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Abstract
Large Language Models (LLMs) are increasingly used to automate knowledge engineering tasks such as generating
RDF mappings. While promising, their outputs often lack semantic precision, syntactic correctness, and contextual
metadata. This paper investigates whether structured metadata aligned with the mapping lifecycle can improve
the quality and reusability of LLM-generated mappings. We present a metadata model that covers key phases
of the mapping process and integrate it into the MetaSEMAP tool to support context-aware prompting. Using
real-world uplift scenarios, we compare RML outputs generated from unguided prompts with those informed
by lifecycle metadata. Our initial findings show that guided prompts consistently produce syntactically valid,
semantically rich, and FAIR-aligned mappings. These results highlight the potential of structured metadata to
guide LLMs toward generating higher-quality and reusable semantic artifacts in knowledge graph construction.
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1. Introduction

Declarative mappings like RML1 are essential for transforming structured data into RDF for use in
knowledge graphs. However, creating such mappings is a technically demanding task, often requiring
expertise in both syntax and domain-specific ontologies [1]. Recently, large language models (LLMs)
have shown promise in assisting with this task by generating knowledge graphs and mappings from
natural language descriptions [2, 3, 4]. Despite their capabilities, LLMs often struggle with producing
outputs that are semantically accurate, syntactically valid, and compliant with established standards [5],
and human-in-the-loop validation is often recommended to ensure quality and reliability.

This paper explores whether incorporating structured metadata into LLM prompts can improve the
quality of generated mappings. This approach aligns with recent work in context engineering, which
focuses on enriching prompts with structured and task-specific context to enhance the reliability and
relevance of LLM outputs [6]. We focus on a real-world scenario involving the creation of mappings
to uplift data from Ireland’s open data portal2.and demonstrate how metadata guidance, based on a
mapping lifecycle model, influences the outputs generated by gpt-3.5-turbo (via OpenAI API).

The remainder of this paper is structured as follows: we review related work on declarative mappings,
metadata standards, and the role of LLMs in semantic data generation. We then introduce our lifecycle-
based metadata model and its integration into the MetaSEMAP prompting interface. Next, we present
the experiment design and results comparing guided and unguided prompt outputs. Finally, we conclude
the paper and outline future research directions.

The Second Workshop on Knowledge Graphs and Neurosymbolic AI (KG-NeSy), co-located with SEMANTiCS’25: International
Conference on Semantic Systems, September 3–5, 2025, Vienna, Austria
$ salzahra@tcd.ie (S. Alzahrani); declan.osullivan@tcd.ie (D. O’Sullivan)
� https://www.scss.tcd.ie/Declan.OSullivan/ (D. O’Sullivan)
� 0000-0003-2169-7006 (S. Alzahrani); 0000-0001-7770-2117 (D. O’Sullivan)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1RML (RDF Mapping Language) is a declarative language for mapping heterogeneous data to RDF. See: http://rml.io/spec.html
2Ireland’s open data portal: https://data.gov.ie

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:salzahra@tcd.ie
mailto:declan.osullivan@tcd.ie
https://www.scss.tcd.ie/Declan.OSullivan/
https://orcid.org/0000-0003-2169-7006
https://orcid.org/0000-0001-7770-2117
https://creativecommons.org/licenses/by/4.0/deed.en
http://rml.io/spec.html
https://data.gov.ie


2. Background and Related Work

2.1. Declarative Mappings and Metadata Need

Declarative mapping languages such as R2RML and its extension RML enable structured transformation
of heterogeneous data sources into RDF for use in knowledge graphs [1]. These languages define how
data is semantically uplifted without requiring custom code. RML, in particular, supports various input
formats like CSV, JSON, and XML using the RML vocabulary in combination with query languages such
as XPath and JSONPath. Despite its expressiveness, authoring RML mappings remains a technically
demanding task. Tools like YARRRML [7] and documentation frameworks such as RMLDoc [8] aim to
simplify this process by offering user-friendly syntaxes or structured documentation. However, the
lack of embedded metadata to describe the purpose, provenance, and context of mappings limits their
interpretability and reuse.

2.2. Metadata Standards for Mappings

To enhance transparency and reusability, several metadata standards have been proposed. General-
purpose vocabularies like Dublin Core and DCAT provide terms for describing datasets and publishing
context. More specialized efforts, such as SSSOM [9], focus on metadata for ontology alignments,
while MQV [10] supports the assessment of mapping quality. Recent initiatives like FAIR-IMPACT [11]
proposed metadata and best practices for describing mappings as FAIR Digital Objects, aiming to
improve their findability, accessibility, and interoperability. These efforts offer valuable guidance on
core metadata elements such as provenance, mapping purpose, and versioning, but remain largely
conceptual and do not yet support a comprehensive, lifecycle-based framework. As a result, a unified
metadata model that cover the full mapping lifecycle including design, generation, documentation, and
reuse is still lacking. To address this, we propose a structured lifecycle-based metadata model that
captures key elements across five phases of mapping activities. This model, introduced and evaluated
in our earlier work [12, 13], is further detailed later in the paper.

2.3. Large Language Models in Semantic Mapping

Large Language Models (LLMs), such as GPT-3 and GPT-4, have demonstrated the ability to generate
RDF triples, SPARQL queries, and declarative mappings such as RML from natural language inputs [3].
This capability presents new opportunities for simplifying the knowledge graph construction process,
particularly for non-experts. However, while promising, the outputs of LLMs often lack semantic
precision and completeness. Studies have shown that LLM-generated mappings frequently omit critical
components such as input declarations, namespace prefixes, and join conditions, and they rarely include
metadata supporting provenance, reuse, or quality assessment [14, 3, 2]. Moreover, these mappings
may include hallucinated classes or properties that do not exist in the target ontology, making them
unreliable for use.

To address these challenges, we propose a structured metadata-driven approach that guides LLMs
using context aligned with the mapping lifecycle. By injecting metadata such as the mapping’s purpose,
data source characteristics, design decisions, and provenance, we provide the model with domain-
specific constraints and intentions that help shape the generated outputs. This approach improves the
accuracy, interpretability, and reusability of the resulting mappings by grounding generation in explicit
and verifiable context.

This aligns with emerging practices in context engineering [6], where structured metadata and formal
vocabularies help constrain and contextualize LLM behavior to produce more accurate and consistent
outputs. In our case, the metadata model acts as a source of prompt structure, supporting reproducibility
and enhancing trust in LLM-assisted mapping generation.



3. Lifecycle Metadata Model

To support high-quality and reusable semantic mappings, we proposed a lifecycle-based metadata model
that organizes metadata across five key phases: analysis, design, development, testing, and maintenance.
This model was first introduced in our earlier work [12] and later validated through a community study
with Semantic Web practitioners [13]. It is implemented in the MetaMap tool [15], enabling structured
metadata capture through a guided interface.

The model includes fields for describing the mapping purpose, input sources, stakeholders, design
decisions, tooling, validation outcomes, and publishing context. Table 1 presents a summary of the key
metadata fields grouped by lifecycle phase. The full specification is publicly available on GitHub [16].

In this paper, we extend the model’s use beyond documentation by incorporating selected fields into
LLM prompts. This approach evaluates whether structured metadata can guide LLMs to generate more
accurate, standards-compliant, and reusable RML mappings.

Table 1
Proposed Metadata Fields Aligned with Mapping Lifecycle Phases

Lifecycle Phase Key Metadata Fields

Analysis Stakeholder details (URI, name, role, organization); mapping purpose (require-
ments, domain, assumptions, risks); input description (URI, name, source,
type, creator, format)

Design Final design decisions, justifications, expected quality metrics
Development Mapping process metadata (mapping URI, tools used, method, algorithm,

start/end date, format)
Testing Testing metadata (type, timestamp, test results)
Maintenance Versioning and publishing information (publisher name, source, version num-

ber, version date)

4. Methodology

4.1. Experimental Setup

To evaluate whether lifecycle-based metadata improves the quality of LLM-generated RML mappings,
we designed an experiment comparing two prompting strategies: (1) unguided prompts with only a task
description, and (2) guided prompts augmented with structured metadata. We used gpt-3.5-turbo via
the OpenAI Python SDK v1.0 (chat.completions.create) to generate RML outputs. All prompts
were submitted through a controlled interface (Figure 1) to ensure consistent model behavior and
prompt formatting across both guided and unguided conditions.

Figure 1: The interface to generate RML outputs.



4.2. Mapping Scenarios

We evaluate our approach using three real-world scenarios derived from publicly available datasets on
Ireland’s open data portal2. Full dataset links and mapping files are available in our GitHub repository3.
In Scenario 1 (S1), we use the Counties, National Statutory Boundaries, 2019 dataset to convert a CSV file
containing administrative boundary data for Irish counties into RDF. Although the dataset includes
multiple attributes such as object IDs, area size, Irish names, and shape geometry, only a relevant subset
was selected for the purpose of the experiment.

In Scenario 2 (S2), we use the G0421, Population per NUTS 3 Region dataset to convert a JSON file
containing population data for Irish regions into RDF. Although the dataset includes various statistical
fields such as region codes, units of measurement, and percentage values, only a relevant subset was
selected for the purpose of the experiment. The mapping focused on region identifiers, population
counts, and temporal attributes to construct RDF triples that reflect regional population distributions in
a given year.

In Scenario 3 (S3), we use the CSO Electoral Divisions, National Statistical Boundaries, 2022 dataset to
convert a CSV file containing administrative division data for electoral districts in Ireland into RDF.
Although the dataset includes various attributes such as object IDs, Irish and English names, shape
geometry, and codes from multiple authorities, only a relevant subset was selected for the purpose of
the experiment. The mapping focused on modeling spatial hierarchy and containment relationships.
Each electoral division was assigned a hierarchical URI based on its ED_ID and linked to its parent
county and province using a custom property ex:containedIn.

4.3. Prompt Design

To compare the effects of metadata guidance, each mapping scenario was submitted to gpt-3.5-turbo
using two types of prompts: unguided and guided. The unguided prompt included only a task description,
while the guided prompt was enriched with structured metadata drawn from our lifecycle-based model,
which defines 37 fields across five phases. We selected 17 fields most relevant to prompt-based mapping
generation, focusing on descriptors from the Analysis and Design phases (e.g., Purpose, Mapping Type,
Mapping Domain, Input Description, Final Design Decisions, Justification, and Quality Metrics). We also
included contextual publishing and output fields from the Maintenance phase such as Publisher Source,
Version Number, Version Date, Output Format, and Output Syntax, which clarify expected structure
and encourage standards compliance. These fields were chosen based on their impact on design-time
decisions and feedback from previous user studies [13] showing their relevance to mapping quality and
reuse.

Fields from the Development and Testing phases (e.g., Tools, Mapping Algorithm, Testing Result) were
excluded as they relate to post-generation steps. Similarly, fields with limited influence on generative
quality (e.g., Risks, Stakeholder Background) were omitted. The selected metadata was embedded in
natural language form to simulate structured context engineering and guide the LLM in producing
syntactically valid, semantically rich, and reusable RML mappings. Table 2 shows an example of both
prompt types used in Scenario 1 (S1). The full prompt sets for Scenarios 2 and 3 are available in our
GitHub repository3.

5. Evaluation

Each mapping was assessed based on three key dimensions. Correctness refers to whether the output is
syntactically valid RML and can be parsed without errors. Structure awareness evaluates how well the
mapping captures the structure of the input data, including the correct use of rml:logicalSource,
rml:referenceFormulation, and iterators. Semantic quality considers whether the mapping uses
meaningful classes, properties, and URIs aligned with domain semantics and whether it includes
relevant metadata to support reuse. Across all three scenarios, guided prompts produced mappings that
3Project repository: https://github.com/sarah-alzahrani/LLM.
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Table 2
Example of Guided and Unguided Prompt for Scenario 1

Prompt Type Prompt Text

Unguided Generate an RMLmapping to convert a CSV file of Irish county boundaries
into RDF. Each row contains a county ID, a county name, and geometry
coordinates.

Guided Generate an RMLmapping to convert a CSV file of Irish county boundaries
into RDF. Each row contains a county ID, a county name, and geometry
coordinates.
Metadata:
Stakeholder Name: Ordnance Survey Ireland, Role: Data provider
Purpose: Publish administrative boundaries as linked geodata
Mapping Type: CSV to RDF (RML)
Mapping Domain: Geospatial / Administrative
Input Description: CSV file with county ID, names, and geometry
Input Name: counties.csv , Input Format: CSV
Final Design Decisions: Use rdfs:label, schema:latitude,

schema:longitude, and schema:addressRegion to represent the attributes.
Justification: Align with schema.org and LinkedGeoData best practices
Quality Metrics: All 32 counties covered, valid spatial attributes
Publisher Source: https://data.gov.ie/dataset/counties-national-statutory-boundaries-20191
Version Number: 1.0 , Version Date/Time: 2025-06-04
Output Format: Turtle (.ttl), Output Syntax: RML

were consistently more correct, structurally aware, and semantically richer than those from unguided
prompts. In particular, all guided prompts correctly used rml:logicalSource, specifying input type
and reference formulation (e.g., ql:CSV or ql:JSONPath), and included iterator when handling
JSON inputs. In contrast, unguided prompts often defaulted to rr:logicalTable, which is valid
R2RML syntax but insufficient for non-tabular or nested data. This distinction is important because
logicalSource is the required mechanism in RML for handling diverse data sources, and its absence
leads to incorrect or incomplete mappings, especially for formats like JSON. For example:

• Scenario 1 (Counties – CSV): The unguided mapping used rr:logicalTable, ignoring CSV-
specific reference formulation. The guided version used rml:logicalSource with ql:CSV,
along with appropriate classes and coordinate properties.

• Scenario 2 (Population – JSON): The unguided prompt omitted both the iterator and
JSON path references, resulting in an unusable mapping. The guided prompt correctly used
ql:JSONPath, specified the iterator, and aligned the schema with population data standards.

• Scenario 3 (Electoral Divisions – CSV): The unguided output lacked hierarchical URI structure
and containment logic. The guided version constructed meaningful URIs using region and division
identifiers, and modeled geographic relationships with custom and standard vocabularies.

These results highlight how metadata-enriched prompting helps LLMs handle different mapping com-
plexities by injecting contextual knowledge into generation. Guided prompts also produced reusable
outputs that included metadata blocks aligned with FAIR and provenance principles, which were
entirely missing from unguided versions. Overall, our initial evaluation shows that context-aware
prompting grounded in lifecycle metadata improves both the technical correctness and semantic value
of LLM-generated mappings, supporting better reuse, validation, and documentation. While this early
evaluation offers qualitative insights, future work will expand the analysis with quantitative scoring,
completeness metrics, and broader use case coverage to more systematically validate the approach.

https://data.gov.ie/dataset/counties-national-statutory-boundaries-20191


6. Conclusion and Future Work

This study investigated the effect of lifecycle-based metadata guidance on the quality of RML mappings
generated by LLM. By comparing guided and unguided prompts, we observed that metadata-enriched
prompting significantly improves the syntactic accuracy, semantic richness, and standards compliance
of LLM-generated mappings. Guided prompts led to the consistent use of appropriate vocabularies,
correct handling of input formats, and the inclusion of metadata blocks that enhance provenance and
reuse. These initial findings support a context-aware approach that combines the generative flexibility
of LLMs with structured metadata to improve the reliability, interpretability, and reusability of semantic
outputs. In future work, we plan to extend this evaluation framework to additional mapping types,
compare performance across different LLMs, as well as investigate whether prompting LLMs to generate
declarative mappings (like RML) results in more reusable outputs than directly generating RDF triples.
Our initial findings highlight the value of structured metadata not just for documentation but as a guide
in prompt-based knowledge graph construction. As LLMs become embedded in semantic workflows,
the community must consider not only what outputs they generate but also how those outputs are
guided, contextualized, and made reusable for others.
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