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Abstract
Machine learning (ML) models frequently struggle in domains where labeled data is limited or sensitive.
To address this challenge, we explore a semantic-driven data augmentation approach that incorporates
external knowledge into tabular datasets. Our method leverages neuro-symbolic techniques to enrich
training data with structured context derived from knowledge graphs (KGs), aiming to enhance the
predictive capabilities of standard ML algorithms. We evaluate multiple approaches for integrating KG
information into ML pipelines and examine their impact on model performance across binary classification
tasks involving medical datasets such as heart disease and chronic kidney disease. The experimental
setup includes four ML models and four distinct KG embedding algorithms, with performance evaluated
using accuracy and F2 score. Results show that augmenting tabular features with semantic distance
metrics from KG embeddings yields notable improvements. For instance, XGBoost achieves a significant
F2 score increase from 75.19% to 90.85% in heart disease prediction. These results suggest that semantic
augmentation of tabular datasets has the potential to enhance ML prediction1.

Introduction Machine learning (ML) has achieved remarkable success across domains such
as computer vision [2, 3] and language processing [4, 5], largely driven by the availability of
large-scale datasets. However, in domains such as healthcare, where data is often scarce or
protected by privacy regulations, ML models often encounter performance limitations [6, 7].

To address these issues, our recent work [1] proposed integrating structured domain knowl-
edge into ML pipelines through the use of knowledge graphs (KGs). This approach combines
structured knowledge with data-driven learning by embedding KGs into vector representations
to enrich tabular datasets. We evaluate various techniques for incorporating KG embeddings into
binary classification tasks for heart and chronic kidney disease prediction. We investigate how
different embedding strategies and ML models interact, focusing on accuracy and F2 scores. Our
findings demonstrate that semantic augmentation, particularly through distance-based features
derived from KG embeddings, can significantly enhance predictive performance, highlighting
the potential of knowledge-infused learning in data-scarce environments.

1This work is based on a full article accepted at Neurosymbolic AI [1]
The Second Workshop on Knowledge Graphs and Neurosymbolic AI (KG-NeSy), co-located with SEMANTiCS’25:
International Conference on Semantic Systems, September 3–5, 2025, Vienna, Austria
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Figure 1: Overview of the proposed methodology for enriching tabular data with KGE. (adapted from
[1] following the boxology notation [8]).

Methodology To enrich tabular data with KG information, we propose a pipeline that inte-
grates KG embeddings into ML models (see Figure 1). The process begins by defining domain
ontologies to represent tabular dataset’s features and constructing KGs using mappings from
tabular features to ontology concepts and relations. These KGs are then embedded into vector
spaces using different KG embedding methods. We explore several methods for computing
information in the embedding space which is then used to augment tabular data with KG-derived
features to enhance ML performance, as illustrated in Figure 2. These strategies differ in how
they leverage the semantic information encoded in KG embeddings. One method, EmbedOnly,
uses only the embeddings to assess whether the learned semantic structure can replace raw fea-
tures. In EmbedAugTab, embeddings are combined with the original tabular features to enrich
the data with latent relational information. The DistAugTab approach introduces distance-based
features: for each instance, we calculate the distance from its embedding to class centroids, cap-
turing proximity-based semantics. This is extended in EmbedDistTabAug, which integrates both
the raw embeddings and their distance-based metrics into the dataset. To capture higher-order
semantics, ClusterAugTab applies clustering in the embedding space, assigning each instance a
cluster membership to reflect latent groupings. EmbedClusterAugTab builds on this by com-
bining cluster memberships with the full embeddings for even more expressive augmentation.
Finally, we investigate feature interaction strategies. In InteraAugTab and EmbedInteraAugTab,
we compute element-wise interactions between original features and embeddings, enabling
the model to learn complex joint effects between raw clinical measurements and semantic
knowledge from the KG.

Our experiments apply these strategies to binary classification tasks in the healthcare domain
(heart disease and chronic kidney disease), using four ML models (KNN, SVM, XGBoost and a
feedforward neural network (NN)). Performance is evaluated using accuracy and F2 score.



Figure 2: Overview of semantic augmentation approaches to enrich tabular data with KG embeddings
for improved ML performance (adapted from [1]).

Results Our evaluation covered eight KG-based data augmentation strategies applied to
binary classification tasks in heart disease and chronic kidney disease prediction. In Table 1,1 we
present the average accuracy and F2 scores across different embedding methods, classifiers, and
augmentation strategies for heart disease prediction. Similar trends were observed in the kidney
disease experiments, where integrating KG-based information also led to improvements in
predictive performance. Among the evaluated strategies, those that incorporated distance-based
features from the embedding space (e.g., DistAugTab) outperformed other approaches.

Among the embedding methods, RDF2Vec emerged as the most effective overall, yielding
stable and strong results across both tasks and models, likely due to its ability to capture semantic
paths in the KG. Node2Vec also performed well in scenarios where local graph structure was more
informative, e.g., improving KNN in kidney disease and XGBoost in heart disease prediction.
Notably, XGBoost, despite achieving the highest F2 score in some configurations, showed

1Due to space limitations, we report results only for heart disease prediction in this extended abstract. Full results,
including those for chronic kidney disease and additional scenarios, are available in [1].



Table 1
Average accuracy and F2 scores, accross various approaches and models for heart disease prediction.

KNN NN SVM XGBoost
Methods Acc. F2 Acc. F2 Acc. F2 Acc. F2
Baseline 81.02 71.33 81.77 77.44 79.75 77.18 79.32 75.19

Node2Vec

DistAugTab 81.17 71.54 82.17 78.78 81.81 78.36 92.51 90.85
EmbedDistAugTab 81.43 71.70 77.71 76.10 81.67 78.57 91.82 89.27
EmbedDistAugTabRed 80.66 70.76 80.06 75.74 79.46 77.71 79.32 75.15
EmbedClustAugTab 81.17 70.97 72.43 72.96 76.10 75.01 55.32 57.39
ClustAugTab 81.21 71.16 78.01 76.03 77.58 76.02 62.93 65.05

RDF2Vec

DistAugTab 81.02 71.33 81.96 78.57 79.75 77.18 84.38 81.62
EmbedDistAugTab 81.02 71.33 81.85 78.46 79.75 77.18 80.60 77.20
EmbedDistAugTabRed 79.95 69.59 80.49 76.45 79.32 77.63 78.77 75.25
EmbedClustAugTab 81.18 71.12 81.44 77.48 80.16 77.36 78.64 75.34
ClustAugTab 81.18 71.12 81.81 78.38 80.16 77.36 79.10 75.22

DistMult

DistAugTab 80.88 71.04 82.18 78.90 80.27 77.39 53.42 54.84
EmbedDistAugTab 80.94 71.14 80.57 78.55 80.11 77.56 50.49 61.31
EmbedDistAugTabRed 80.16 70.02 81.30 77.69 79.34 77.71 78.16 73.92
EmbedClustAugTab 81.39 71.32 72.17 72.09 75.31 73.72 50.12 55.90
ClustAugTab 81.43 71.45 76.78 75.76 76.17 74.26 59.35 62.11

TransH

DistAugTab 80.98 71.27 81.99 78.55 80.10 77.30 75.34 73.77
EmbedDistAugTab 80.95 71.19 80.89 77.97 80.11 77.50 55.48 57.76
EmbedDistAugTabRed 80.08 69.95 80.72 76.61 79.38 77.78 78.20 74.17
EmbedClustAugTab 80.76 70.42 76.68 74.95 78.32 74.42 48.52 50.38
ClustAugTab 80.82 70.55 80.24 75.94 78.52 74.52 60.35 56.58

variability across embedding strategies, highlighting the importance of matching embedding
methods with suitable models.

These findings support the hypothesis that semantic enrichment, particularly through
embedding-derived features, can enhance ML performance on tabular data, especially in domains
with limited or sensitive datasets.

Conclusion This work shows that semantically enriching tabular data using KG embeddings
can enhance the predictive performance of ML models, particularly in low-data medical scenarios.
Integrating structured domain knowledge through augmentation strategies, especially distance-
based features, led to notable F2 score gains. While promising for context-aware predictions
in sensitive domains, challenges remain in generalizability. Future work will explore the
effectiveness of KGs across diverse, data-scarce domains to address ML models’ data dependency.
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