
CrowdSense: Interpretable and Efficient Multivariate
Crowd Forecasting with Active Learning
Anahid Wachsenegger*1, Anita Graser1, Axel Weißenfeld1 and Melitta Dragaschnig1

1AIT Austrian Institute of Technology, Vienna, Austria

Abstract
Accurate forecasting of multivariate time series is essential for high-stakes industrial applications, where real-time
decisions rely not only on predictive accuracy but also on transparency and human oversight. In this work,
we present a novel Explainable Active Learning (XAL) framework for multivariate time series forecasting that
integrates human expertise into the learning loop while enhancing interpretability. Our approach is specifically
designed for complex and dynamic environments, such as crowd density prediction in urban settings, where high-
impact decisions depend on anticipating critical events. We combine classical and deep learning models—including
XGBoost, Temporal Convolutional Networks, Temporal Fusion Transformers, and TimeGPT—within an active
learning loop that selects the most informative data points for expert review. Using SHAP-based explanations,
our framework provides actionable insights into model behavior, allowing domain experts to iteratively refine
predictions through guided feedback. Applied to real-world crowd density data over an 11-day horizon, our
method demonstrates superior performance: XGBoost augmented with XAL achieves an 𝑅2 of 0.8491 and the
lowest RMSE of 0.3126, while increasing recall for high-density events by 27%. By bringing humans into the loop
and ensuring explainability in multivariate forecasting, this work addresses key challenges in industrial domains,
where understanding why a model makes a prediction is as important as the prediction itself. The proposed XAL
framework offers a promising direction for deploying trustworthy AI in environments where safety, efficiency,
and accountability are paramount.
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1. Introduction

Forecasting rare events in multivariate time series data is a significant challenge across various domains,
especially when these events impact operational decisions. In industrial settings, predicting rare events
like machinery failures or safety risks requires models that are both accurate and interpretable [1]. We
propose an explainable active learning framework to improve the forecasting and understanding of such
events. This approach is highly relevant for industrial applications, where explaining predictions can
enhance decision-making. We demonstrate its effectiveness using a crowd density dataset, highlighting
its potential for addressing complex, rare event forecasting challenges.

While deep learning models like LSTMs [2], GRUs [3], and Transformers [4] have advanced multivari-
ate time series forecasting, their black-box nature limits their practical use in safety-critical domains.
These models often fail to provide interpretable explanations for their outputs, hindering error diagnosis
and human oversight. Although explanation tools like SHAP [5] and LIME [6] offer model-agnostic
insights, their adaptation to time-dependent, multivariate inputs remains limited.
Recent innovations, including LT2D [7], GCFs [8], and Informer-based models [9], have improved

forecasting over long horizons and spatial grids. Yet, the trade-off between accuracy and explainability is
rarely addressed systematically in these studies. Interpretability-focused architectures like the Temporal
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Fusion Transformer (TFT) [4] offer some progress, but robust frameworks that integrate both human
feedback and model introspection are still underdeveloped.

In this work, we propose a hybrid approach that combines high-performing forecasting models (such
as XGBoost, TCN, TFT, and TimeGPT) with a human-centered interpretability workflow. Central to our
method is an Explainable Active Learning (XAL) loop that enables domain experts to interact with SHAP-
based dashboards, diagnose prediction failures, and apply targeted corrections. This iterative refinement
leads to significant gains in forecasting rare high-risk events, while enhancing model transparency and
usability. We evaluate models using both standard accuracy metrics and a dual-layer interpretability
framework: (1) SHAP value analysis to trace temporal feature contributions, and (2) cluster-based
surrogate decision trees to understand prediction regimes. Our results show that XGBoost, when paired
with XAL, offers the best balance of precision, interpretability, and operational robustness, particularly
in forecasting extreme crowding scenarios.
Our key contributions are as follows:

• We introduce an explainable active learning (XAL) workflow that integrates SHAP-based visual
diagnostics with expert-in-the-loop feedback to refine crowd density forecasts.

• We demonstrate how XGBoost, when augmented with XAL, achieves strong forecasting accuracy
on multivariate urban crowd data, particularly improving recall for critical high-risk events.

• We provide a dual-layer interpretability framework combining temporal SHAP attributions with
cluster-based surrogate models to diagnose and explain forecasting behavior at both global and
local scales.

• We develop an interactive dashboard to support expert corrections and guide model retraining,
showing measurable performance gains across several evaluation rounds.

• We contribute visual analyses (including risk heatmaps and confusion matrices before and after
XAL) that illustrate the practical impact of explainability in safety-critical forecasting scenarios.

The rest of the paper is organized as follows. Section 2 reviews related work in time series forecasting
and explainable AI. Section 3 describes our modeling pipeline, interpretability tools, and XAL framework.
Section 4 presents experimental results and expert-in-the-loop evaluations. Section 5 concludes with
limitations and directions for scalable, real-time crowd forecasting systems.

2. State of the Art

Crowd density forecasting has become essential for urban planning and public safety, with recent
advancements shifting from traditional statistical models to machine learning and deep learning ap-
proaches. This evolution emphasizes spatiotemporal modeling, multimodal data integration, and
improved model interpretability and generalizability. This section outlines key advances in multivariate
time series forecasting for crowd prediction, along with current explainability and active learning
techniques.

2.1. Multivariate Time Series for Crowd Forecasting

Traditional statistical methods such as ARIMA and GARCH have historically been used for short-term
crowd forecasting tasks [10, 11]. However, their reliance on assumptions of stationarity and linearity
limits their ability to model the nonlinear, high-variance patterns characteristic of real-world urban
environments. To overcome these limitations, the field has increasingly shifted toward deep learning
techniques, including Long Short-Term Memory networks (LSTM) [2], Gated Recurrent Units (GRU) [3],
and Bidirectional LSTMs (BiLSTM) [12]. Extensions such as ConvLSTM [13] and LT2D [7] further
improve long-range forecasting by leveraging multi-resolution temporal inputs and spatial structure.

To better capture the spatiotemporal dynamics of crowd behavior, recent models have incorporated
mobile phone signaling data and adopted convolutional or attention-based mechanisms for spatially
irregular urban regions [14]. Graph Neural Networks (GNNs), such as the Graph-based Crowd Forecaster



(GCF), have extended this capability by modeling crowd dynamics at micro, meso, and macro scales [8].
Transformer-based models like Informer have also been adapted for urban forecasting tasks, with
applications such as MobCovid integrating exogenous variables (e.g., COVID-19 case rates and mobility
policies) to enhance accuracy [9].
Complementary to these, fuzzy cognitive maps (FCMs) have gained attention as an interpretable

tool for capturing causal relationships between variables, especially in video-based crowd monitoring
systems [15].

Despite the robustness of these approaches, many suffer from high computational demands, limited
scalability, or lack of interpretability – key barriers for real-time decision-making in operational
environments.
In this work, we address these gaps by systematically benchmarking models that balance predic-

tive performance with computational efficiency and explainability. Our evaluation spans traditional
interpretable models like XGBoost, deep learning architectures such as Temporal Convolutional Net-
works (TCNs) [16] and Temporal Fusion Transformers (TFTs) [4], and emerging foundation models like
TimeGPT [17, 18]. We specifically assess these models’ suitability for deployment in crowd forecast-
ing scenarios, intending to bridge the gap between academic modeling innovations and the practical
demands of safety-critical, high-density urban settings.

2.2. Explainable AI for Time Series Forecasting

Applying Explainable AI (XAI) to multivariate time series (MTS) forecasting presents unique challenges
due to the inherent temporal dependencies, high dimensionality, and complex inter-feature interactions
of time series data. Deep neural network (DNN) architectures, such as Long Short-TermMemory (LSTM)
networks and Transformers, are widely used in this domain for their ability to model intricate temporal
and contextual relationships across multiple variables. These models often outperform traditional
statistical approaches such as AR and ARIMA in domains such as traffic forecasting, financial modeling,
and weather prediction. However, their black-box nature hinders transparency and interpretability,
particularly in critical decision-making settings.

In time series forecasting, interpretability is not only about understandingwhat themodel predicts, but
also when specific inputs influence predictions and why. This understanding is essential in high-stakes
applications, such as public safety, infrastructure management, and healthcare, where accountability,
trust, and error diagnosis are paramount.
Despite increasing interest, interpretability in MTS forecasting remains a relatively underexplored

area. Much of the existing work focuses on post hoc local explanation techniques, which provide
instance-specific insights and can be integrated with existing forecasting pipelines with minimal
architectural changes [19, 20, 21]. Perturbation-based methods are among the most widely used local
explanation techniques [22]. These methods estimate the importance of input features by altering
them—typically by replacing values with noise or statistical aggregates—and measuring the resulting
impact on model predictions. While intuitive, these approaches face difficulties in time series contexts,
where “removing” or perturbing timestamped inputs can distort the underlying temporal structure,
leading to unrealistic or misleading interpretations.
Attribution-based methods offer a complementary approach by directly quantifying each input’s

contribution to the model’s output [5]. Gradient-based attribution techniques, including SHAP, have
shown promise in time series classification, yet their application to time series forecasting is still limited
and often lacks domain-specific adaptations [20]. Recent developments in SHAP-based approaches are
expanding, as highlighted by several key contributions to the field. For example, the FI-SHAP approach,
which improves feature engineering for time series forecasting by enhancing SHAP explanations,
thus addressing some of the limitations in feature selection for forecasting [23]. Another approach is
C-SHAP, which is a method specifically designed to offer high-level temporal explanations for time
series forecasting using Prophet decomposition and SHAP values [24]. In a non-forecasting application,
an unsupervised feature selection approach using SHAP for industrial time series anomaly detection
was presented to showcase its application to real-world industrial datasets [25]. These advancements



demonstrate the increasing relevance and potential of SHAP for both explaining and improving time
series forecasting.

Among recent advancements, the Temporal Fusion Transformer (TFT) architecture has emerged as a
promising interpretable solution for MTS forecasting [26, 27]. TFT integrates variable selection and
temporal attention mechanisms to provide built-in interpretability while maintaining high forecasting
accuracy. Its ability to capture long-range dependencies and highlight important temporal patterns
makes it particularly suitable for operational deployment in time-sensitive, high-risk environments.

2.3. Active Learning

Recent research on active learning (AL) for time series data primarily focuses on classification and
anomaly detection tasks, driven by the need to efficiently label large volumes of unlabeled sequential
data where manual annotation is costly and time-consuming. This emphasis is particularly evident in
domains such as industrial monitoring, healthcare, and cybersecurity, where timely detection of rare or
abnormal events is critical to prevent failures and losses.

For example, RLAD [28] introduces a semi-supervised anomaly detection algorithm combining deep
reinforcement learning with active learning to continuously adapt to new anomaly patterns without
assumptions on data generation, achieving significant improvements over state-of-the-art unsupervised
and semi-supervised methods with minimal labeled data. Similarly, a white-box anomaly detector using
moving averages and prediction intervals optimized via active learning and Bayesian methods offers
interpretable results for univariate time series anomaly detection in IT infrastructure monitoring [29].
In healthcare, the ActDP framework [30] leverages a combination of data programming and active
learning for ECG beat classification, iteratively refining labels through expert feedback and boosting
classification accuracy substantially on large datasets. Industrial applications are addressed through
active learning frameworks that incorporate pre-clustering and advanced feature extraction to overcome
the cold start problem and reduce labeling efforts, achieving over 90% accuracy by labeling only 10% of
data in vibration and process control time series [31].
Reviews of deep learning approaches highlight the challenges of anomaly detection in multivariate

time series due to the need to model temporal dependencies and variable interactions, while stressing
the importance of domain knowledge and expert input facilitated by active learning [32]. Additionally,
novel active learning methods that include class balancing strategies help mitigate bias in imbalanced
time series datasets, demonstrating effectiveness in texture recognition and industrial fault detection
tasks by significantly reducing labeled data requirements [33].
Despite these advances, active learning for multivariate time series forecasting remains under-

explored, with most existing work focusing on classification or anomaly detection. This gap suggests
opportunities for further research to develop AL strategies that address the unique challenges of
forecasting in complex, high-dimensional time series data.

2.4. Synergy Between Explainable AI and Active Learning

Wepropose that integrating Explainable AI (XAI) with Active Learning (AL) offers a powerful, interactive
framework for improving multivariate time series forecasting. XAI builds model transparency and
trust, while AL optimizes data labeling by focusing on uncertain or informative samples. Despite AL’s
success in other domains, its application to time series forecasting is still limited, especially in complex,
high-stakes contexts like urban crowd prediction. Our work addresses this gap by introducing an
explainable AL (XAL) framework designed specifically for multivariate forecasting in urban settings:

• Limited spatial generalization: Current approaches often apply explanations uniformly across
regions, overlooking the localized and context-specific drivers of crowd behavior. Our frame-
work supports region-sensitive refinement through expert-in-the-loop feedback that captures spatial
variation.

• No support for feedback incorporation: Human-in-the-loop forecasting remains largely
unexplored in spatiotemporal settings, with little to no mechanisms for incorporating expert



corrections or suggestions into the learning cycle. XAL directly integrates expert feedback (such as
re-weighting features, correcting anomalies, and contextual insights) into both model updates and
explanation adjustments.

• Disconnect between XAI and AL: In active learning workflows, query selection is rarely
guided by interpretability metrics, resulting in suboptimal sampling and inefficient learning in
data-scarce or high-risk regions. Our approach bridges this gap by using explanation uncertainty
and domain relevance to inform the active sampling process.

To address these challenges, we propose XAL – an explainable active learning framework that tightly
integrates human interactions into the multivariate time series forecasting pipeline.

3. Methodology

This section outlines the experimental workflow used to forecast hourly crowd density and to iteratively
improve model performance through our XAL loop. Our methodology integrates historical data,
contextual features, and expert feedback to enhance both predictive accuracy and model transparency.

3.1. Problem Formulation

Given a multivariate time series dataset X = {x𝑡}𝑇𝑡=1, where each x𝑡 ∈ ℝ𝑑 represents 𝑑 features (e.g.,
crowd density, weather, mobility indices) observed at time 𝑡, the task is to predict future crowd density
values ̂y𝑡+ℎ over a forecast horizon ℎ. Formally, we learn a forecasting function

𝑓 ∶ {x𝑡−𝑤+1, … ,x𝑡} → ŷ𝑡+1∶𝑡+ℎ,

where 𝑤 is the size of the historical input window, and ŷ𝑡+1∶𝑡+ℎ denotes predicted crowd densities for
the next ℎ time steps.

3.2. Dataset

Our dataset is a multimodal time series compiled from diverse sources in the Scheveningen region of
the Netherlands, spanning from 1 May 2022 to 31 October 2024. The primary data source consists of
hourly crowd density estimates extrapolated from a voluntary mobile application used by regional
visitors. These serve as our ground truth for regional crowd levels.

In addition to crowd data, we incorporate high-frequency parking occupancy records collected every
15 minutes across three major parking facilities in the city. These facilities exhibit a “waterfall” usage
pattern: as Parking A approaches full capacity, drivers overflow to Parking B, and subsequently to
Parking C. Notably, Parking C, with the highest capacity (approximately 1,700 spaces), serves as a
strong proxy indicator for extreme visitor density. To align with other data sources, we up-sample this
data to an hourly frequency.

To account for external influences on visitor behavior, we integrate hourly meteorological data—in-
cluding temperature, wind speed, cloud coverage, and precipitation probability—as well as a structured
event calendar that flags public holidays and cultural events known to drive surges in attendance.

Forecasting crowd density under these conditions is challenging. As shown in Figure 1, high-density
events are rare, creating an imbalanced target distribution that turns peak periods into anomaly-like
cases. Specifically, 1.47% of the training set (from 2022-04-01 to 2024-04-01) contains high-risk events,
while 3.46% of the test set (from 2024-04-01 to 2024-10-01) includes high-risk events. Accurate forecasting,
therefore, requires sensitivity to contextual cues that may precede such outliers. Additionally, missing
values and irregular sampling are present in some data sources. We address this using K-Nearest
Neighbors (KNN) imputation, with the number of neighbors tuned to preserve temporal structure while
avoiding data leakage.
Combined with the inherent variability in environmental and behavioral features (Figure 2), these

factors contribute to the complexity and noise inherent in short-term crowd forecasting.



Figure 1: Distribution of crowd density showing the rarity of high-density events, which poses challenges in
predicting anomalies.
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Figure 2: Distribution of key dataset features after preprocessing and normalization. (X-axis values removed for
data protection reasons.)

All data sources are temporally aligned and resampled to a consistent hourly resolution, i.e., the
15-minute frequency of the parking data is resampled to an hourly max value, forming a unified
multivariate time series that serves as input for the models evaluated in this study.

3.3. Preprocessing and Feature Engineering

To prepare the dataset for modeling, we standardize the time index by converting all timestamps to UTC
and ensuring consistent datetime formatting. Meteorological and occupancy features are renamed and
normalized to a [0,1] scale using domain-relevant min-max ranges to facilitate model convergence and
comparability. The target variable, visitor count, is log-transformed to reduce skewness and stabilize



variance.
We engineer several derived features to incorporate domain knowledge and temporal effects. A

categorical parking occupancy level is computed to reflect the “waterfall” pattern across the three
parking lots, indicating parking occupancy severity on a scale from 0 to 3. Daily maximum weather
statistics are aggregated to capture extreme environmental conditions impacting visitor behavior.
Additionally, a seasonal weighting factor is introduced, increasing during holidays, weekends, and
summer months to reflect expected crowd density fluctuations. Finally, a time-of-day weight emphasizes
forecast accuracy during peak hours (08:00–20:00) by scaling visits accordingly.

3.4. Forecasting Models

We benchmarked multiple forecasting approaches, including:

• Baseline: A naïve repeat of the previous week’s hourly values.
• XGBoost: A tree-based gradient boosting model optimized for tabular data.
• Temporal Convolutional Network (TCN): A deep learning model that captures long-range
dependencies using dilated convolutions.

• Temporal Fusion Transformer (TFT): A neural architecture that uses attention mechanisms
for multi-horizon forecasting.

• TimeGPT: A foundation model fine-tuned for time series generation.

All models (except TimeGPT, which was used in a zero-shot manner) were trained using the same
feature set to ensure a fair comparison. Model hyperparameters were optimized via grid search or
framework-specific tuning procedures, depending on the architecture. Evaluation was conducted on
the 11-day test horizon using standard metrics such as RMSE, MAE, and 𝑅2.

3.5. Explainable Active Learning (XAL) Loop

To iteratively refine the model and improve both forecast accuracy and interpretability, we developed a
human-in-the-loop Explainable Active Learning (XAL) workflow. The process begins with an initial
model trained on the full dataset. We then generate explanations using SHAP (SHapley Additive
exPlanations), a model-agnostic attribution method that quantifies the contribution of each input
feature to the forecast. Specifically, we adapt SHAP to multivariate time series by computing feature-
and time-wise attributions, highlighting temporal patterns and key drivers behind forecast outcomes [5].

These attributions are visualized in an interactive dashboard using the Plotly library and Panel 4, which
allows domain experts to explore temporal trends, identify discrepancies, and interpret model behavior
across regions and time. Based on these visual insights, experts can apply structured corrections. These
include reweighting temporal or contextual features, correcting noisy inputs such as erroneous parking
data, or manually labeling atypical high-density events. The corrected inputs are used to augment or
revise the training data, after which the model is retrained. Each iteration concludes with performance
monitoring, where metrics related to forecast accuracy and risk detection are evaluated before and after
updates. This closed-loop refinement forms the core of our XAL pipeline, enabling dynamic model
improvement and user-aligned interpretability.

3.6. Implementation Details

Our experiments were implemented in Python using several key libraries. We employed the darts
framework for time series forecasting, which provides implementations of models such as XGBoost,
Temporal Fusion Transformer (TFT), and Temporal Convolutional Networks (TCN). For interpretability,
we used the shap library to compute SHAP values and analyze feature contributions over time. To
support the interactive human-in-the-loop workflow, we developed custom dashboards using plotly
for visualization and panel for layout and control components. Together, these tools enable efficient
exploration, correction, and retraining within our XAL framework.



Table 1
Performance comparison of forecasting models (11-day horizon)

Model R2 RMSE
Baseline 0.3843 0.7614
XGBoost 0.7028 0.3671
XGBoost (after XAL) 0.8491 0.3126
TCN 0.6941 0.3721
TFT 0.5973 0.4431
TimeGPT 0.7568 0.3477

4. Results

This section presents the performance of multiple time series forecasting models and evaluates the
impact of our explainable active learning (XAL) approach for iterative model refinement. The goal is to
forecast hourly crowd density for the next 11 days (264 time steps) using a combination of historical
features, engineered context-aware covariates, and expert-guided corrections. The expert-in-the-loop
feedback mechanism plays a critical role in refining the model throughout its development. As shown
in Figure 4, the user interface (UI) of the dashboard allows domain experts and ML developers to
perform various corrections and adjustments to the forecasting model. The corrections possible in
this interface include, but are not limited to, adjusting seasonal weighting factors for holidays and
weekends, correcting outlier patterns in e.g., parking occupancy data, and refining logic for time-of-
day importance. Therefore, the domain and ML experts can adjust weights for specific columns to
highlight the importance of certain features, ensuring that the model prioritizes the most relevant
data. In cases where certain periods have inaccuracies—such as imputed data periods that deviate from
expected ranges—experts can modify the values by replacing them with median values derived from
corresponding days of the week from previous and future years, ensuring consistency and accuracy.
Regarding the model parameterization, we applied hyperparameter tuning via Optuna. The final

XGB model parameters were set as follows: random_state=7, gamma=0.3, booster=’gbtree’, eta=0.01,
max_depth=10, n_estimators=100. For the lags, we chose 24 lags for past covariates, specifically from
[-24, -23, ..., -1]. The future covariates included lags from [-24, -23, ..., -1, 0, 1, ..., 24].

For all other models in the study, we used the default parameter values provided by their respective
libraries. This choice was aligned with our data-centric approach, where we prioritized focusing on
feature engineering and debugging rather than dedicating significant resources to fine-tuning the model
parameters. By doing so, we aimed to optimize our resources to address the inherent challenges in the
data and improve its quality.

4.1. Forecasting Performance

We evaluated five forecasting models (naïve Baseline, XGBoost, Temporal Fusion Transformer (TFT),
Temporal Convolutional Network (TCN), and TimeGPT) using standard error metrics (MAE, MSE,
RMSE, MAPE, and 𝑅2. Table 1 shows the performance comparison of different forecasting models over
an 11-day horizon of Summer 2024.
The baseline model achieved the lowest performance, with an 𝑅2 of 0.3843 and an RMSE of 0.7614,

indicating limited predictive capability. Among the machine learning models, XGBoost significantly
improved the results, achieving an 𝑅2 of 0.7028 and an RMSE of 0.3671. Notably, applying XAL to
XGBoost further enhanced performance, yielding the highest 𝑅2 of 0.8491 and the lowest RMSE of
0.3126, demonstrating superior forecasting accuracy.
Deep learning models also showed competitive performance. The TCN obtained an 𝑅2 of 0.6941

and an RMSE of 0.3721, slightly below the standard XGBoost model but outperforming the TFT, which
recorded an 𝑅2 of 0.5973 and an RMSE of 0.4431. The TimeGPT model achieved robust results with an
𝑅2 of 0.7568 and an RMSE of 0.3477, outperforming both TCN and TFT but not surpassing XGBoost
after XAL.



Importantly, the superior performance of XGBoost, particularly when enhanced with active learning,
can be attributed to its efficient handling of structured data and ability to capture complex, non-linear
relationships without requiring extensive training time. In contrast, the deep learning models evalu-
ated, while state-of-the-art, generally require significantly longer training periods and computational
resources. Our results indicate that XGBoost with active learning provides an effective and computa-
tionally efficient solution for crowd density forecasting, outperforming both traditional baselines and
more computationally intensive deep learning approaches.

4.2. Impact of XAL on Forecast Accuracy and Interpretability

To address the inherent complexity and unpredictability of short-term crowd density forecasting, we
applied the XAL loop – an iterative workflow that combines model interpretability with targeted data
and feature refinement. The XAL framework was specifically developed to tackle challenges in dynamic
urban environments, where data variability, rare crowd surges, and contextual dependencies limit the
effectiveness of static black-box models.
As visualized in Figure 3, initial forecasts from our XGBoost model exhibit notable discrepancies,

particularly during high-density periods such as summer weekends and public holidays. These errors
are most pronounced when models fail to capture nonlinear interactions or misweight key temporal
drivers like seasonal patterns or parking saturation thresholds.

Figure 3: XGBoost forecast vs. true visitor count for Summer 2024 before applying the XAL workflow. Note
significant underestimation during peak periods. (Y-axis values removed for data protection reasons.)

The XAL loop introduces a human-in-the-loop feedback mechanism supported by an interactive
SHAP-based dashboard. This tool enables users to examine model predictions (top panel), the evolution
of input features (middle panel), and SHAP-derived explanations over time (bottom panel), as shown in
Figure 4. By clearly distinguishing between observed and future covariates, the dashboard provides
actionable insight into which features influenced predictions, and when.

Through this interface, domain experts identified problematic regions in the training data and applied
targeted corrections, such as: adjusting seasonal weighting factors for holidays andweekends, correcting
outlier patterns in parking occupancy data, and refining logic for time-of-day importance.

The application of the XAL feedback and retraining cycle led to consistent and measurable improve-
ments in forecasting performance. As shown in Table 2, the initial XGBoost model achieves an 𝑅2 of



Figure 4: Interactive SHAP dashboard linking model forecasts, input features, and attributions. The shaded
area indicates future covariates used during prediction. (y axis values removed for data protection reasons.)

0.7028 and an RMSE of 0.3671. After the first two XAL iterations, performance improves markedly,
reaching an 𝑅2 of 0.8351 and an RMSE of 0.3196. The best results are observed after the third iteration,
with an 𝑅2 of 0.8491 and an RMSE of 0.3126. Notably, these gains are most significant during high-
density periods – rare and imbalanced events that pose challenges for conventional forecasting models
(see Figure 1). A slight performance decline is observed in the fourth iteration, suggesting diminishing
returns and highlighting the importance of targeted correction rather than excessive re-tuning.

Beyond improvements in forecasting accuracy, the SHAP-based explanations are also more actionable
compared to the Local explanation of LIME, or Integrated Gradients (IG), which has proved to be
unstable [34]. Standard SHAP visualizations (as shown in Figure 5) often present aggregated attributions
that are difficult to interpret in a time series context, especially when trying to understand how specific
features influence predictions over a given period. For instance, the contribution of temperature_lag24
varies across samples, making it challenging to link its influence to concrete time intervals or contextual
events.
To address this, we developed a custom visualization that retains the underlying SHAP values and



Table 2
Performance comparison of forecasting models after applying XAL workflow (11-day horizon)

Model R2 RMSE
Baseline 0.3843 0.7614
XGBoost 0.7028 0.3671
XGBoost after XAL round 1 0.8096 0.3435
XGBoost after XAL round 2 0.8351 0.3196
XGBoost after XAL round 3 0.8491 0.3126
XGBoost after XAL round 4 0.8358 0.3190

Figure 5: SHAP summary plot (𝑡 + 1 horizon) highlighting dominant influence of visit lags, parking features,
and holiday indicators post-correction.

provides clearer insights into both feature contributions and their temporal dynamics. As shown in
Figure 4, this enhanced dashboard allows users to examine SHAP attributions across three distinct zones:
the 11-day historical input window, the forecast covariates, and the predicted future period. By aligning
SHAP values with the exact timing of input features, the visualization helps users better understand not
only “which” features drive the predictions, but also “when” they matter most. This design supports a
more intuitive and diagnostic interpretation of model behavior, especially in high-stakes or error-prone
intervals.

To study how our XAL workflow improves the identification of high-risk crowd events, we illustrate
the results using a traffic-light risk categorization approach, using thresholds defined by domain experts.

After users examined SHAP explanations, identified misleading patterns, and made targeted correc-
tions (e.g., increasing the weight of weather and holiday-related features), the retrained model better
captured high-risk periods. These improvements align model behavior with operational constraints,
demonstrating how human feedback can effectively close the model–reality gap.

As shown in Table 4, before XAL, the model struggled to identify high-risk (red) events, achieving only
0.33 recall and an F1-score of 0.46, while misclassifying many high-risk (red) periods as medium-risk



Table 3
Confusion matrices for risk level prediction: before (left) and after (right) XAL.

Before XAL After XAL

True
green 2296 355 0

True
green 2298 353 0

orange 211 1337 16 orange 235 1307 22
red 0 102 51 red 0 88 65

predicted Predicted

(orange).
The confusion matrices in Table 3 further emphasize these gains: pre-XAL, only 51 out of 153 true

red events were correctly classified, while 102 were misclassified as medium-risk (orange). Post-XAL,
high-risk (red) recall rose to 42% with 65 correct classifications (14 additional high-risk hours flagged
accurately). Importantly, no high-risk events were ever classified as low-risk, maintaining operational
safety margins.

After incorporating feedback through the explainability interface – particularly by correcting feature
attributions, reweighting red events, and adjusting prediction logic – the model’s recall on the high-risk
(red) class improved by 27%, reaching 0.42, and the F1-score increased to 0.54 (see Table 4). Precision
remained stable, ensuring that improved detection of high-risk events did not come at the cost of false
alarms.

Table 4
Risk Categorization Performance Before and After XAL

Before XAL After XAL

Precision Recall F1-score Precision Recall F1-score

Green 0.92 0.87 0.89 0.91 0.87 0.89
Orange 0.75 0.85 0.80 0.75 0.84 0.79
Red 0.76 0.33 0.46 0.75 0.42 0.54

Accuracy 0.84 0.84
Macro avg 0.81 0.68 0.72 0.80 0.71 0.74
Weighted avg 0.85 0.84 0.84 0.84 0.84 0.84

This iterative XAL approach exemplifies how integrating explainability throughout the modeling
life cycle can not only improve model transparency but also directly enhance forecasting performance.
By empowering users to act on explanation insights – through either manual correction or strategic
re-weighting – XAL creates a virtuous loop between interpretation and learning, tailored for complex,
high-stakes prediction tasks in urban mobility.

5. Conclusion

In this work, we proposed a hybrid approach combining traditional machine learningwith an explainable,
human-in-the-loop framework for urban crowd forecasting. Among tested models, XGBoost integrated
with our Explainable Active Learning (XAL) loop delivered the best and most robust performance,
especially for rare, high-risk crowd events. The use of interactive SHAP dashboards allowed experts to
iteratively improve the model by refining feature importance and correcting temporal errors.

Our XAL method not only boosts accuracy but also enhances transparency and usability, increasing
trust and recall of critical crowd scenarios. The traffic-light risk framework illustrates how explainability-
driven refinement supports urban safety planning.
However, the approach depends on timely expert feedback, which may limit scalability. SHAP

visualizations, while helpful, require some technical expertise and do not fully capture complex feature
interactions or missing contextual knowledge. Future work will focus on automating parts of the XAL



loop, expanding to multi-region forecasting, integrating real-time data sources, and deploying the
system in operational decision-support tools for urban stakeholders.
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