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Abstract

A knowledge integration framework is presented for efficient field service engineering in the context of pow-
ertrains. The framework enables semantic integration of otherwise siloed data from different operations and
maintenance system databases. Starting with an expert-curated and database schema-aligned ontology, and using
LLMs, a knowledge graph is created from unstructured data sources. A comparison of two leading LLM-based
approaches is provided for unstructured data integration in knowledge graphs, namely LangChain LLM Graph
Transformer and Microsoft GraphRAG. We also suggest customizations for fine-tuning of the generation process.
Besides efficient powertrain fault resolutions, potential applications include Root Cause Analysis (RCA), Failure
Mode and Effects Analysis (FMEA), as well as prescriptive maintenance.
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1. Introduction

A powertrain is a complex asset consisting of a motor, a drive and a load, with a typical lifecycle covering
design, engineering, operations and service involving multiple heterogeneous tools. State-of-the-art
digital services such as ABB Ability™ Digital Powertrain integrate data from sensors and drives together
with cloud-based analytics for monitoring and predictive maintenance services [1]. Beyond sensor and
equipment data collecting real-time operational values, Field Service Engineers (FSEs) typically also use
information from service manuals, installed base database, Customer Relationship Management (CRM)
system and Enterprise Asset Management (EAM) system to perform field service and maintenance
activities. Providing efficient support to customers is of utmost priority for FSEs, however the normally
siloed nature of the different information sources means that finding relevant information for service
tasks can be highly time-consuming and is recognized as a top concern [2]. Furthermore, the composite
asset structure of a powertrain include a drive, a motor, and a load, with information that that may be
asset-type specific, adds another layer of complexity not easily managed through manual means.

A semantic layer in the form of a knowledge graph connecting different data points with meaningful
relationships can provide integrated information in context accessible to FSEs for troubleshooting,
failure analyses and performing corrective actions. However, scaling knowledge graph generation
to hundreds of thousands of data points is not manually feasible. Whereas Extract-Transform-Load
(ETL) pipelines have been successfully used for structured datasets [3], use of the novel technology
of Large Language Models (LLMs) have been recently proposed when dealing with large amounts of
unstructured data which LLMs are inherently more capable of working with.

The importance of knowledge management for field service engineering has been previously recog-
nized and an ontology-based approach has been presented in [4]. To the best of the authors’ knowledge,
this paper presents a first evaluation of LLM usage for knowledge graph generation in this context.
The remainder of the paper is organized as follows: Section 2 presents an overview of the powertrain
knowledge integration framework with a novel semantic integration layer together with an outline
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Figure 1: Powertrain Knowledge Integration Framework with Knowledge Graph and Potential FSE Services

for different FSE applications; Section 3 presents a comparison of leading LLM-based approaches for
unstructured data together with a comparative evaluation, findings and related customizations; Section
4 concludes the paper with remarks and a future outlook.

2. Powertrain Knowledge Integration Framework

The overall powertrain knowledge integration architecture is organized in layers as shown in Figure 1.
Different information such as service instructions, installed base data, service history, customer requests,
maintenance history and operational data are available via the various specialized databases from
multiple vendors in ‘Powertrain Operations and Maintenance Systems’. Due to the siloed information
sources and heterogeneous data models, relations across information entities can easily be missed. Field
service engineers looking for information about a particular asset on site must refer to various databases
and manually find relevant interconnections, which tends to be a time-consuming and error-prone
process. As a result, services such as fault resolution and root cause analyses requiring integrated
information from different operations and maintenance systems are difficult to perform.

The ‘Powertrain Knowledge Graph Layer’ consists of an ontology with TBox statements and a
knowledge graph with instances corresponding to ABox statements [5], based on the underlying data
sources for powertrain. The ontology is created based on expert curation of classes and relationships,
which is subsequently aligned to type- and attribute-level information from different database schemas.
In particular, relationships across information entities not captured in any single database are possible
to represented in the ontology based on expert knowledge. For example, service cases in a CRM system
about a certain drive product family are linked via the drive fault code to recommended actions in the
corresponding drive service manual. The ontology is created using the W3C Resource Description
Framework (RDF) family of standards [6], which allows semantic representations as well as the possibility
to process using LLMs, e.g., in Turtle syntax [7]. The ontology serves as a basis for constructing the
‘Powertrain Knowledge Graph’ using LLMs for unstructured data sources, as described in Section 3.
Due to the potential for errors in LLM outputs, which can vary based on selected approach as explained
in Section 3, the generated knowledge graph is reviewed by experts for quality assurance in a final step.

Troubleshooting, resolution and maintenance are among the primary tasks of FSEs, see e.g., [8, 9].
Related use cases requiring integrated information are enabled based on the constructed knowledge



graph in combination with querying, e.g., using the RDF query language SPARQL [10]:

1. Fault Resolution FSEs dealing with faulty equipment require assessing the current situation,
considering operational history and maintenance records, and performing relevant standard
checks and procedures. Based on the connected information stored in the knowledge graph, the
process can be guided through resolution step based on recommended actions from the service
manuals. In case of a novel resolution means not hereto recorded in the manuals, the fix can be
stored in the knowledge graph as future reference for future cases.

2. Root Cause Analysis and Failure Mode and Effects Analysis (FMEA) Successful
failure resolution typically also involves performing the Root Cause Analysis (RCA) for preventive
maintenance [11]. The knowledge graph provides operational data, case history, maintenance
records and service instructions from manuals with relevant connections, enabling easier access
to information with their context for efficient investigations. The knowledge graph can also
enable design-phase FMEA used to anticipate failure in an early phase based on the integration of
history across operations and maintenance together with actual service resolutions and service
instructions, recorded for different powertrain instances. FSE feedback can be recorded in the
knowledge graph for a constantly up-to-date integrated knowledge base.

3. Powertrain Prescriptive Maintenance Beyond preventive maintenance, prescriptive
maintenance services could also be provided based on mapped future scenario possibilities with
related instructions or resolutions stored in the knowledge graph.

3. LLM-based Approaches for Knowledge Graph Generation

Field service engineers typically rely on service manuals to perform maintenance tasks. These manuals
are in the form of unstructured data and are usually complex containing domain specific concepts and
terminology. Capturing the meanings in such unstructured text and understanding the connections
between different entities is not a trivial task. Large Language Models (LLMs) have recently shown
significant capabilities in several natural language processing research areas. Among these areas is
converting unstructured data into entities and relationships to construct knowledge graphs for large
amounts of unstructured text, e.g., as investigated in [12]. The LLM-based approaches are particularly
valuable when it comes to scaling the work of structuring large amounts of unstructured texts [12]. A
well-known challenge is that LLM models are prone to hallucinations [13, 14], i.e. LLMs may fabricate
responses that are factually incorrect. As a result, the knowledge graph can contain an inaccurate
representation of service instructions which hinders the quality of maintenance activities.

In this section, we explore different LLM techniques and frameworks to convert unstructured text into
knowledge graphs. We highlight our findings and present customizations to overcome some challenges.

3.1. LLM Techniques

We investigate three techniques to explore LLM capabilities in converting large amounts of unstructured
text to entities and relationships.

3.1.1. Schema-less technique

A schema-less technique is an unstructured approach that allows LLMs to build knowledge graphs
without relying on any pre-defined graph structure. Here, the input to the LLM is only the unstructured
text. The LLM subsequently generates a schema representing the underlying entities and relationships
and populates instances accordingly.

3.1.2. Schema-based technique

In a schema-based technique, a structured representation of the TBox statements in the form of an
ontology is provided to the LLM to act as a guide for capturing entities and relationships. The objective



of the LLM is to find triples in the text conforming with the given ontology schema. Here, the expert-
curated ontology aligned to database schemas in a second step, as shown in Figure 1, is provided.
Example nodes include fault codes, which are identifiers representing specific faults generated by a
drive or a motor as well as likely causes and instruction explaining how to resolve such faults. Examples
of relationships include linking a drive product family to a fault code, by specifying that a drive generates
a fault code and a fault code occurs due to a likely cause.

3.1.3. Prompt design

Providing additional prompt instructions is a widely used approach to provide clear guidance to the LLM
[15, 16]. This can further enhance the generation of more accurate responses and reduce hallucinations.
We investigate the benefit of providing such prompts by designing a set of detailed instructions that
contain contextual information and demonstrations of domain specific input and output examples. An
example of such instructions is including a fault code number representation in the entity text. We
provide examples to guide the LLM on how to handle unseen fault codes encountered in unstructured
text. Handling such domain specific details is not obvious without providing additional instructions.
Another example is instructing the LLM to include the full text of a sentence in the entity text as
opposed to summarizing or cutting the sentence. This is crucial in our case, as the text often contains
detailed instructions from a manual on how to address a particular drive fault.

3.2. LLM Frameworks

We investigate two widely used LLM frameworks to generate knowledge graphs: LangChain LLM
Graph Transformer and Microsoft GraphRAG. To drive a fair comparison, we use GPT-4 model [17] for
both frameworks.

3.2.1. LLM Graph Transformer

LLM Graph Transformer [18] is a framework developed by Langchain [19] and Neo4;j [20]. It extracts
structured information from text using LLMs. Text is split into several chunks according to a given
window size. LLM models are then used to extract entities and relationships from text chunks. The
extracted information is stored in Neo4j graph database to facilitate downstream RAG applications.
LLM Graph Transformer provides several customizations to tailor the LLM depending on a given use
case. First, it provides the ability to define a graph schema in a precise way, which provides guidance
and structure to the LLM. The graph schema is a set of entity types and relationships in the form of
triples: source node, relationship type, and target node. Second, the framework has the flexibility to use
a variety of LLM models. Third, a prompt with additional instructions can be passed to the LLM for
further customization.

3.2.2. Microsoft GraphRAG

Microsoft’s GraphRAG [21] extracts structured entities and relationships from natural language text
using LLMs. A graph index is built and an entity knowledge graph is derived. GraphRAG also leverages
global information in the graph by using community detection to cluster closely related communities
together. This is then used for summarization and RAG retrieval applications. This framework supports
providing an ontology to guide the structuring of the knowledge graph. Several prompts are provided
for extracting the graph, clustering communities, and performing local and global searches on the
knowledge graph.

3.3. Findings

Below we present our findings for the three LLM techniques used to construct the knowledge graph.
We also compare the two LLM frameworks using several aspects.
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Figure 2: Schemas generated from using different LLM techniques

3.3.1. Evaluating LLM techniques

We evaluate the knowledge graph generated from unstructured text in manuals. The manuals contain a
description of faults encountered by drives, their likely causes, and resolution steps. Figure 2 shows
the schemas generated from LLM models when using each of the three LLM techniques. First, for the
schema-less technique, although the LLM has more freedom and flexibility to construct the knowledge
graph, we observe that it fails in capturing the underlying information in the unstructured text. This
leads to misrepresenting entities and relationships in the knowledge graph as well as ignoring relevant
concepts in the text, such as likely causes of drive faults. Second, in the schema-based technique, we
observe a more informative structure in the knowledge graph. The entities and relationships accurately
represent the domain information present in the unstructured text. However, we still notice the LLM
missing essential semantic connections present in the text. Finally, when providing detailed prompt
instructions in addition to the ontology, we observe an improvement in the quality of the generated
schema and instances. The LLM is able to accurately capture the required domain knowledge in the text
and form meaningful semantic connections. For example, fault code entity representation accurately
follows the provided prompt examples. This is crucial for service engineers to be able to accurately
recognize faults generated by drives. Also, when providing instructions to the LLM, full instructions
from the manuals are included in the instance graphs. This is important for effective diagnoses and
repair of faults.

3.3.2. Evaluating LLM frameworks

We compare both frameworks against several aspects in Table 1. The first aspect is stable runs. Both
frameworks use LLMs, as a consequence the graph generation process is non-deterministic which may
lead to variant output among different runs. Producing different output is problematic in real-world
scenarios where a consistent data generation workflow is required. To assess the magnitude of the
variation for both frameworks, we perform 10 runs using the same input and prompts. We examine the
consistency of the output in terms of the following: the total number of generated entities/relationships
and the number of generated entities per each type in the ontology schema. When using GraphRAG,
we notice consistent output across multiple runs. However, when using LLM Graph Transformer, a
substantial variation of results is observed. The second aspect of the comparison is related to the
schema-based technique. LLM Graph Transfomer offers more control over specifying the ontology
structure. A detailed specification of relationship types and properties can be provided to guide the LLM.
Next, we notice both frameworks fail to semantically link and understand domain specific terminology.
Also, both frameworks are prone to hallucinations. LLM Graph Transformer exhibits a hallucination
rate of ~15%, while for GraphRAG, the hallucination rate is ~12%. In Section 3.4 we further discuss the
concept of hallucinations. Hence, summarizing, our preference based on scalability-relevant criteria
such as ‘Stable runs’ and ‘Triple hallucination avoidance’ is to use GraphRAG as it performs better
compared to the LLM Graph Transformer approach. Additionally, the ‘Provide summary descriptions’
and ‘Generate communities’ features can aid in the future for processing of the constructed knowledge
graph.



Table 1
Comparison of employed LLM Techniques

Feature LLM Graph Transformer  GraphRAG

Stable runs

Full control over provided schema

Semantic equivalence of domain-specific terminology
Triple hallucination avoidance

Provide summary descriptions

Generate communities

X X X X <_ X

<L<UX X X <

3.4. Customizations
3.4.1. Hallucinations

LLM approaches are prone to hallucinations. We observe several examples of such behavior. First,
hallucinations exist in the form of new relationship types that do not exist in the ontology schema. This
leads to incorrect semantic linking between entities. Second, hallucinations exist in the form of triple
hallucinations. Although the type of relationship as well as the types of generated entities exist in the
ontology schema, the LLM fabricates and mixes false associations between entity types that are not
consistent with the domain knowledge. Next, we observe cases where the triple types and associations
follow the ontology schema, however, the generated instances are not present in the input data. Finally,
in some cases, entities are generated with no assigned types. In this case, the LLM fails to understand
the meaning of such entities. These examples are flagged in the graph for further domain expert review.

3.4.2. Knowledge Graph verification and alighment to the ontology

Different from hallucinations, LLMs may generate triples that are slightly deviated from the ontology
structure. For example, a relationship can be reversed between two entities. We adjust such inconsis-
tencies to ensure that the instances are aligned with the defined ontology concepts. The verification
step involves the experts towards the final ‘Expert-Reviewed Knowledge Graph’ of Figure 1.

3.4.3. Mapping layer

We provide the capability to store the output of the LLM, in the form of entities and relationships, in
different RDF-native and labeled property graph (LPG) databases. To achieve this, a mapping layer
is needed to transform the entities and relationships to different formats via the RDF representation,
supported widely by different LPG databases as mentioned in Section 2. Our mapping layer generates
queries using different graph query-programming languages to store and manipulate data in various
graph databases.

4. Conclusion

FSEs stand to benefit from integrated knowledge in a variety of ways for providing services in an efficient
manner based on up-to-date information. The described LLM-based Knowledge Graph generation based
on unstructured data sources together with related customizations is promising, particularly for scaling
knowledge graphs for powertrain knowledge integration. In the future, LLMs could also be utilized
for automatically suggesting ontology extensions for TBox alignments with database schemas, for an
initial reviewing step where LLMs act as a judge [22], as well as for enabling a chat-based user interface
with translation of natural language questions to graph queries for knowledge retrieval and response.
Beyond powertrain manufacturing, the proposed architecture and evaluation methodology could also
be applied to further verticals involving field service engineering such as productive robotics, oil and
gas, aerospace and healthcare.
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