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Abstract

Ensuring transparency and trust in Al-driven public health and biomedical sciences systems requires more
than accurate predictions—it demands explanations that are clear, contextual, and socially accountable. While
explainable AI (XAI) has advanced in areas like feature attribution and model interpretability, most methods still
lack the structure and adaptability needed for diverse health stakeholders, including clinicians, policymakers,
and the general public. We introduce PHAX—a Public Health Argumentation and eXplainability framework—that
leverages structured argumentation to generate human-centered explanations for Al outputs. PHAX is a multi-
layer architecture combining defeasible reasoning, adaptive natural language techniques, and user modeling
to produce context-aware, audience-specific justifications. More specifically, we show how argumentation
enhances explainability by supporting Al-driven decision-making, justifying recommendations, and enabling
interactive dialogues across user types. We demonstrate the applicability of PHAX through use cases such as
medical term simplification, patient-clinician communication, and policy justification. In particular, we show how
simplification decisions can be modeled as argument chains and personalized based on user expertise—enhancing
both interpretability and trust. By aligning formal reasoning methods with communicative demands, PHAX
contributes to a broader vision of transparent, human-centered Al in public health.

Keywords
Explainable Al, Argumentation-based Explainability, Structured Argumentation, User-Adaptive Explanation,
Public Health Informatics, Natural Language Processing, Trustworthy Al, Health Communication

1. Introduction

As artificial intelligence (AI) becomes increasingly embedded in public health systems, ensuring that
Al outputs are understandable, trustworthy, and tailored to diverse stakeholders has become a critical
challenge [1, 2, 3, 4]. Moreover, recent calls in public health literature highlight the necessity of
Explainable AI (XAI) to foster transparency and professional trust in healthcare applications. From
clinical diagnostics to vaccination policy, Al now plays a role in high-stakes decisions that affect patients,
practitioners, and entire populations. Applications in areas like pandemic preparedness have made
clear that epidemiological decision-making increasingly depends on the integration of XAI [5]. Yet, the
logic underlying many Al-driven decisions often remains obscure, fueling concerns over accountability,
fairness, and interpretability.

The goal of XAl is to address such issues by shedding light on model behavior. However, most
existing XAl approaches—such as feature attribution or counterfactual analysis—struggle to provide user-
adaptive and communicatively effective explanations, especially in language-based applications [6, 7].
These limitations are especially concerning in public health and biomedical fields, where information
must be not only technically sound but also effectively communicated to society. Recent work in
human-computer interaction (HCI) has also emphasized the need for explainable, accountable, and
intelligible systems [8]. Taken together, these challenges call for a new paradigm in explainability that
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mirrors how humans reason and justify decisions. In this context, explanation ought to be understood
as a reasoning process rather than merely a visualization or annotation.

Defining what constitutes an explanation is itself a complex issue. As reviewed in [9], explanations
have been conceptualized in various ways: as assignments of causal responsibility [10], as both the pro-
cess and product of addressing a "Why?" question [11], and as a means of constructing shared meaning,.
These perspectives highlight that explanation is not merely a factual output but a communicative and
cognitive process that engages reasoning and interpretation. To this end, we propose PHAX: a Public
Health Argumentation and eXplainability framework. PHAX is a multi-layer architecture integrating
structured argumentation, adaptive natural language processing (NLP), and user modeling to generate
clear, audience-specific justifications for Al outputs. It treats explanation not as a post-hoc add-on, but
as a first-class component of decision-making pipelines. Structured argumentation functions as a core
mechanism, allowing Al systems to explain their decision processes step by step, handle uncertainty,
and reconcile conflicting evidence through formal reasoning [12]. Such capabilities are essential for
building trust in Al-driven public health systems and biomedical systems. More specifically, within
the domains of public health and biomedical sciences, we demonstrate how argumentation enhances
explainability, with applications spanning areas such as decision-making (e.g., vaccination prioritization
or clinical risk stratification), justification of system outputs (e.g., medical term simplification or the
selection of diagnostic biomarkers), and interactive dialogue (e.g., clinician-Al interaction in diagnosis
or treatment planning). These capabilities allow Al systems to deliver context-sensitive explanations
aligned with stakeholder needs across both population-level and individual-level biomedical applica-
tions. Through structured reasoning and audience-aware communication, argumentation enables Al
systems to provide transparent, tailored explanations across a range of high-stakes scenarios in public
health and biomedical sciences.

PHAX builds on the formal tools of argumentation theory—including Dung’s Abstract Framework
[13] and ASPIC T —to model [14] outputs as defeasible claims supported by reasoning chains. It also
incorporates adaptive NLP techniques such as text simplification (TS), semantic role labeling (SRL),
and discourse parsing, and audience-aware surface realization to tailor explanations to different users.
Whether the audience is a patient, clinician, or policymaker, PHAX generates logically grounded and
socially appropriate explanations.

To demonstrate the utility of PHAX, we present medical text simplification (MTS) as a core use case.
Simplification decisions—such as replacing "myocardial infarction” with "heart attack" — are modeled
as arguments, based on corpus frequency, semantic equivalence, and contextual appropriateness.
Explanations are then adjusted in tone and depth based on user profiles. This showcases how PHAX
enhances interpretability, transparency, and trust in a critical public health application. This paper
makes the following contributions: (i) Introduces PHAX, a novel framework that integrates structured
argumentation and adaptive NLP for explainable Al in public health and biomedical sciences., (ii)
Demonstrates how simplification and other AI outputs can be modeled as defeasible reasoning chains.,
(iii) Proposes user-adaptive explanation strategies tailored to different stakeholders., (iv) Provides
illustrative use cases highlighting PHAX’s applicability in diverse public health contexts.

2. Related Work

XAI encompasses a range of approaches designed to make model behavior more interpretable. Common
techniques include feature attribution methods (e.g., LIME, SHAP), saliency mapping, and counterfac-
tual reasoning. These methods aim to provide insight into how AI models arrive at their predictions,
but they often lack the ability to produce explanations that are user-adaptive and socially contextual-
ized—particularly in domains like public health and biomedical sciences [15]. Given the shortcomings
of purely statistical or post-hoc approaches, researchers have begun to investigate structured argu-
mentation as a foundation for Al explanations. Frameworks based on Dung’s Abstract Argumentation
Framework (AF) and ASPIC™ have been explored as mechanisms to model reasoning processes and
support step-by-step justifications for Al outputs. For instance, Vassiliades et al.[12] and Cyras et al.[16]



survey a range of argumentation-based XAI approaches, showing how argument structures can provide
more transparent and logically grounded explanations, particularly in settings involving uncertainty or
conflicting information.

Although structured argumentation provides a strong basis for XAlI, prior work has often emphasized
symbolic and formal rigor over communicative usefulness, overlooking how explanations are interpreted
by diverse users. PHAX builds on argumentation theory while extending it through user modeling
and adaptive natural language generation to move beyond structural clarity. Unlike prior approaches,
PHAX aims to deliver context-sensitive, stakeholder-specific justifications that are not only logically
coherent but also socially meaningful.

Biomedical and healthcare research has provided concrete cases where argumentation-based ex-
plainability is applied. These studies indicate that argumentation theory helps clinicians reason under
uncertainty and incomplete information. Longo et al. [17], for instance, applied defeasible reasoning
and formal argumentation to model expert judgments in cancer recurrence prediction. This aligns with
broader research in hybrid intelligence, which emphasizes collaborative, explainable Al systems that
support human reasoning rather than replace it [18]. Seen in this light, argumentation and explanation
are key elements in the design of transparent and reliable systems, a need that is especially pressing
in healthcare contexts. Such approaches stress the importance of aligning machine reasoning with
human cognitive and ethical expectations—an objective well supported by structured argumentation
frameworks such as PHAX. By combining user-adaptive justifications with formal inference, PHAX
supports this vision and helps ensure that explanations are not only logically sound but also socially
meaningful in varied health contexts.

One concrete example of such a system is the CONSULT project [19], which applies computational
argumentation to clinical settings. The CONSULT system brings together data from EHRs, wearable
sensors, and treatment guidelines to aid collaborative decision-making. Using ASPIC* to reason under
uncertainty, it produces argumentation-based dialogues that explain treatment options to both patients
and clinicians. By drawing on argument schemes, attack relations, and user-facing explanations,
CONSULT mirrors the aims of PHAX in structuring and presenting personalized justifications for
different stakeholders. Beyond such systems, recent work on user-adaptive explanation and NLG
(e.g., [20]) highlights the importance of tailoring explanations to diverse audiences through role-
sensitive or dialogue-based generation. However, these approaches are rarely integrated with structured
argumentation, leaving a gap that PHAX directly addresses.

3. PHAX: Public Health Argumentation and eXplainability Framework

3.1. Architecture and Layers

PHAX (Public Health Argumentation and eXplainability) is a structured argumentation framework
designed to enhance the transparency, accountability, and user alignment of Al systems in public
health and biomedical domains. Embedding explainability into reasoning structures helps overcome
the limits of post-hoc or model-agnostic XAlI, especially in high-stakes domains. PHAX combines
formal reasoning, NLP, and audience-aware methods to produce explanations that are both context-
sensitive and socially meaningful. Unlike post-hoc methods, PHAX embeds explanation in the decision
pipeline, allowing outputs to be justified and adapted to counterarguments and user needs. Table 1
shows how PHAX applies key XAI goals [12] through NLP tasks in public health. Its architecture has
four layers, moving from raw data to user-adaptive explanation. As Figure 1 illustrates, each layer
passes information forward, with user feedback enabling refinement. Argumentation serves as the core
reasoning mechanism that translates NLP-derived insights into structured justifications. It connects the
output of the NLP Layer to both the internal logic of decision-making and the external communicative
needs of the user interface.

« Data Layer: The Data Layer gathers and preprocesses heterogeneous sources—such as clinical
texts, patient records, epidemiological databases, and social media content—so that structured



and unstructured inputs are harmonized before moving to subsequent layers.

« NLP Processing Layer: The NLP layer performs domain-specific analysis (NER, SRL, discourse
parsing, text simplification), producing structured input for argument construction and validation.

« Explanation and Argumentation Layer: This layer models outputs as defeasible arguments
with structures such as Dung’s AF and ASPIC+. Arguments consist of claims (e.g., a simplification),
supports (e.g., corpus frequency or semantic equivalence), and counterarguments (e.g., ambiguity
or domain-specific issues). It formalizes reasoning and helps manage uncertainty and conflict.

« User Interface Layer: The user interface layer delivers explanations via dashboards, agents, or
summaries, adapting tone and depth to the user (patient, clinician, policymaker). It links formal
reasoning with human interpretability.
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Figure 1: The PHAX layered architecture for user-centered explainable Al in public health.

Traditional frameworks separate development and deployment, but PHAX uses a layered design
that integrates explanation processes across the Al lifecycle. Each layer supports model building and
real-time explanation, ensuring traceability and stakeholder alignment.

Table 1
Mapping XAl Objectives to NLP Tasks in the PHAX Framework

XAl Objective NLP Task

Transparency Discourse Parsing,
Semantic Role Labeling
Argumentation Mining,
Natural Language Inference
Question Answering,
Information Retrieval

Text Simplification,
Named Entity Recognition
Dialogue Systems,
Knowledge Graphs

Illustrative Use Case

Explaining vaccine recommendation steps in
a logical sequence

Providing structured evidence for
prioritizing vaccination groups
Answering “Why are masks still needed?”
with data-backed explanations
Simplifying terms like “PCR Test” for lay
audiences

Teaching how vaccines work through
chatbot interactions

Justification
Relevance
Conceptualization

Learning

3.2. Formal Specification and Data Flow in PHAX

PHAX follows a layered architecture that integrates formal argumentation, NLP, and user modeling
for user-adaptive explainability in public health. Each component is defined by its data types and
transformation functions, enabling traceability from raw input to stakeholder-tailored explanations.



Formal Framework. We define an abstract argumentation framework as AF' = (A, R), where A
is the set of arguments and R C A x A the attack relation. In PHAX/ASPIC™, the knowledge base
is KB = (K, K;), where K, contains strict rules and facts, and K, consists of defeasible rules and
empirical observations.

Rule Types. Strict rules (&) encode deterministic knowledge (e.g., clinical guideline = recom-
mendation). Defeasible rules (R4) capture uncertain, corpus- or context-driven inferences (e.g., if

frequency(symptom ) > frequency(symptomp), prefer(symptomp)).

NLP Mapping. NLP modules (such as NER, SRL, and discourse parsing) map their outputs into
premises and rules via:
® : NLP outputs — (P, Rs U Ry),

where P denotes extracted premises.

Argument Construction. Arguments are constructed by chaining premises and rules:
Arg = (P, Conclusion),

with attacks (rebut, undercut) following ASPIC™. For clarity, we use this compact form, though ASPIC™*
models arguments in full detail.

Graph Evaluation. Given semantics o € {grounded, preferred}, the accepted extension is Ezt, C
A. Grounded semantics yield conservative acceptance, while preferred allow richer extensions; other
variants may also apply.

Explanation Object. A PHAX explanation is:
E=(T%0),

where T is the argument subtree supporting the output under o, and U is the user profile. F is valid if
T supports the claim and satisfies utility criteria such as readability, detail, or audience alignment. In
other words, explanations are extracted from the evaluated argument graph (E'zt,) and then tailored
to the needs of the user profile U.

3.3. Common Argumentation Schemes in Public Health and Biomedical Reasoning

Decisions in public health and biomedicine often face uncertainty, multiple stakeholders, ethical issues,
and context dependence. To handle these factors, argumentation may take different forms—causal, ana-
logical, practical, or expert-based—depending on the task and audience. PHAX applies well-established
argumentation schemes to generate explanations that are systematically organized and accessible to
diverse users. These schemes capture typical reasoning patterns employed to justify claims in various
domains [21]. Each scheme defines a type of inference (e.g., expert authority, practical goals) and is
accompanied by critical questions that guide its evaluation. In public health and biomedical decisions,
they provide a solid basis for user-facing justifications. Table 2 shows several schemes adapted to
real-world scenarios. Beyond structuring logical support, they also act as templates for natural language
explanations aligned with stakeholder needs.

Formal Representation of Schemes

PHAX uses formal representations of argumentation schemes to support logic-based justification and
reasoning. Below are selected examples:



Table 2
Argumentation Schemes (AS) in Public Health and Biomedical Reasoning

AS Description Example in Context

Expert Opinion Relying on authority or profes- | “WHO recommends vaccination for
sional expertise this age group”

Cause to Effect Predicting consequences of an | “Masking reduces viral transmission”
action or event

Practical Reasoning Choosing actions to achieve de- | “To prevent ICU overload, implement
sired outcomes lockdown”

Analogy Inferring based on similarity to | “Contact tracing worked for Ebola; it
previous cases can help for COVID”

Statistical Generalization | Drawing conclusions from | “This drug helped 70% of patients in
population-level data clinical trials”

Ethical/Value-based Arguing based on fairness, harm, | “We must prioritize vulnerable groups
or social values to ensure equity”

Formalization: The scheme for ExpertOpinion where P is the proposition under consideration
and D is the relevant domain, can be encoded as:

is_expert(E, D), asserts(E, P), relevant(P, D) = believe(P)

Cause to Effect: Practical Reasoning:

action(A), causes(A, E) = expect(F) goal(G), action(A), promotes(A, G) = do(A)

3.4. Structured Reasoning and Argumentative Explanation in PHAX

To support structured and adaptable explanations, PHAX relies on a hybrid formal foundation that
combines elements from deductive, structured, and label-based argumentation models. PHAX applies
structured argumentation to ensure that conclusions remain traceable and valid in biomedical and
public health contexts. The framework incorporates ASPIC+, which supports both strict (deductive)
and defeasible rules. Strict rules model clear-cut logic (e.g., eligibility based on clinical criteria), while
defeasible rules capture reasoning under uncertainty and exceptions—crucial in high-stakes public
health decision-making.

Additionally, PHAX adopts principles from label-based argumentation to handle preference, un-
certainty, and credibility. Arguments may carry labels such as confidence, stakeholder relevance, or
ethical weight; these propagate through the argument graph to guide resolution. This makes the
system sensitive to contextual and user-specific needs, supporting more personalized and socially
attuned justifications. Finally, PHAX incorporates argumentation schemes, such as Expert Opinion,
Practical Reasoning, and Cause to Effect, which reflect common patterns of human reasoning. These
schemes serve as templates for generating natural language explanations that align with how different
stakeholders interpret justification—enhancing both transparency and persuasive power.

At the core of PHAX is the use of structured argumentation to represent and explain Al-generated
outputs. Each decision is modeled as a claim supported by explicit premises and, when appropriate,
challenged by potential objections—mirroring human reasoning and enabling transparent justifications.
For instance, in medical text simplification, PHAX treats the decision to simplify a term X to Y not
merely as an output, but as an argument that can be analyzed and, if needed, contested.

3.4.1. Illustrative Example: Medical Simplification as Structured Argument

The following structures are formalized using ASPIC™, enabling both graphical visualization and logic-
based evaluation. This approach goes beyond surface-level explainability by exposing the reasoning



process itself. In particular, the decision to simplify a term X to Y is not presented as a final output
alone, but accompanied by explicit justifications and possible objections. This aligns with the principles
of structured argumentation used in explainable AL

Claim Term X is simplified to Y’

Support1 Y is more frequent in lay corpora
Support2  No semantic loss detected via NLI model
Attack Y may be ambiguous in clinical contexts

Dung’s Abstract Argumentation Framework (AF)

In Dung’s AF [13], arguments are modeled as atomic elements with defined attack relations. Let:

A:  The argument supporting the simplification of X — Y
B: Support based on frequency: "Y is more frequent than X"
C: Support based on semantic similarity: "No meaning lost"
D: Counterargument: "Y is ambiguous in clinical contexts"

We define the argument set and the attack relation as follows:

Args ={A,B,C,D}, Attacks={(D,A)}

Here, D challenges the simplification decision, which can be evaluated using grounded or preferred
semantics depending on the context.

ASPIC™" Representation

ASPIC™ [14] enriches this view by including internal structure, rules, and types of reasoning. The same
example can be modeled as:

P;: frequency(Y') > frequency(X)
P»: semantic_match(X,Y) = True
Ps: ambiguity(Y') = High_Clinical

r1: (P1, P2) = prefer(Y) Argr = (P1, Pa,r1) = prefer(Y)
ro : Py = —prefer(Y) Args = (Ps,r2) = —prefer(Y)

Here, Args attacks Argy, resulting in a defeasible justification structure. The system can select or
reject the simplification based on external preferences, such as the user’s role (e.g., patient or clinician).
This structured approach allows PHAX to generate explainable outputs that go beyond readability
scores, instead providing reasoned justifications that can be tailored and interrogated across use cases.

3.4.2. Formalization: Evidence-Based Reasoning via PICO

Moving beyond basic linguistic tasks such as term simplification, PHAX’s formal reasoning capabilities
extend to evidence-based clinical logic. The following illustrates how structured argumentation can be
applied to biomedical literature analysis, using the widely adopted PICO paradigm. Building on the
earlier simplification use case, we now illustrate how the same argumentation machinery can support
evidence-based clinical reasoning through the PICO paradigm. In particular, structured argumentation
offers a compelling foundation for modeling evidence-based claims derived from biomedical literature
using the PICO (Population, Intervention, Comparison, Outcome) paradigm. PICO elements can be
expressed as formal predicates, enabling the construction of defeasible rules (see below).



« P(z): entity = belongs to target population
« I(x): intervention applied
« C(z): control/comparison condition

(

« O(z): observed or expected outcome P(z) AN (z) =0 O(x)

This implies that for individuals in population P, the application of intervention I leads to outcome
O—under typical conditions. However, due to co-morbidities, alternative studies, or contextual con-
straints, such a rule remains defeasible. Counterarguments may cite exceptions (e.g., “/ is contraindicated
for subgroups in P”). Using ASPIC™, such clinical evidence can be formalized as follows:

P;: Study population matches P
Ps:  Intervention I applied
P3: Outcome O observed
P4: Source study credible

(P1, P2, Ps, Py) = recommend(I, P) (P}, P5,—0, P;) = —recommend(I, P)

These opposing arguments can then be compared via preference criteria (e.g., study quality, sam-
ple size) and evaluated within an argumentation framework using grounded or preferred semantics.
Grounded semantics selects the most cautious acceptable set of arguments, while preferred semantics
favors maximal admissible sets. This formalism not only enhances the interpretability of Al recom-
mendations in public health contexts, but also allows systematic traceability of how and why a certain
intervention is proposed—bridging evidence-based medicine and explainable Al

3.5. User-Adaptive Explanation Generation

Public health communication involves a range of stakeholders—clinicians, policymakers, patients—each
with different cognitive needs and expectations. To support effective communication, PHAX dynamically
adapts both the structure and the presentation of its explanations based on user profiles. These user
modeling attributes—such as expertise, lexical tolerance, and cognitive expectations—govern how
explanations are tailored across multiple adaptation layers, as illustrated below.

Theoretical Foundation. Drawing from Relevance Theory [22] and Grice’s Cooperative Princi-
ples [23], PHAX ensures that explanations are not only accurate but also cognitively appropriate for
the intended audience. This is operationalized through user modeling and selective generation of expla-
nation content. Furthermore, PHAX incorporates principles from Labelled Argumentation Frameworks
[24, 25] to propagate metadata such as confidence, role-based preference, or ethical weight across the
explanation graph.

Definition 1. (User Profile) A user profile U is a tuple (e, [, ¢), where:
+ e € R: Domain expertise level (e.g., clinician vs. layperson)
+ | € R: Lexical tolerance (e.g., jargon sensitivity)
« ¢ € R: Cognitive depth (e.g., expected explanation complexity)

Definition 2. (Semantic Sufficiency) Given an explanation tree T and argument a, semantic
sufficiency or(a) € [0, 1] quantifies the extent to which 7" supports a, possibly via aggregation over
leaf node support and edge weights.



Definition 3. (Utility Function) Utility is a linear combination of weighted factors:

Utility(T,U) = > " w; - £;(T,U)
=1

where f; is a feature function (e.g., clarity, lexical fit), and w; € R is a tunable weight.

Formal Mechanism. Each user is modeled as a profile U with attributes defined in the user profile.
Given a full Quantitative Dispute Tree QDT (a) [26] for an argument a, the framework selects a
user-appropriate subgraph T™* as follows:

T = arg max Utility(7,U) subjectto or(a) > 7(a)
Utility (7, U) = « - Clarity (T, U) + 3 - Relevance(T,U) + ~y - LexicalFit(7', U)

Where:
« or(a): Semantic sufficiency — does 7" still justify argument a?
« 7(a): Task-defined threshold for completeness

Adaptation Dimensions. Adaptation operates along lexical complexity (simplified phrasing for
lay users), information depth (detailed chains for experts, summaries for general audiences), and
presentation format (visuals for policymakers, text for patients, dialogue for clinicians).

Ilustrative Example. A vaccine prioritization decision may be explained as clinical evidence for a
clinician (“Phase III trial data show 92% efficacy”), personal reassurance for a patient (“This vaccine
has helped many people like you stay safe”), or system-level impact for a policymaker (“Prioritizing
this group prevents ICU overload by 45%”).

Relation to Argumentation Schemes. User-tailored explanations map to different argumentation
schemes depending on the audience: Cause to Effect for lay users (“Vaccination reduces risk of severe
disease”), Statistical Generalization for experts (“70% of patients showed improvement”), Practical
Reasoning for decision-makers (“To prevent ICU overload, prioritize group A”), and Ethical Reasoning
for public discourse (“We must protect the most vulnerable first”).

Connection to User Interface Layer. These adaptive explanations are operationalized through
the User Interface Layer of PHAX, which selects and renders the appropriate format and depth of
explanation based on the computed utility for each user profile. The UI layer delivers argument
structures in different formats—textual justifications, interactive dialogues, or visual dashboards—acting
as the channel through which they reach the user. In this way, the formal reasoning developed in earlier
layers is preserved while being presented in a form that is both understandable and convincing for its
audience.

4. Application Scenarios Across Public Health and Biomedical
Sciences

PHAX addresses a broad spectrum of reasoning and communication challenges in public health and
biomedical domains, where decisions often involve uncertainty, competing values, and diverse stakehold-
ers. Beyond its core architecture, the framework provides structured and audience-sensitive explanations
tailored to real-world needs—from clinical decision support to public communication. Below, we present
representative scenarios illustrating how PHAX integrates argumentation and explanation to promote
transparency, trust, and actionable insight across practical settings.



4.1. Decision Support and Stakeholder Alignment

Public health decisions frequently demand balancing competing priorities, working with limited re-
sources, and dealing with uncertainty. For instance, setting vaccination priorities during a pandemic
requires weighing exposure risks, equity concerns, and the capacity of the healthcare system. PHAX
models such dilemmas using defeasible argumentation, enabling transparent, traceable justifications
for complex decisions. Its layered architecture delivers explanations tailored to different stakeholders:
clinicians may explore structured evidence trails via interactive dashboards, while policymakers access
high-level summaries that emphasize societal trade-offs and ethical considerations.

4.2. Evidence Synthesis and Biomedical Summarization

Systematic reviews play a central role in biomedical research by combining results from multiple
studies, but their length and variability can make them hard to access and interpret. PHAX supports
structured summarization by using argumentation mining on PICO-extracted data to capture key
claims, counterclaims, and the strength of supporting evidence. These elements are organized into
argument structures, producing contrastive summaries that highlight where studies agree, disagree, or
remain uncertain. Such summaries help clinicians and researchers quickly navigate complex and often
conflicting literature.

4.3. Public Communication and Policy Justification

Effective communication of health interventions—such as lockdowns or vaccine mandates—requires
balancing scientific accuracy with accessibility for diverse audiences. PHAX supports this by using
established argumentation schemes (causal, ethical, practical) and adapting their wording and framing
to different user profiles. For instance, a lockdown policy may be framed in terms of “transmission
control” when addressing clinicians, but emphasized as “protecting the vulnerable” in public-facing
messages. This audience-sensitive adaptation enhances clarity and trust without compromising factual
integrity.

4.4. Risk Communication and Misinformation Rebuttals

Health misinformation often spreads through arguments that are emotionally compelling but logically
weak. PHAX tackles this by producing structured rebuttals: it breaks claims into premises, tests their
validity, and formulates counterarguments supported by scientific evidence and adapted to the audience.
For instance, the false claim that “vaccines cause infertility” can be refuted through mechanistic evidence
and trial data for clinicians, while lay audiences may receive simpler, empathetically framed responses
that emphasize safety and social consensus. This audience-aware rebuttal strategy enhances persuasive
effectiveness without compromising scientific rigor.

4.5. Interface-Driven Personalization and Delivery

An explanation is shaped as much by how it is delivered as by what it contains. PHAX addresses this by
offering different modes of presentation, tailored to user preferences, literacy level, and context. These
modes include narrative text, visual overviews, and conversational dialogue. For example, patients
may receive conversational explanations via chatbot interfaces, while policymakers might explore
comparative scenario graphs that highlight trade-offs. These modalities are selected dynamically based
on user modeling, ensuring that the explanation aligns with the user’s cognitive and informational
needs as captured by PHAX’s adaptive layer.



5. Conclusion and Future Work

This study presents PHAX—a Public Health Argumentation and eXplainability framework—designed
to support transparent, context-aware, and user-adaptive explanations in high-stakes domains such
as healthcare and biomedical sciences. Building upon structured argumentation theory, PHAX incor-
porates formal reasoning, adaptive NLP pipelines, and user modeling to generate stakeholder-specific
justifications for Al outputs. Our contributions include a modular architecture for integrating explain-
ability into the Al lifecycle, a formalization of user-adaptive explanation generation, and illustrative
applications in medical term simplification, policy justification, and systematic review summarization.
By combining defeasible reasoning, argumentation schemes, and multimodal delivery interfaces, PHAX
enables interpretable decision support tailored to diverse user needs. Future work extends PHAX
with uncertainty-aware and value-sensitive argumentation to better reflect complex, conflicting public
health priorities. A key direction involves activating PHAX’s adaptive layer through live user feedback,
enabling continuous refinement of explanations aligned with user profiles. We also plan to evaluate
PHAX in real-world settings through user studies with clinicians, policymakers, and patients, to assess
explanation effectiveness, trust calibration, and usability in practice.
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