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Abstract

As industrial systems (such as smart grids) grow in size and complexity, transparency and explainability become
increasingly important for supporting user understanding and trust. Causal models are key components to
translate system behaviour into human reasoning. While causal graphs can be created from domain-expert
knowledge about system dynamics, this method carries the risk of specifying only partially complete graphs.
Yet, attempting to learn the entire causal graph from observational data is also known to be challenging and
error-prone. In this paper, we propose a procedure for the data-driven augmentation of existing causal graphs
defined by domain-experts. Specifically, we test Granger non-causalities implied by the existing graph on sensor
measurement data. Under appropriate statistical and causal assumptions, the test results can then indicate missing
edges in the existing graph. We evaluated our approach in a real-life smart charging garage scenario, testing the
expert-defined causal graphs with real-world sensor data. The results show inconsistencies between the causal
graph defined by experts and the observed data, demonstrating the capability of our approach to reveal missing
causal relations. These findings highlight the potential of our approach in combining expert knowledge and
data-driven analysis for validating and augmenting causal representations in complex systems, such as smart
grids, contributing to the broader topic of transparent and interpretable industrial systems.
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1. Introduction

In cyber-physical systems (CPSs), computational elements tightly interact with physical processes
through sensors and actuators. This enables smart monitoring and control of these systems, as well as
increased automation. In a smart grid, as an example of a CPS, power flow can be handled efficiently
through real-time monitoring. However, it is important to keep system behaviour understandable for
users (e.g., grid operators responsible for a stable grid operation), especially when some unexpected
events (i.e., anomalies) occur. To ensure transparency of such systems for human stakeholders, causal
models of the system can be employed to make system processes more clear, and to trace anomalies
back to their root causes. Explanations based on causal knowledge are important to match users’
expectations and reasoning patterns [1].

Traditionally, causal graphs are constructed by domain experts, who propose a set of causal relations
between system components based on their extensive domain knowledge. This process is not only
time-consuming, but it is also error-prone. For instance, in the biomedical domain, Kook [2] show that
two causal graphs of protein interactions based on domain knowledge and perturbation experiments
Sachs et al. [3] are likely to be misspecified. While proposed causal relations from experts are most
likely correct, it is easy to miss additional causal relations, especially if they seem too obvious to some
experts.
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Figure 1: Input data for experiments - EV charging garage (i.e., CPS) setup on the left, and expert-defined causal
graph of system sensors on the right.

In this work, we aim to support the process of causal knowledge acquisition using a data-driven
approach. To this end, we investigate Granger non-causality tests to falsify and amend an expert-defined
causal graph based on time series data. This method can be used to check if there are discrepancies
between a proposed causal graph (e.g., causal knowledge acquired from domain experts) and the time
series data, e.g., if there is evidence for additional causal relations in the data that were missed in
defining the initial causal graph.

We evaluated this approach on measurement data of an electric vehicle (EV) charging garage from
our research project !. The garage is equipped with a set of sensors, to measure the power consumption
and state of charge of different devices in the system. In Figure 1a, the garage with its devices and
sensors is shown. It contains 8 EV charging stations and a battery, which can be used for peak shaving
(i-e., reducing peak power consumption of the garage by providing power from the battery). There are
multiple sensors installed in the system (shown as blue circles). The garage experiences an overload if
the system draws too much power, indicated by AP_G1 exceeding a certain threshold. A causal graph
between sensors is needed to determine potential sources of such an overload. Over multiple workshops
and discussions, experts have proposed a candidate causal graph to be used for generating explanations
of anomalies. The expert-defined causal graph is represented in Figure 1b [4].

Our evaluation result shows that Granger non-causality tests can be used to identify inconsistencies
between the provided causal graph and the observed sensor data. While the statistical tests indicate
several possible scenarios of missing causal relations, this information can be presented to domain
experts for further analysis and discussion, enabling the development of a more complete and consistent
causal graph.

The rest of the paper is structured as follows. In Section 2, we discuss related work on CPS and causal
discovery. Then, our proposed methods are explained in Section 3, followed by experimental results in
Section 4. Finally, we discuss our contributions, limitations as well as planned future work in Section 5.

2. Related Work

Explainability of CPS is a key factor to make existing systems more transparent for human users. This
aligns with the European Commission’s vision of Industry 5.0, to create human-centric industrial systems
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beyond efficiency and productivity [5]. Traditional approaches from the CPS research community
include Failure Mode and Effect Analysis (FMEA) [6], and Fault Tree Analysis (FTA) [7]. These methods
focus on modelling functional dependencies between system components based on expert knowledge. If
implemented correctly, these approaches prove to be highly reliable. However, the design and modelling
is labour-intensive and relies on fragmented knowledge from various sources of domain knowledge,
such as domain experts and user manuals. The fact that this knowledge is mostly represented via
natural language descriptions leads to potentially ambiguous, conflicting or incomplete representations
of causal relations and data flows [8].

The Semantic Web research community proposed a different approach which focuses on modelling
only relations between sensors and variables that are interesting to system users, thus reducing the
efforts to model a fully engineered system [4]. Ontology-based representations can help to reduce
ambiguity [9, 10]. However, the exploration of potential causal relations still requires substantial manual
work from highly-skilled domain experts.

Learning causal relationships from observational time series data (e.g., sensor data in CPS) can help
experts in the process of creating a semantic causal representation of their system [11], in a process
referred to as causal discovery. Traditionally, there are two approaches for causal discovery: Constraint-
based methods apply statistical tests of conditional independence to infer an underlying causal graph
that is supported by the data. Score-based methods use scoring methods from machine learning, such as
BIC, or likelihood-based scores [12]. Recently, the use of LLMs to provide potential causal knowledge
has been investigated as well [13]. However, learning the entire causal graph of a complex system is
often too ambitious and available algorithms typically output a graph without uncertainty estimates.
Furthermore, experts commonly already have some understanding of the causal relationships in their
system which can be encoded in a candidate causal graph. Instead of learning the causal graph from
scratch, tests that are used for constraint-based methods can be used to falsify and amend a candidate
causal graph [2].

Our work is positioned at the intersection of knowledge acquisition and statistical causality as
solution domains, while we focus on CPS as a potential problem domain for our proposed methods.
Specifically, we investigate the use of Granger non-causality tests as a method to falsify and amend a
causal graph that was provided by domain experts. Thus, domain knowledge and expert assumptions
are tested against existing sensor data to check if it is consistent with observed values. Furthermore,
this method can also provide suggestions for further causal relations that have been overlooked by
experts initially.

3. Methods

We propose a procedure to find inconsistencies between an existing causal graph, derived (e.g., through
expert knowledge) and sensor measurements. As shown in Figure 2, the initial causal graph implies
assumptions about Granger causalities in the system which can be tested against data from system
sensors. If statistical tests of Granger non-causality indicate discrepancies between the graph and the
data, the graph is considered falsified. The results of these tests can suggest missing edges in the graph,
which the domain expert can use to amend the existing graph and create a graph that is more consistent
with the data.

Expert knowledge about causal relationships in a CPS can be encoded in a causal graph, in which
edges indicate the direct influence of the history of a process on the future of another process (such as
in Figure 1b). Assuming the graph is induced by a structural causal model (as in Equation 1), the graph
encodes causal assumptions in the form of graphical separations, called p-separations. By the causal
Markov property, these separations imply conditional independencies (or Granger non-causalities) in
the observed data distribution [14, 15]. By using data from the CPS, testing those implications allows
us to falsify and amend the given causal graph. We briefly introduce the necessary tools from graphical
modelling and Granger causality, before describing the proposed falsification procedure in detail.
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Figure 2: Overview of the proposed knowledge acquisition process using data-driven causality tests. Granger
non-causality tests can suggest potentially missing causal relations between nodes, which can be checked by
domain experts.
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Figure 3: Example of a full-time and the corresponding summary causal graph.

Structural causal models and causal graphs. We begin by introducing key concepts of structural
causal models for time series [16, Chapter 10.1]. Let (X});cg denote a multivariate time series, in which
each coordinate of X; € R? corresponds to a measurement of a sensor in the CPS and 7 C Z denotes
the discrete time domain. We assume the time series is generated by a structural causal model (SCM),
such that, for all t € 7,

)(t = F(Xt! Et)s (1)

where F denotes the causal mechanism (assumed to be constant over time), 7(; denotes the history of
the process before time point t and ¢; are independent and identically distributed noise terms. The SCM
induces a so called full-time graph (Figure 3a) in which there is an edge from X} to X[J, if X appears in
the structural equation of X!,. Based on the full-time graph, we define the summary graph (henceforth
referred to as the causal graph) with node set {1, ..., d} and in which there is an edge from i to j, if and
only if there is at least one edge from X} to X!, (for arbitrary time points t < ¢’) in the full-time graph
(Figure 3b).

We next give the necessary prerequisites on graphical models based on the more detailed expositions
in [15, 17]. The causal graph G = (V, E), with node set V = {1, ..., d} and edge set E C V xV, encodes the
dependence structure of the coordinates of X; using directed edges («—, =). A walk, iy ~1 i1 ~3 .. ~p ins1>
is an alternating sequence of nodes and edges in G, where ~ is a placeholder for any edge. A node i
on a walk is a collider, if i_; — i} < iry; and a non-collider otherwise. Consider a walk o between
nodes i and jand let C C {1, ...,d}. We call w a y-connecting walk fromi to j given C, if (i) i ¢ C, (ii) every
non-collider on w is not in C, (iii) every collider on w is among the ancestors of C, and (iv) w has a head



at j. Finally, for A, B,C CV, we say B is y-separated from A given C if there exists no y-connecting walk
from any i € A to any j € B given C, and write A#4B | C.

Granger causality. Granger causality is a predictive notion of causality in time series [18, 16, Chap-
ter 10.3.3]. Informally, a process X; is Granger causal for another process Y; given another process Z;, if
X, improves the prediction of Y, when already accounting for Z; [19]. Formally, we define the negation
of Granger causality, i.e., Granger non-causality, as the following conditional independence,

forallt, Y, 1 X;|Z.

Under mild technical conditions, there is a close connection between Granger causality and p-separations
in causal graphs: If jis p-separated from i given C u {j}, then X} is Granger non-causal for X; given

Xtcu{i} [14, 15]. The Granger non-causalities implied by the p-separations in a candidate causal graph
are testable conditional independencies in the observed data distribution.

Falsification procedure. We list all y-separations of the form i-4; | C u {j} implied by the candidate
causal graph for |C| < k. Here, k is a user-defined constant that can be chosen based on computational
tractability, as a larger k results in a larger number of tests. As outlined above, each p-separation implies
a testable Granger non-causality,

Hy(i,j,C) : forallt, X u x| X UL

Assuming linear relationships between A{ = th - th_l and )7; YCtU{]} and stationarity of AL we perform
Granger non-causality tests as a paired t-test comparing the out-of-sample mean squared prediction
error contributions of two autoregressive linear (AR(p)) models in which one model includes )7; while
the other does not. The chance of falsely rejecting at least one null hypothesis is exacerbated when
multiple tests are performed. Therefore, we apply a Bonferroni-Holm correction to control the family-
wise error rate across all tested Granger non-causalities. Small adjusted p-values indicate discrepancies
between the data and the candidate causal graph and indicate missing causal connections. The graph
can then be amended by an expert based on the results of the Granger non-causality tests.

4. Results

We applied the proposed falsification procedure on a real-life dataset of a smart charging garage. In
total, a set of 39 sensors is installed at the facility, collecting data in 1 minute intervals. The sensors
measure different variables, including active power, voltage, state of charge, energy and temperature.
In our experiments, we included 12 sensors (measuring active power and state of charge), which have
been identified by domain experts to be relevant for potentially identifying root causes of a power
overload (see the garage setup in Figure 1a).

We used the candidate causal graph from Figure 1b and conditioning sets C of size at most k = 1
to limit the number of tests, considering computational tractability and power of the procedure. In
total, the graph implies 1025 p-separations at the chosen k. We applied the corresponding tests of
Granger non-causality using AR(10) models across four disjoint time periods of at least 8000 minutes
and combined the p-values for each hypothesis by taking the smallest p-value after a Bonferroni-Holm
correction over all four time periods. We then adjusted the resulting 1025 p-values again using a
Bonferroni-Holm correction. The results for all y-separations rejected at the 5% level are shown in
Table 4a.

The procedure suggests that the p-separations (i) AP_B1 -4 SoC_B1 given any of the EV chargers
and (ii) AP_G1 -4 SoC_B1 given the sum of all EV chargers are not in line with the data at the 5% level.
Therefore, there is strong evidence that either AP_B1 and AP_G1 cause SoC_B1 directly, or that there are
unobserved processes that influence AP_B1 and SoC_B1 or AP_G1 and SoC_B1. The amended graph in
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(a) Results of the Granger non-causality tests. (b) Amended causal graph.

Figure 4: Test results for the rejected p-separations and the corresponding amended causal graph, in which a
bidirected edge (orange) was added between i and j.

Figure 4b includes bidirected edges between the two pairs of nodes to emphasize this ambiguity. While
the ambiguity cannot be resolved based on the given data, a domain expert may be able to judge the
plausibility of these suggested edges.

From a domain-perspective (i) suggests that active power from the battery (AP_B1) could have an
effect on the state of charge of the battery (SoC_B1) according to observational data. Since power
consumption of the battery is used to either discharge, or charge the battery, this effect is plausible.

Furthermore, (ii) would suggest that power consumption of the garage (AP_G1) is related to the state
of charge of the battery (SoC_B1), when controlling for EV charging overall (AP_AEV1). The state of
charge of the battery usually changes either by discharging (usually through providing power to EV
chargers), or by charging (power is consumed from the external grid). Thus, this yet undefined relation
between (AP_G1) and (SoC_B1) should be further investigated by domain experts.

5. Conclusion

Causal relations are a key component for human users to be able to interpret CPS behaviour. In this
paper, we have addressed the challenge of constructing a causal graph for such systems. While causal
graphs that are informed by domain experts are grounded in extensive domain knowledge, they can be
incomplete as experts might miss certain causal relations. Data-driven approaches can uncover such
relations. However, learning entire causal graphs from observational data alone can be difficult and
unreliable.

To bridge this gap, we propose testing implied conditional independencies that are created by a
causal graph from system experts on observational sensor data. Specifically, we apply the proposed
tests to a real-life use case of a smart charging garage, where active power and state of charge sensor
measurements are available that correspond to the proposed causal graph. Granger non-causality tests
are applied to check if the causal graph aligns with existing sensor data.

In our experiments, we have successfully identified some inconsistencies between the provided causal
graph and sensor data. While the statistical tests suggest multiple scenarios of which causal relations
are missing, this knowledge can be presented to domain experts for further discussion, to define a more
complete and consistent causal graph.

Currently, we have applied our approach only to observational data, testing for statistical indepen-
dence. While we can, in this way, investigate predictive relationships between variables, causal relations
can be investigated with more confidence and in more detail by actively manipulating the system
(e.g. disconnecting an EV charger, or starting fast-charging sessions). Obtaining data from different
interventional settings could allow the use of causal discovery methods that rely on different data



sources [e.g., 20] and thereby greatly improve the causal understanding of the system. Additionally, the
Granger non-causality tests used in this work rely on parametric modelling assumptions. Under model
misspecification, the test results may be unreliable and reflect inflated type I error rates, rendering
expert-based evaluation of the results invaluable.

In future work, we will investigate how the proposed falsification procedure performs on data from
the system under interventions. Furthermore, we will investigate the potential of expert validation as a
more integrated causal discovery process, potentially integrating multiple causal discovery methods
from experts, data and LLMs. Finally, nonparametric tests of Granger non-causality can be considered
to alleviate the problem of misspecification.
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