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Abstract
The emergence of large language models has significantly advanced the feasibility of automated problem-solving

using agents. However, despite promising results, these systems often function as “black boxes”, raising concerns

about their ability to comply with requirements due to opaque decision-making processes. To mitigate these

issues, we introduce a multi-agent system powered by language models. This system segments the decision-

making process into three agent-driven stages: proposing queries, identifying norms, and retrieving facts, while

delegating final judgment to a logical reasoner. We evaluated our system in simulated driving scenarios governed

by a limited set of traffic regulations. Results indicate that our approach markedly enhances compliance with

decision-making accuracy and offers a more interpretable and traceable method compared to methods that rely

solely on language models.
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1. Introduction

The rapid advancement and widespread adoption of Artificial Intelligence (AI) are revolutionizing

various industries and reshaping human society [1, 2]. The increasing deployment of robotaxis, such as

Waymo [3] in the United States and Baidu [4] in China, has garnered significant attention. However,

the extensive integration of AI agents into societal frameworks demands rigorous compliance with

established human societal norms [5]. Consider the specific challenge within autonomous driving [6],

illustrated in Figure 1 (left). Here, a vehicle encounters a lane blockage with a solid line to the left,

presenting a decision-making dilemma. The vehicle must assess whether and when it is permissible to

cross the solid line to overtake the obstacle, considering the uncertain duration of the blockage. This

scenario requires the AI agent to not only understand the traffic scene and its rules but also to apply these

rules in making legal and reasoned decisions. Recent advancements in language models, particularly

through Reinforcement Learning from Human Feedback [7, 8] (RLHF), have significantly improved

AI alignment with human preferences [9]. However, these models still face logical inconsistencies

and hallucinations during complex reasoning [10, 11]. Existing enhancements, including tool usage

and extended contextual interactions with environment [12, 13], do not guarantee consistent and rule-

compliant outcomes. Another category of approach, safety assurance, involves verifying AI systems

against predefined specifications after training or deployment [14, 15, 16]. These methods are typically

rule-based, providing a deterministic and transparent process, yet they face limitations in flexibility

and scalability for real world runtime applications. To address this, our proposed system, illustrated in

Figure 1 (right), employs multiple language model powered agents working collaboratively to derive

and verify decisions. These agents actively search for formalized rules and extract relevant facts

from a domain-specific ontology. An integrated logical reasoner within the workflow continuously
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Figure 1: Decision-making process in autonomous vehicles when encountering obstructions. Left panel: An
autonomous vehicle assesses the legality of crossing a solid line to bypass a lane blockage. Right panel: A
breakdown of the vehicle’s reasoning workflow into three agent-driven stages—action querying, rule searching,
and fact retrieval—integrated with a symbolic logical reasoner for final decision-making.

assesses these inputs, ensuring efficient and effective compliance with established rules. Our principal

contributions include:

• A rule-compliant decision-making system: Integrates multiple LLM agents, each specialized

in different aspects of the decision-making process from query generation to fact retrieval, thereby

streamlining the logical reasoning workload.

• Evaluation in simulated driving scenarios: Our system outperformed those relying solely on

language models, achieving not only higher decision accuracy but also greater interpretability

and transparency.

2. Related Works

Aligning the behavior of automated agents with established norms is crucial for safe deployment in

real-world applications [17, 18]. Formal verification, which rigorously checks that systems conform to

predefined specifications, has been extensively researched and implemented across various domains,

offering significant advantages in interpretability, traceability, and determinism [19, 20]. Previous

approaches [21, 22] have utilized ontology-based frameworks to verify system behavior against prede-

fined rules and queries. More recently, Hanif et al. [23] introduced an innovative automatic regulatory

framework employing a defeasible deontic logic solver, enabling vehicles to comply with rules through

reasoning over driving conditions and legal contexts. Despite their deterministic and transparent

reasoning processes, these methods are not yet suitable for runtime applications in complex scenarios

that demand a comprehensive understanding of the environment and the ability to efficiently manage

and assess a vast array of rules and facts. Recent advancements in LLMs have significantly enhanced

capabilities for understanding and reasoning over unstructured data [24, 25]. Techniques such as

ReAct [13] and RAG [26, 27] have been developed to mitigate the problem of hallucination by enhancing

contextual interactions with language models. However, these methods still fall short in terms of

interpretability and robustness, which are crucial for effective rule evaluation. To address this, Pan et

al. [11] integrated LLMs with symbolic solvers, achieving improved accuracy in some specific domains.

Trinh et al.’s AlphaGeometry [28] utilized LLMs to propose innovative constructs guiding symbolic

solvers in solving Olympiad-level geometry problems. Our work shares a similar idea, leveraging

language models to interpret scenarios, propose actions, and generate context-aware search queries. By



employing ontologies to establish and derive facts and a logical reasoner to verify proposals, our method

creates a more reliable and interpretable framework. This integration facilitates effective navigation of

complex traffic situations, balancing flexibility with precision to ensure compliance with rules.

3. Preliminaries

3.1. Problem Statement

We define a scenario by a set T that includes 𝑛 distinct objects {𝑜1, 𝑜2, . . . , 𝑜𝑛}. Each object 𝑜𝑖 is associ-

ated with a set of properties P𝑖 = {𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑚}, where 𝑚 represents the number of properties

each object possesses. An automated agent operating within this scenario can perform actions from a

predefined set A = {𝑎1, 𝑎2, .., 𝑎𝑘}. These actions are either explicitly or implicitly regulated by a set of

legal norms R. Each rule in R takes the form Φ→ Ψ, stipulating that the occurrence of condition Φ
mandates or prohibits the outcome of actions Ψ. The task is to determine a subset of actions 𝐴 ⊆ A

that, when executed by the agent, complies with all the regulations in R. Specifically, the problem can

be formally expressed as:

∀(Φ→ Ψ) ∈ R, (T |= Φ)⇒ (𝐴 |= Ψ),

where |= signifies the satisfaction relation, indicating that if the scenario T satisfies the condition Φ,

then the chosen actions 𝐴 must ensure the outcome Ψ, thus adhering to the stipulated legal norms. The

primary challenge in this task is the indirect evaluability of rule conditions based on the available facts.

For instance, a rule for overtaking requires that the oncoming lane be clear, which involves assessing

the number of vehicles visible to the ego vehicle. These essential facts are not directly available from

the properties of objects; they must be inferred using domain-specific knowledge and mathematical

and physical principles. Leveraging the extensive knowledge encoded in large language models can aid

in making rule-compliant decisions. However, this approach risks generating hallucinations, which are

unacceptable in safety-critical tasks. In contrast, traditional rule-based methods are more robust and

deterministic but face significant computational challenges due to the processing of numerous rules,

predicates, predicate arguments, and relevant facts. Therefore, a multi-agent decision-making system

that combines the strengths of both methodologies is needed to enhance the effectiveness, robustness,

and safety of the decision-making process.

3.2. Language Model-Based Multi-Agent Collaboration

The concept of “Intelligent Agents” [29, 30], developed in the late 20th century, defines autonomous

entities capable of observing and acting upon an environment to achieve goals. This concept spans

various domains, as in robotics, where intelligent agents perceive their environment through sensors and

act through actuators [31, 32], and in reinforcement learning, where they aim to maximize cumulative

rewards by taking actions in dynamic environments [33, 34]. With the advent of LLMs, LLM agents

have evolved into systems capable of complex reasoning, planning, tool usage, and memory, thereby

solving problems autonomously [35, 36]. An LLM functions as the system coordinator, activated via a

prompt template that outlines the agent’s operations and available tools. This setup enables the LLM

to control the workflow and complete tasks efficiently. Each agent can be assigned a specific persona

within the prompt, including information about the agent’s role, personality, social characteristics, and

other demographic data [37]. Complex tasks often require multiple agents working collaboratively.

Chen et al. proposed ChatDev [38], which segments the workflow F into sequential phases P, each

comprising multiple subtasks T (see Equation 1). In each subtask, a dual-agent system [39] collaborates

to derive solutions: one agent acts as the instructor I providing specific requirements, while the other

acts as the assistant A, completing the task by actively asking for additional details over multiple rounds

of 𝑡.

F = ⟨P1,P2, . . . ,P|𝐶|⟩ P𝑖 = ⟨T1,T2, . . . ,T|P
𝑖|⟩ T𝑗 = 𝜏(⟨I,A⟩𝑡) (1)

The limited context length of LLMs often restricts maintaining a complete communication history

among all agents and phases. To address this, agents’ context memories are segmented into short-term



and long-term memory [40]. Short-term memory sustains dialogue continuity within a single phase,

while long-term memory preserves contextual awareness across different phases.

3.3. Normative and World Knowledge Representation

3.3.1. Legal Norms Formalization

Formalizing legal norms is essential for enabling rule-based logical reasoning. However, the inherent

vagueness, abstract expressions, exceptions, and potential conflicts within established norms pose

significant challenges. Westhofen et al. [41] characterize these challenges as a congruence problem

between legal interpretation and system implementation. Building on legal theory elements, Chitashvili

et al. [42, 43] introduce an intuitive normal form structure to represent norms, aimed at facilitating

collaboration between computer scientists and legal experts. They propose a four-dimensional

framework—space 𝑅𝜑, time 𝑇𝜑, subject 𝑆𝜑, and action 𝑂𝜑—to structure legal norms 𝜑. 𝑅𝜑 defines

where the rule applies. 𝑇𝜑 specifies the duration or activation moments. 𝑆𝜑 indicates who is bound by

the rule. 𝑂𝜑 describes what is obligated, prohibited, or permitted. To adapt this framework to our use

case, we introduce a fifth dimension, exceptions 𝐸𝜑, which represents prioritized exceptional rules that

override standard rules in specific cases, such as crossing a solid line. The validity of this dimension is

dynamically computed based on environmental conditions. We focus mainly on formalizing obligations

and prohibitions, incorporating permissions only when they provide actionable guidance under

exceptional circumstances. Starting with the legal texts, we analyzed and encoded the norms into the

structured formula 𝑅𝜑 ∧ 𝑇𝜑 ∧ 𝑆𝜑 ∧ 𝐸𝜑 → 𝑂𝜑. This formalization into a normal form structure serves

as a pivotal intermediate step. Each dimension incorporates detailed textual descriptions, which not

only simplify the translation of legal norms into specific logical sentences but also facilitate more

efficient searching due to the clarity of this structure.

Ontological Representation Ontology is a fundamental method for modeling domain-specific

knowledge, providing a formal and explicit specification of shared conceptualizations that facilitate

consistent and unambiguous knowledge exchange and management [44, 45, 46]. By incorporating

ontologies, LLMs gain access to domain-specific knowledge, significantly enhancing their reliability and

logical reasoning capabilities. Ontology for traffic scene modelling has attracted considerable interest

due to its ability to accurately represent complex real-world situations, support automated reasoning,

and maintain interpretability by humans [47, 48, 49, 50]. Typically, an ontology is seen as a knowledge

base KB = (TB,AB), where the TBox TB, or Terminological Box, outlines the hierarchical structure

of classes through object and data properties, axioms, and logical constructs [51]. The ABox AB, or

Assertional Box, contains the specific instances and facts derived from situational knowledge, usually

represented as a graph in RDF [52]. The development of an effective ontology typically begins with a

review of existing ontologies [53]. We utilize the OpenX ontology developed by ASAM [54], which

offers a robust foundation with widely recognized definitions, properties, and relationships pertinent to

road traffic. We further enrich this base by integrating additional concepts, relationships, and rules

tailored to our specific use cases, thereby extending its applicability and effectiveness in real-world

traffic scenarios.

4. Multi-Agent Rule-Compliant Decision-Making System

4.1. Rule-Compliant Decision Making Workflow

We structure the rule-compliant decision workflow into three agent-driven phases, 𝐹 =
⟨𝑃𝑞(𝑇 ), 𝑃𝑟(𝑇 ), 𝑃𝑓 (𝑇 )⟩, where each phase handles a single task 𝑇 , collaboratively aiming to create a

streamlined logic program that consists of queries, facts, and rules for efficient processing by a logical

reasoner. The output from the reasoner provides iterative feedback, ensuring that decisions conform

strictly to established norms. As illustrated in Figure 2 , the initial phase involves two agents that

interpret the traffic scene and suggest an action, such as an overtaking maneuver denoted by the query
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Figure 2: Visual representation of the interaction and collaboration patterns among multiple agents within a
rule-compliant decision-making framework.

𝑂𝑣𝑒𝑟𝑡𝑎𝑘𝑒(𝑋), through mutual communication. The extracted scene features and the proposed query

are then processed in the second phase by a semantic search agent, which identifies applicable rules

for the case from the perspective of a legal expert. These rules are evaluated based on the available

facts; any missing or unknown facts are forwarded to the third phase. In this phase, agents consider

the evaluation context and the predicates of facts to generate SPARQL queries. These queries are

executed on the ontology to retrieve necessary information through reasoning. The logical reasoner

then processes the queries, rules, and facts to produce a decision, which either reenters the loop for

further refinement or stands as the final decision. For more details about our algorithm, we refer to

Appendix A.1.

4.2. Data Mapping and Storage

To connect different components within a system, we have integrated three distinct types of data streams.

The first type encompasses environmental data sourced from vehicles for environment perception and

communication, such as traffic conditions and road infrastructure. This data is assumed to be accessible

via the Controller Area Network (CAN) from Electronic Control Units (ECUs) within the vehicle. The

second type involves semantic data, which is understandable and executable by ontologies and logical

reasoners. The third type comprises natural language, generated by LLMs to provide instructions or

answers. The environmental data, characterizing a traffic scene as key-value pairs, lacks the semantic

meaning required for direct evaluation of traffic rule predicates, such as hasOncomingTraffic(𝑋,𝑌 ).
To enable the ontology to infer new facts, such as spatial relationships and object counts, we map the

environmental data to semantic data using the OpenX ontology [54]. To better suit our requirements,

we reduce its scope and then extend it to maintain its utility while optimizing query performance.

The refined version includes a total of 396 axioms, along with 113 classes, 35 object properties, 6 data

properties, and 2 SWRL rules within the TBox. Specifically, we use the Owlready2 [55] library to map

environmental data into the ABox, making it accessible for a variety of SPARQL queries. In the first



phase, only some predefined basic facts are available in the ABox. During the rule search and evaluation

in the subsequent phases, more facts and rules are added, providing the rationale for the logical reasoner.

The agents in the first phase are endowed with long-term memory, which allows them to adjust their

strategies for proposing actions. Other agents possess short-term memory, prompting them to specialize

in their own tasks. Generated SPARQL queries and facts are cached, making them accessible to each

agent via its interface to boost system performance.

4.3. Module Implementation

Scene-based Query Generation In the first phase, basic facts are available from the ontology and

represented as a list of predicates that characterize the traffic scene. We employ a dual-agent system to

complete the scene interpretation and action proposal. This system follows an instruction-following

cooperation model, which has been shown to advance the progression of productive communications

and achieve meaningful solutions [39]. The instructor agent initiates instructions, guiding the discourse

toward the completion of the task, while the assistant agent adheres to these instructions and responds

with appropriate solutions.

𝐶(𝐼, 𝐴) = ⟨𝐼 → 𝐴,𝐴← 𝐼⟩
loop

(2)

We prompt the instructor agent to describe the scene based on the available predicates and the feedback

from the solver if available. The assistant agent is then instructed to interpret this scene and propose a

driving action. To reduce communicative hallucination [38], we encourage the assistant to actively seek

more facts from the instructor before delivering a final response. They engage in a multi-turn dialogue

𝐶 , working cooperatively until they achieve consensus, ultimately leading to the completion of the

task.

Rule Formalization and Search Working closely with legal experts, we gather German traf-

fic rules from written legislation, legal precedents, and court decisions. We then analyze these rules and

convert them into a normal form structure [42] with detailed descriptions across five dimensions. To

translate the rules into executable programs, we represent them in predicate logic, limiting them to a

maximum of two arguments and avoiding explicit quantifiers to maintain simplicity and coherence

(see examples in Appendix A.2). This formalization enables efficient querying within the description

logic-based ontology and ensures reasoning through a Prolog-based solver [56]. In total, we formalized

25 rules of prohibitions, obligations, and exceptions for our traffic scenarios. Benefiting from the clear

and more implementable representation of the normal form structure, the translation into predicate

logic is semi-automated by prompting a language model with logical syntax and legal terms from the

ontology, followed by a thorough review. The search for related rules is carried out by a semantic

search agent, which maps rules into an embedding space using text embedding models. The agent then

queries the rules based on proposed actions and key features extracted from the traffic scene.

Fact Retrieval SPARQL Query generation connects common-sense knowledge from LLMs

with domain-specific ontology expertise. While other studies and applications [57, 58, 59] have used

LLMs to generate SQL queries by providing syntax, schema, and examples, our approach follows a

similar principle, guiding LLMs step-by-step through SPARQL syntax and structure. In our application,

we explored using rule context and ontology segments for query generation. We propose three methods

for query generation in predicate evaluation for a rule, each providing a different level of flexibility and

contextual information.

1. Zero-Informed: This method focuses on unary predicates, specifically designed for class hi-

erarchical reasoning, characterized by a invariable and consistent query structure. It generates

queries aimed at searching for instances that belong to the class required by the rule evaluation.

2. Rule-Informed: This method generates queries based on the context of the evaluated rule, which

can be answered by the ontology reasoning. For example, given the context of the rule that states

a solid lane marking on the left that connects to the ego lane and requires generating a query



about the predicate LeftConnectedTo(X, Y), this method would incorporate the information about

X as the ego lane type and Y as the solid line type into the query construction. This method

limits the range of possible answers derived from the ontology.

3. Ontology-Informed: This method targets queries that can not directly inferred from the ontology.

It incorporates additional ontological information, including comments about the predicate and

available predicates, to construct the query.

These three query generation methods offer increased context and flexibility but reduced semantic

correctness. In our work, most queries use the first two methods, while only two queries use the third

(see examples in Appendix B.1).

Logical Reasoning We use Prolog [56] solver for legal reasoning to verify the proposed ac-

tion. Prolog is a declarative language derived from a subset of first-order logic, operating under

the Closed World Assumption (CWA) to maintain decidability. In our pipeline, any facts or rules

not retrieved from prior agents are considered false. The rule compliance of the proposed action is

validated using available information through the Prolog query with backward chaining. Once the

action is deemed consistent, it is added to the knowledge base. Subsequently, other driving actions,

which are regulated by related prohibition and obligation rules, are iteratively queried and derived. As

Prolog doesn’t inherently support deontic logic reasoning for different modalities of rules, we devise a

mechanism to manage exceptional rules as a priority when assessing the current scene for possible rule

exceptions. We then assign truth values to the “exception”dimension of corresponding rules. An action

is deemed rule-compliant when it aligns with both prohibition and obligation rules.

5. Experiment

Providing explicit rules as extended context in prompts is a common method for managing the behavior

of language models. In contrast, our method restricts its output by employing ontology-based fact

retrieval to evaluate rules via query generation. While agent-based language models [60, 61] have

demonstrated higher accuracy in decision-making, our experiment aims to assess whether our approach

delivers more accurate, reliable, and traceable rule-compliant decisions compared to rule-prompting

methods.

5.1. Dataset

MakeUTurnOvertake Pass Wait

Figure 3: Driving scenarios classified by primary de-

cision types.

Despite the availability of diverse datasets in

autonomous driving, there are few designed

specifically for rule compliance assessment. In

our experiment, we create a compact synthetic

dataset consisting of 60 randomly generated

two-lane road scenarios. Each scenario con-

tains detailed information about traffic partic-

ipants, road infrastructure, environmental fac-

tors, and applicable traffic rules, all stored in

key-value pairs in JSON format. We label each

scenario with rule-compliant driving decisions

involving primary and secondary actions. The primary action space 𝐴𝑝 (see Figure 3), intended for es-

caping dilemma situations, comprises maneuvers targeting an inoperative vehicle 𝑋 : 𝐴𝑝={Overtake(X),

MakeUTurn(X), Pass(X), Wait(X)}, governed by rules of prohibition, obligation and exception. “Pass” is

distinct from “Overtake” as it occurs within the same lane. The secondary action space 𝐴𝑠 comprises

𝐴𝑠={SpeedLimit(X), KeepSafeLateralDistance(X), LaneChangeTo(X), Cross(X)}, where 𝑋 indicates spe-

cific values or road elements. These actions adhere to obligation rules and depend on primary actions,

such as maintaining lateral distance during overtaking. These scenarios are equally distributed across



four classes based on primary actions, where each class encompasses various scenarios. These include

differences in the number, size, type, location, and speed of vehicles, as well as road markings, traffic

signs, weather conditions, and congestion levels, all of which may influence driving actions. Our data

generation follows principles of flexibility, extensibility, and scalability through random sampling for

variables considering physical and rule constraints, supplemented by thorough manual review. While

our dataset, programmatically configured, may not fully reflect real-world driving complexities, it aims

to test our hypotheses and serve as an example for collaboration between legal experts and computer

scientists in dataset creation.

5.2. Baselines and Metrics

Language models primarily trained on general natural language corpora [62], have limited understanding

of less common key-value data structures. While targeted instructions can help, the results may not

always be reliable. To maximize the reasoning potential of our baseline models, we implement a

rule-based approach that programmatically generates narratives for each scenario from key-value pairs,

enabling language models to derive rule-compliant actions from these textual descriptions. We use

Few-shot-CoT [63, 64] as our baseline method, enabling complex reasoning by prompting detailed

intermediate reasoning steps. To guide decision-making, we provide four representative examples that

follow different reasoning paths involving traffic rules. For a fair comparison of reasoning abilities,

we exclude the rule search part by specifying applicable traffic rules as natural language text in the

baseline models and as logical forms in our method. We use GPT-3.5-Turbo and GPT-4o as language

models for both methods. To evaluate the accuracy of derived actions, we use precision 𝑃 , recall 𝑅, and

the 𝐹1 score as our metrics in each scenario. A True Positive is counted when both the predicate and

its argument are correctly predicted. Subsequently, we calculate the average and standard deviation for

each metric across all classes and methods.

5.3. Results

As presented in Table 1, our method, NeSy-LAD (Neuro-Symbolic Legal Guidely Automated Decision-

making System), outperforms the Few-shot-CoT baseline models across GPT-3.5 and GPT-4o, with

significant gains in precision, recall, and F1 Score. The NeSy-LAD with GPT-4o achieved the best

performance, exhibiting a 13.75% increase in precision, a 7.25% increase in recall, and a 10.54% increase

in F1 score compared to the Few-shot-CoT with GPT-4o. Remarkably, even when utilizing GPT-3.5,

NeSy-LAD still outperforms the Few-shot-CoT with GPT-4o by 0.75%, which indicates that integrating

ontology-based fact retrieval with a symbolic solver offers a significant advantage over the approach

directly prompting rules for the decision-making. GPT-4o generally outperforms GPT-3.5 across both

methods. Notably, in the Few-shot-CoT approach, GPT-4o demonstrates a recall that is 12.5% higher

than the GPT-3.5 implementation.

Table 1
Comparison of performance between Few-shot-CoT and NeSy-LAD across GPT models.

Metric Few-shot-CoT
GPT-3.5

Few-shot-CoT
GPT-4o

NeSy-LAD
GPT-3.5

NeSy-LAD
GPT-4o

Precision 79.64±3.29% 82.08±5.45% 85.50±3.01% 95.83±1.85%
Recall 73.83±2.85% 86.33±2.47% 84.31±3.81% 93.58±4.39%
F1 Score 76.13±3.30% 84.15±7.91% 84.90±6.82% 94.69±6.24%

To explore the performance of these two methods across various scenario categories, we plotted

the average F1 scores for both in Figure 4 (left). Our method demonstrates higher F1 scores in the

“Wait”, “Pass”, and “MakeUTurn” classes, with the exception of the “Overtake” class. The Few-shot-CoT

approach tends to favor the “Overtake” action to escape these challenging scenarios, whereas our

method relies more on the rule evaluation. Particularly, in the “Wait” and “Pass” classes, which involve

a higher number of rules and predicates (Figure 4, left), our method achieved very high F1 scores.



The errors in our approach for the class of “Overtake” stem mainly from incorrect query generation,
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Figure 4: Comparison of average F1 scores (left), and distribution of the average number of evaluated rules and
generated queries for unary (UPs) and binary (BPs) predicates across all classes (right).

including both semantic and syntactic inaccuracies. Semantic errors are more common, largely due to

the misuse of the rule context and available predicates from the ontology for query generation. The

errors in the Few-shot-CoT approach arise from several sources: omitted traffic rules, inconsistencies

between the reasoning process and conclusions, and an inability to accurately capture the semantic

meaning of the rules. For example, the action ”Wait” is mostly regulated implicitly by the prohibition

of ”Overtake” or ”MakeUTurn” in traffic rules, which Few-shot-CoT may not capture. With respect

to interpretable and traceable reasoning, our approach provides detailed insights into evaluated rules

and generated queries for unary and binary predicates (Figure 4, right), offering a more reliable and

trustworthy process than Few-shot CoT.

5.4. Discussion

As demonstrated in our experiments, compared to providing rules as the context to language models,

our method, which segments the decision process into three agent-driven phases and delegates the

final reasoning to a symbolic logical reasoner, exhibits significant advantages in rule-compliant decison

making accuracy, transparency, and interpretability. Despite these achievements, we acknowledge

certain limitations in our experiment and approach. First, we tested only a limited set of rules and

predicates, which may not fully represent the language model’s query generation capabilities. To scale

the approach, future work should explore more efficient mechanisms that utilize various contexts or

consider fine-tuning the model for SPARQL query generation. Secondly, our system is heavily dependent

on formalized rules in an executable format. However, we argue that legislation regarding automated

agents should address both implementability for systems and interpretability for humans, which calls

for collaboration between computer scientists and legal experts. This lays the groundwork for the safe

and lawful deployment of agents in real-world applications. Our LAD system integrates traffic rules

explicitly into a symbolic solver, providing an interpretable and traceable decision-making process

for humans. This setup allows for flexible and rapid rule updates as regulations evolve. Additionally,

our system’s modular design allows different modules to be replaced with varying techniques. For

instance, the ontology query part can be replaced with knowledge graph embeddings, and the symbolic

solver can be substituted with a neural-based reasoner. Though our system was originally designed for

decision-making in autonomous driving, it can be adapted to other domains requiring scene recognition

and rule compliance. In conclusion, our approach provides a scalable and adaptable framework that can

serve as a foundational solution for a wide range of applications, enabling reliable and interpretable

rule-compliant decision making in diverse contexts.



6. Conclusion
In this paper, we present a framework that combines language model agents with a symbolic logical

reasoner for rule-compliant decision-making in autonomous driving. Our approach regulates automated

agents with formalized rules, providing an adaptable solution for safer and more interpretable automated

decision-making. Despite its effectiveness in traffic scenarios, our system has limitations when dealing

with complex rules and probabilistic reasoning. Future work should explore more implementable rule

formats and develop more scalable query methods.

Declaration on Generative AI

During the preparation of this work, the author(s) used GPT-4o in order to: Grammar and spelling

check. After using this tool, the author(s) reviewed and edited the content as needed and take(s) full

responsibility for the publication’s content.
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A. Appendix A

A.1. Rule-Compliant Decision-Making Algorithm

Algorithm 1 Rule-Compliant Decision Making through LLM Agents

Input: TBox 𝑇𝐵, scenario 𝑇 , rules 𝑅, possible actions 𝐴
Output: Primary and secondary actions {𝐴𝑝, 𝐴𝑠}, compliant with the rules {𝐼𝑝, 𝐼𝑠}

Hyperparameter: Number of trails 𝑁 , language model 𝐿𝑀 , symbolic solver 𝑆𝐿

1: 𝐴𝑝, 𝐴𝑠, 𝐼𝑝, 𝐼𝑠 ← ∅
2: 𝐴𝐵 ← 𝑓( 𝑇𝐵, 𝑇 ) ◁ Mapping data into ABox

3: 𝐾𝐵 = { 𝐴𝐵, 𝑅} ◁ Build knowledge base with rule sets ready for query

4: 𝑓𝑎𝑐𝑡𝑠← 𝑞𝑢𝑒𝑟𝑦( 𝐾𝐵) ◁ Retrieve basic available facts

5: for 𝑛 = 1, . . . , 𝑁 do ◁ Iterate N trials for LLM primary action proposal

6: 𝑎𝑝̂, 𝑓 𝑡̂← 𝐿𝑀1( 𝐴𝐵, 𝑇, 𝑓𝑎𝑐𝑡𝑠, 𝑝𝑟𝑜𝑚𝑝𝑡𝑠) ◁ Output candidate action and scene features

7: 𝑅̂← SEARCH( 𝑅, 𝑎𝑝̂, 𝑓 𝑡̂, 𝐿𝑀2) ◁ Search for all related rules

8: for 𝑟𝑖̂ in 𝑅̂, 𝑖 = 1, ...𝑑 do
9: 𝐴𝑃 ← evaluate(𝑟𝑖̂, 𝑓𝑎𝑐𝑡𝑠) ◁ Identify rule predicates absent from facts

10: for 𝑝𝑗 in 𝐴𝑃 , 𝑗 = 1, ...𝑘 do
11: 𝑞 ← 𝐿𝑀3(𝑝𝑗 , 𝑟̂𝑖, 𝑝𝑟𝑜𝑚𝑝𝑡𝑠) ◁ Generate queries for absent predicates

12: 𝑛𝑒𝑤_𝑓𝑎𝑐𝑡𝑠← 𝑞𝑢𝑒𝑟𝑦(𝐾𝐵, 𝑞) ◁ Retrieve new facts with ontology reasoning

13: 𝑓𝑎𝑐𝑡𝑠← 𝑓𝑎𝑐𝑡𝑠 ∪ 𝑛𝑒𝑤_𝑓𝑎𝑐𝑡𝑠
14: end for
15: end for
16: 𝑐, 𝑎𝑝, 𝑖𝑝 ← 𝑆𝐿(𝑓𝑎𝑐𝑡𝑠, 𝑎̂𝑝, 𝑅̂) ◁ Verify action consistency via backwards chaining

17: if c is True then
18: 𝐴𝑝 ← 𝐴𝑝 ∪ 𝑎𝑝
19: 𝐼𝑝 ← 𝐼𝑝 ∪ 𝑖𝑝
20: break ◁ Stop loop when primary action found

21: else
22: Update( 𝐿𝑀𝑠1, 𝑎𝑝) ◁ Update prompts for next iteration

23: end if
24: end for
25: 𝐴𝑠, 𝐼𝑠 ← 𝑆𝐿(𝑓𝑎𝑐𝑡𝑠, 𝐴𝑝, 𝑅̂) ◁ Derive secondary actions

26: return 𝐴𝑝, 𝐴𝑠, 𝐼𝑝, 𝐼𝑠

We propose the Rule-Compliant Decision-Making Algorithm, which combines multiple language models

with a symbolic solver to derive rule-compliant actions. As presented in Algorithm 1, it takes as input

a TBox 𝑇𝐵, a scene 𝑇 represented by key-value pairs, a set of formalized rules together with their

corresponding logical representations 𝑅, and possible actions 𝐴. It outputs primary 𝐴𝑝 and secondary

𝐴𝑠 actions that comply with the corresponding rules 𝐼𝑝 and 𝐼𝑠. The process begins by mapping data to

an ABox 𝐴𝐵. Together with the formalized rules, this forms a knowledge base 𝐾𝐵, which is then

ready for querying. Basic facts about the current scene are then extracted from this knowledge base. In

the first loop of N trials, the language model agents 𝐿𝑀𝑠 collaboratively proposes a primary action 𝑎𝑝̂
and identifies relevant scene features 𝑓 𝑡̂ based on the blockage of the front vehicle. It then searches for

all rules related to the proposed action and the identified features. In the second loop, for each relevant

rule 𝑟𝑖̂, the algorithm evaluates which rule predicates are not currently supported by the available facts.

For each absent predicate, the language model generates queries, which are used to retrieve new facts

from the knowledge base through ontology reasoning. Upon identifying a candidate primary action 𝑎𝑝̂,

the symbolic solver 𝑆𝐿 verifies the action’s consistency with the rules through backward chaining. If

the action is found to be compliant, the loop terminates, marking the action as the primary compliant

action. If not, the process iterates, updating the prompts for the language model agents to refine the

action proposal. After determining the primary action, the algorithm employs the symbolic solver to

derive secondary actions that are compliant with the rules. Our algorithm reduces the workload for the

symbolic solver by suggesting candidate actions, pinpointing the most relevant rules, and extracting

the necessary facts though context-based query generation. This approach significantly narrows the

search space for rule evaluation, while offering more interpretable and traceable results compared to

purely language-based models.



A.2. Traffic Rule Formalization

We begin by collecting traffic regulations from various sources, then analyze these rules and convert

them into a normal form structure with detailed descriptions across five dimensions. At last, we employ

large language models as tools to help formalize the rules in predicate logic. In total, we’ve formalized

25 rules, with examples shown as follows.

{
"id": 5,
"R": "Motorcycle(X), Overtake(X)",
"T": "None",
"S": "Driver(J)",
"E": "None",
"Q": "KeepSafeLateralDistance(1.50)",
"condition": "driver overtaking a motorcycle",
"consequence": "maintain a minimum lateral distance of 1.5 meters"

},
{
"id": 11,
"R": "TrafficLight(X), Red(Y), hasColor(X, Y), Vehicle(V), inFrontOf(V, J)",
"T": "None",
"S": "Driver(J)",
"E": "None",
"Q": "Overtake(V), !Pass(V), !MakeUTurn(V)",
"condition": "driver approaching a red traffic Light",
"consequence": "must not overtake, pass or make a U-turn"

},
{
"id": 18,
"R": "EgoLane(G), SolidWhiteLine(Y), LeftConnectedTo(G, Y), Vehicle(X), Inoperative(X), OnComingLane(Z),

InFrontof(X, J), !hasOncomingVehicle(J, W), Vehicle(W), block(X, G)",
"T": "None",
"S": "Driver(J)",
"E": "None",
"Q": "Overtake(X), Cross(Y), LaneChangeTo(Z)",
"condition": "obstacle or stationary vehicle on road partially blocking the ego lane with solid white line,

not predictable when cleared",
"consequence": "permitted to cross the solid white line and use oncoming lane for overtaking, if safe and no

oncoming traffic"
}



B. Appendix B

B.1. Examples of Context-Based Query Generation

Zero-informedmethod. This method rarely uses any context for query generation. It primarily focuses

on the evaluation of unary predicates, involving class hierarchical reasoning, which generated less

diverse query structures. For example (see Figure 5), when evaluating the predicate AdverseWeather(Y)
within a rule, this method generates a SPARQL query to the ontology, which retrieves the answer w0
because the facts indicate that the weather is snow, which is defined as adverse weather in the ontology.

Class Hierachy

Weather-AdverseWeather -- Fog
                                          -- Snow
                                          -- HeavyRain
                                          -- Dust

PREFIX : <http://www.semanticweb.org/>
SELECT ?y 
WHERE {?y a/rdfs:subClassOf* 
:AdverseWeather .}

Facts

AdverseWeather(Y)EgoVehicle(v0)
Vehicle(v1)
Vehicle(v2)
Snow(w0)

hasYPos(v0, y0)
hasRealValue(y0, 
123)
hasYPos(v1, y1)
hasRealValue(y1, 
126)

LM Generated SPARQL Queries

Answers
w0

Figure 5: Query generated by the zero-informed method.

Rule-informed method. This method generates queries based on the context of the rules being

evaluated, which can be answered by ontology reasoning, as illustrated in Figure 6. Given a rule

under evaluation, the language model uses predicates such as Vehicle(X), Vehicle(Y), EgoVehicle(X),
OnComingLane(Z), locatedOn(Y, Z), and InFrontOf(Y, X) within the rule to construct a detailed query for

the InFrontOf predicate. It reduces the number of instances retrieved from the ontology.

SWRL

Facts

SELECT ?v0 ?v2
WHERE {
  ?v0 a/rdfs:subClassOf* :EgoVehicle ;
      a/rdfs:subClassOf* :Vehicle .
  ?v2 a/rdfs:subClassOf* :Vehicle ;
      :locatedOn ?l2 ;
      :InFrontOf ?v0 .
  ?l2 a/rdfs:subClassOf* :OnComingLane .
}

InFrontOf(?v2, ?v0)EgoVehicle(v0)
Vehicle(v1)
Vehicle(v2)

[v2, v0]

hasYPos(v0, y0)
hasRealValue(y0, 
123)
hasYPos(v2, y2)
hasRealValue(y2, 
126)

LM Generated SPARQL Queries

Answers

Vehicle(?a) , Vehicle(?b), 
hasYPos(?a, ?y0), hasRealValue(?y0, ?yy0),  
hasYPos(?b, ?y1), hasRealValue(?y1, ?yy1),  
swrlb:lessThan(?yy0, ?yy1)  -> InFrontOf(?b, ?a)

Figure 6: Query generated by the rule-informed method.
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