grammar components can be extended or replaced with‐out touching unrelated parts of
the parser. We will also highlight how the use of strong typing improves the developer experience
by surfacing integration errors at compile time.

For each of the extensions we alter the grammar rules in accordance to the SPARQL 1.1
specification [1] (rule number shown between paratheses):

1. ADJUST function: We add an ‘ADJUST ’ token to the lexer and add a grammar rule for it,
then patch the BuiltInCall (121) rule.

2. CONSTRUCT QUAD queries: Following Jena’s approach, we patch the ConstructQuery
(10) and ConstructTriples (74) rules and introduce a ConstructQuads rule.

3. Full-text search: We patch the objectPath (86) and object (80) rules to allow an ‘ OPTION’
keyword followed by a scoring clause like ‘ (score Expression) ’.

4. Dropping OPTIONAL: This involves deleting the OptionalGraphPattern (57) rule,
patching the GraphPatternNotTriples (56), and removing the ‘OPTIONAL ’ token from the
lexer.

While the demo is not interactive for attendees, all code and tooling will be made available for
experimentation after the session. The demo will serve to illustrate how a modular parser builder
enables a new generation of language-aware SPARQL tools with modular, declarative grammar
support and a strong developer experience.

5. Conclusion

In this paper, we presented the need for a modular parser, and offered an initial prototype to
cover this need. Our prototype uses a builder-based architecture for constructing extensible
SPARQL parsers. By embracing runtime modularity, declarative rule definitions, and strong typing,
our approach enables a new class of SPARQL tools that can evolve alongside a rapidly diversifying
query ecosystem. Through our demonstration, we showed that parser modification can be
performed with minimal overhead and high confidence in correctness.

Looking ahead, several important challenges remain:
1. In order to bootstrap the adoption of the modular parser, a robust, default parser with a

well-defined Abstract Syntax Tree (AST) format should be created. This AST should
support round-tripping—ensuring that a query parsed into the AST and then regenerated
from it yields a string-identical query. This requirement on the AST will facilitate the
creation of language tools such as linters.

2. To support such round-tripping, we will need to design a corresponding generator. This
generator could follow architectural patterns established by the Babel JavaScript compiler
[14] combined with the builder pattern described in this work.

3. We envision the need for a flexible AST transformer system that makes it easy to map the
AST into alternative representations. Such a transformer will facilitate static analysis,
query-optimization, and translation to other query languages.

Together, these next steps would complete a robust pipeline: from parsing, through
transformation, to code generation—all powered by modular, declarative components. We hope
this work provides a foundation for building SPARQL tools that are not only adaptable to change,
but actively enable it.

Acknowledgements.

Jitse De Smet is a predoctoral fellow of the Research Foundation – Flanders (FWO) (1SB8525N).
Ruben Taelman is a postdoctoral fellow of the Research Foundation – Flanders (FWO) (1202124N).

6. Declaration On Generative AI

During the preparation of this work, the author(s) used Chat-GPT-4 in order to: Paraphrase and
reword, improve writing style, perform grammar and spelling checks, and drafting the abstract.
After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s)full responsibility for the publication’s content.

References

[1] Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C,
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/ (2013).

[2] Virtuoso: Using Full Text Search in SPARQL.
https://docs.openlinksw.com/virtuoso/sparqlextensions/#rdfsparqlrulefulltext (2024).

[3] Apache Jena: ARQ - Construct Quad. https://jena.apache.org/documentation/query/construct-
quad.html#Grammar (2024).

[4] Oxigraph: SEP 0002: calendar and duration operations.
https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-
operations (2024).

[5] Hartig, O., Seaborne, A., Taelman, R., Williams, G., Tanon, T.P.: SPARQL 1.2 Query Language.
https://www.w3.org/TR/sparql12-query/ (2025).

[6] Hartig, O., Champin, P.-A., Kellogg, G., Seaborne, A.: SPARQL 1.2 Query Language.
https://www.w3.org/TR/rdf12-concepts/ (2025).

[7] Parr, T.J., Quong, R.W.: ANTLR: A Predicated - LL(k) Parser Generator. Softw.Pract. Exp. 25,
789–810 (1995). doi:10.1002/SPE.4380250705

[8] GNU: GNU Bison. https://www.gnu.org/software/bison/ (2025).
[9] Chevrotain, Soel, S.: Chevrotain - Parser Building Toolkit for JavaScript.

https://github.com/Chevrotain/chevrotain/ (2025).
[10] Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients. Semantic Web. 8,373–383

(2017). doi:10.3233/SW-150197
[11] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-

Wesley, https://www.worldcat.org/oclc/12285707 (1986).
[12] Taelman, R., Herwegen, J.V., Sande, M.V., Verborgh, R.: Comunica: A Modular SPARQL Query

Engine for the Web. In: Vrandecic, D., Bontcheva, K., Suárez Figueroa, M.C., Presutti, V.,
Celino, I., Sabou, M., Kaffee, L.-A., and Simperl, E.(eds.) The Semantic Web - ISWC 2018 - 17th
International Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings,
Part II. pp. 239–255. Springer (2018). doi:10.1007/978-3-030-00668-6_15

[13] Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34, 16:1–16:45 (2009). doi:10.1145/1567274.1567278

[14] sebmck, nicolo-ribaudo, hzoo: Babel. https://github.com/babel/babel (2025).

https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-operations
https://github.com/oxigraph/oxigraph/wiki/SPARQL#sep-0002-calendar-and-duration-operations

	1. Introduction
	2. Related Work
	3. Software Architecture
	4. Demonstration
	5. Conclusion
	.
	Acknowledgements
	6. Declaration On Generative AI
	References

