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Abstract

The integration of Al into robotic rehabilitation holds promise for enabling adaptive and personalized therapy
protocols based on individual motor and cognitive profiles. This paper outlines the conceptual design of an Al-
enhanced assessment and rehabilitation framework for stroke built on the TIAGo robotic platform. The protocol
guides patients through functional gestures—such as reaching and hand-to-mouth movements—while collecting
multimodal data via onboard sensors, depth cameras, and vocal interaction. Al applications are envisioned
in three key domains: patient clustering and classification based on motor and cognitive indicators; real-time
movement analysis for dynamic task adaptation based on parameters such as reaction time, range of motion, and
spatial patterns; and outcome prediction using integrated kinematic, EMG, and EEG data. Although still under
development, the proposed framework incorporates realistic patient clustering examples, grounded in clinical
experiences, to illustrate potential stratification strategies and adaptation pathways. The paper aims to contribute
to the ongoing discussion on how Al can enhance rehabilitation robotics by informing protocol development and
supporting future clinical research.
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1. Introduction

Stroke is one of the leading contributors to long-term disability in industrialized nations, often resulting
in persistent motor deficits, particularly in the upper limbs. Studies estimate that approximately 70%-80%
of stroke survivors experience impairments that limit their ability to perform Activities of Daily Living
(ADLs) [1]. Even six months after the acute event, a considerable percentage—ranging from 25% to over
50%—remains partially dependent in everyday tasks [2].

In recent years, a wide range of interventions has been explored to support upper-limb recovery;
however, clear evidence on their comparative or combined efficacy remains limited. One of the major
challenges in rehabilitation is the heterogeneity of post-stroke clinical pictures — patients differ in
lesion location, severity, motor and cognitive impairment profiles, and recovery trajectories. As a result,
a one-size-fits-all approach is suboptimal, and personalized rehabilitation strategies are increasingly
advocated [3].

The integration of Artificial Intelligence (AI) with robotic platforms can enhance assessment and
intervention by enabling continuous, multimodal, and adaptive analysis of patient performance. Al
models can support individualized treatment by identifying patient subtypes, adapting exercises in
real-time based on sensor-derived metrics, and predicting recovery trajectories.
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In this context, we propose an Al-enhanced rehabilitation and assessment framework for stroke
built on the mobile bimanual TIAGo robotic platform (PAL Robotics, Spain). The system guides users
through goal-directed tasks, such as reaching and hand-to-mouth gestures, while collecting kinematic,
visual, and physiological data via integrated depth cameras, eye tracking, and voice interaction.

We identify three key Al application areas: (1) patient classification into functional clusters based on
integrated motor and cognitive features, (2) real-time analysis of performance metrics to dynamically
adapt task parameters, and (3) outcome prediction using multimodal sensor data (e.g., kinematics, EMG,
EEG) to inform individualized rehabilitation strategies. By presenting realistic examples of patient’s
clustering and Al-driven adaptation strategies—drawn from clinical experience—the approach illustrates
possible directions for developing intelligent, personalized rehabilitation protocols.

This work presents a conceptual framework for integrating Al into robotic rehabilitation, with the
aim of exploring its potential to enhance assessment, task adaptation, and outcome prediction. Rather
than offering definitive answers, this contribution seeks to stimulate discussion within the research
community about the opportunities, challenges, and methodological considerations involved in applying
Al to neurorehabilitation

The paper is organized as follows: Section 2 reviews recent literature on the application of Al in
upper-limb rehabilitation; Section 3 details the proposed assessment and rehabilitation protocol; Sections
4 presents the envisioned Al modules and example use cases; finally, Section 5 briefly discusses the
approach and draws conclusions.

2. Background

Al is gaining traction in stroke rehabilitation for supporting assessment, personalizing therapy, and
improving outcomes. Its ability to process large, complex datasets enables pattern discovery that aids
clinical decision-making. Applications include diagnosis, treatment planning, real-time adaptation, and
outcome prediction [4, 5].

Yet, significant challenges persist. Clinical datasets are often small and highly variable, limiting model
generalizability [4, 6]. Stroke is inherently heterogeneous, with wide variations in motor and cognitive
impairments linked to lesion characteristics and comorbidities. This complicates data standardization
and feature selection [4].

Evidence for Al effectiveness is still limited. Reviews highlight inconsistent results, data scarcity, and
low clinical adoption [5]. Small, heterogeneous cohorts restrict robustness and raise uncertainty about
which features best reflect function and recovery potential [4, 6].

Some propose prioritizing features tied to specific goals, such as motor or cognitive outcomes, over
large datasets [7]. Advanced strategies like transfer learning, self-supervised learning, and synthetic
data may help but are underused in this field [4].

In summary, Al offers strong promise, but further work is needed to handle patient variability,
leverage multimodal data, and ensure clinical relevance.

3. Operational Clinical Context

In this section, we briefly present the assessment and rehabilitation protocol that provides the experi-
mental framework for our work. A detailed description of the protocol is available in [8]. This overview
is included to orient the reader, as it sets the stage for how we later propose to apply Al techniques
for (i) patient classification based on motor and cognitive features, (ii) real-time adaptation of task
parameters, and (iii) outcome prediction from multimodal data. The protocol described here is based on
structured interaction with the Tiago-Pro robotic platform. It builds upon prior work on upper-limb
functional assessment [9] and robot-assisted rehabilitation [10, 11], and extends it by incorporating
cognitive evaluation through eye tracking alongside motor assessment, enabling real-time, integrated
monitoring of both motor execution and attentional focus [8].



The upper-limb assessment protocol on which our approach is based includes a limited set of frontal
reaching and hand-to-mouth movements performed in the frontal plane [9]. Despite the small number
of tasks, this protocol has proven effective in capturing the patient’s clinical picture. It enables the
evaluation of shoulder function, which is essential for orienting the arm in space, and elbow function,
which is required to extend the arm and reach for objects. At the same time, it assesses whether
movements are performed with sufficient speed and supported by adequate motor control.

The extracted parameters include: (i) execution time; (ii) maximal shoulder flexion; (iii) maximal
elbow extension during forward reaching; (iv) maximal elbow flexion during hand-to-mouth movement;
(v) movement repeatability, assessed through the Coefficient of Periodicity of Acceleration (CPA); and
(vi) movement smoothness, evaluated using the Normalized Jerk index (NJ).

The protocol comprises distinct phases: 1) structured assessment sessions—conducted pre-
intervention, post-intervention, and at a six-month follow-up to evaluate retention of motor gains—and,
ii) a series of 12 intervention sessions held three times weekly over the course of one month.

THE ASSESSMENT SESSIONS include the execution of 10 frontal reaching movements and 10
hand-to-mouth movements, following the original protocol in [9]. To enhance the evaluation, we have
introduced 10 additional reaching tasks involving medial and lateral directions, as well as a set of
spatially guided pointing movements within the peripersonal space. These movements are indicated by
the Tiago robot and are specifically designed to assess cognitive aspects such as attentional state and
potential signs of spatial neglect.

Masured kinematic parameters include: i) Speed and timing: Duration of individual movement
phases and total execution times; ii) Joint dynamics: Shoulder and elbow angular displacement to
estimate functional range of motion; iii) Movement quality: Measures of smoothness (e.g., normalized
jerk), consistency, and periodicity to assess motor control.

Cognitive engagement, attentional state, and neglect are monitored through eye-tracking combined
with spatial analysis, metrics include: i) Pupil diameter: An indicator of cognitive load and task
difficulty; ii) Saccades and blinks: Frequency and temporal distribution provide information on
attentional focus and fatigue; Fixation patterns: Used to assess visual scanning behavior, which
combined to spatial analysis help to identify potential neglect-like symptoms.

THE INTERVENTION SESSIONS consist of four task guided by the Tiago, which robot provides
visual, verbal, or demonstrative instructions and dynamically adjusts target positions and timing based
on real-time motor and attentional performance: i) Reaching training, approx. 10 minutes,involves
lateral, frontal, and medial reaching movements toward targets physically indicated by the robot’s hand.
This phase allows the robot to calibrate movement parameters and provides initial motor training for
the subject; ii) Repetitive reaching, approx. 10 min., the subject performs a sequence of lateral, frontal,
and medial reaching. The robot positions its hand to mark the target and provides verbal instructions,
with the number of repetitions tailored to the subject’s functional capacity. iii) Hand-to-mouth training,
approx. 10 minutes, consists of self-directed hand-to-mouth movements. Tiago demonstrates the
movement and gives verbal cues, adjusting timing to match the subject’s execution speed, and, finally,
iv) Peripersonal reaching, approx. 10 min., engages the subject in controlled movements within their
peripersonal space, guided by the robot to explore various positions toward and away from the body.

4. Using Al to Support Clinical Insight and Adaptation

While primarily supporting motor rehabilitation, the protocol also serves as a data pipeline for future Al
models. In this context, we mainly target ML techniques for patient grouping, personalized interventions,
and recovery prediction. Our approach will use supervised learning on labeled data (e.g., movement
and clinical scores), extend the results with unsupervised methods to uncover hidden features, and
eventually explore reinforcement learning for adaptive treatment, as detailed in the following sections.



4.1. Patient Classification

A key challenge in stroke rehabilitation is stratifying patients by the severity and nature of their
impairments to guide treatment selection and personalization.

Our earlier study [12] demonstrated that even simple kinematic metrics can support effective patient
grouping. In that work, 15 stroke patients and 10 controls performed a basic shoulder abduction task in
the frontal plane. Despite its simplicity, the task revealed differences in symmetry, range of motion,
speed, smoothness, and repeatability—parameters scored on a 0-10 scale using empirical thresholds
based on standard deviations from healthy control group average score (Fig. 1b).
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Figure 1: Global impairment rating (0-10) based on shoulder abduction performance in the frontal
plane (1a) and corresponding evaluation bands (1b).

Based on the data in Figure 1a, the 15 stroke patients can be empirically grouped into three clusters:

The cumulative score showed strong alignment with clinical video-based assessments, allowing the
empirical identification of three patient clusters:

i) Mild impairment (7-10): Preserved control, smooth and repeatable movement; repeatability and
smoothness are widely recognized as indicators of motor control performance [9, 13]. ii) Moderate
impairment (4-7): Reduced speed and consistency. iii) Severe impairment (0—4): Limited range and poor
performance.

Inspired by this work, we aim to replicate and extend stratification using ML on the movement
data collected via the Tiago-based protocol (Section 3). Rather than relying on manual scoring, we
will apply unsupervised and semi-supervised algorithms—such as k-means, hierarchical clustering, or
self-organizing maps—to identify latent patient clusters based on a combination of motor features (e.g.,
range, smoothness, repeatability) and cognitive measures (e.g., engagement, attentional asymmetries).

By automating patients’ grouping with ML, we seek to support clinically meaningful stratification
that enables personalized rehabilitation and data-driven treatment planning.

4.2. Real-time Adaptation of Intervention Tasks

Al-driven adaptation is central to personalized rehabilitation. We aim to explore predictive modeling
and reinforcement learning (RL) approaches to adjust task difficulty in real time based on patient
responses.

In particular, predictive models — from traditional machine learning to deep learning architec-
tures—will be investigated to forecast short-term performance evolution and guide the progressive
scaling of task difficulty [14].

For patients with severe impairment, RL techniques will be deployed to properly adjust the
robot target positions within the individual’s reachable workspace, leveraging real-time estimates of
range-of-motion (ROM). In high-functioning patient, the adaptation strategy will be developed to
shift toward optimizing movement quality. Metrics such as spectral arc length (SAL), which is less
sensitive to movement duration than jerk [15], will be computed in real time to assess smoothness and
will be used to adjust execution speed, trajectory complexity, or precision requirements [16]. Besides
RL methods, Bayesian Optimization based algorithms will be explored to balance smoothness with task
timing [17].



Patients with cognitive impairments will be supported by adaptation logic that accounts for
specific deficits. For instance, signs of hemispatial neglect—detected via asymmetric fixation patterns
from eye-tracking data—will trigger adaptive cueing strategies. These may include spatial shifting of
targets, visual or auditory prompts, or task rule modifications. This approach is supported by evidence
from neglect rehabilitation studies [18], and we will investigate the use of contextual bandit models to
personalize cue selection based on historical effectiveness for each patient [19].

This approach will enhance continuous personalization across both motor and cognitive domains,
transforming the rehabilitation experience into an interactive and evolving process that remains sensitive
to each patient’s capabilities and progress.

4.3. Outcome Prediction from MultimodalData

Outcome prediction represents the final crucial component of our framework. To this end, we plan
to develop predictive models on multimodal inputs—including three main signal sources from which
relevant metrics can be extracted [20]: (1) upper-limb kinematics, (2) electromyography (EMG), and (3)
electroencephalography (EEG). Kinematic features have been shown to be sensitive to rehabilitation-
induced motor changes [21, 22]; EMG may reflect neuromuscular adaptations during training [23, 24];
and EEG has been associated with neuroplasticity potential and therapy responsiveness [25, 26]. These
modalities could offer complementary insights into motor performance by capturing movement output,
muscular activity, and cortical processes.

In addition to these measures, we aim to incorporate cognitive metrics—particularly related to
attention—to monitor engagement and identify factors such as neglect, which could significantly affect
recovery trajectories.

Combining these signals within Al-based models might support early outcome prediction and
assist in patient stratification and resource planning [7]. Given the typically small sample sizes in
neurorehabilitation, the integration of robust feature selection techniques (such as recursive feature
elimination, LASSO regularization, etc.) within machine learning methods can prove crucial for isolating
the most informative predictors and mitigating overfitting [6].

Moreover, recent studies suggest that multimodal fusion approaches based on deep neural net-
works—such as hybrid CNN-RNN pipelines or attention-based architectures—could be suitable for
jointly modeling temporal (EEG, EMG) and spatial (kinematic) data [4]. Explainable AI approaches
(such as SHAP, LRP, etc.) provide a further crucial ingredient to support the interpretability and trans-
parency of machine learning models, enabling clinicians and researchers to better understand model
decisions and build trust in Al-driven neurorehabilitation tools.

5. Discussion and Conclusions

Defining clear clinical goals for Al integration in stroke rehabilitation is crucial to ensure meaningful
and effective application. By establishing well-defined objectives, we can better tailor Al tools to support
clinical decision-making and patient-centered outcomes.

Due to the lack of widely acknowledged baselines in the literature for the target tasks, we plan to
start with simple and interpretable machine learning models to establish robust benchmarks before
implementing more flexible deep learning-based approaches to leverage the growing availability of
datasets and meet clinical requirements.

While still exploratory, we believe Al holds strong potential to improve stroke rehabilitation outcomes.
By using multimodal data and adaptive algorithms, it can enable personalized, responsive therapy that
addresses the unique recovery trajectory of each patient. Future work will focus on validating these
concepts in clinical populations and refining protocols based on empirical evidence.
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