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Abstract

As assistive robots become more common in human-shared environments, there is a growing need for a robust
interaction framework that supports personalization, adaptability, and context-awareness. This work-in-progress
paper presents a preliminary framework using the Hello Robot Stretch 3 platform to explore dynamic user
profiling for personalized, context-aware assistance. The approach integrates four core modules: real-time scene
analysis using deep neural networks for object detection and localization; persistent user profiling through facial
recognition and emotion analysis using the DeepFace framework; navigation control; and a Large Language Model
(LLM)-based conversational interface. The main purpose of these modules is to enable the robot to recognize
individuals, learn their preferences for verbal interaction, and provide contextual assistance through intelligent
navigation and object location services. Initial implementation demonstrates promising results in structured
indoor environments, although challenges such as processing latency and environmental complexity remain. An
initial evaluation was performed for object mapping, face detection, and emotion recognition to test the system,
with experimentation of the system capabilities currently limited to research staff. Nevertheless, this early-stage
work lays the foundation for future development in adaptive assistive robotics.
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1. Introduction

The integration of robots with artificial intelligence (Al) is an exciting and important area of research,
especially when it comes to designing systems that can assist people in personalized and meaningful
ways. In recent years, researchers have emphasized the importance of making human-robot interac-
tion (HRI) more adaptive by allowing robots to recognize and respond to individual user needs. For
example, surveys on user profiling and behavioral adaptation in HRI have shown that people expect
robots to detect with whom they are interacting and adjust their behavior to match user preferences,
communication styles, or emotional states [1]. These adaptations are essential for building trust and
maintaining engagement over longer periods [2].

Despite these advances, many existing robotic systems remain limited in their ability to offer truly
integrated support. In particular, tasks like scene understanding (e.g., identifying objects and locations),
user modeling (e.g., tracking user identity and preferences), and conversational interaction are often
handled in separate modules. For example, vision-language models for social navigation [3], proxemic-
aware navigation systems [4], person following behaviors [5], large language models for robotics
applications [6], emotion detections [7], and active learning based user profiling systems [8] have all
shown effectiveness in their respective domains. However, integrating these diverse components into
cohesive and well-coordinated systems that can operate effectively in dynamic real-world environments
remains a significant challenge [9]. Current methods usually treat these capabilities in isolation: spatial
mapping focuses only on understanding the environment, user profiling works without considering
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spatial context, and navigation often lacks personalization. As a result, the robot may struggle to
provide consistent and context-aware assistance, especially in situations where understanding both the
environment and the user at the same time is essential.

To address this gap, we propose a unified framework that bridges recent advances in large language
models (LLMs), deep learning-based object detection, user profiling, and adaptive social navigation into
a single integrated system. Using the Hello Robot Stretch 3 as an experimentation and demonstration
platform, our approach builds on the capabilities of existing deep learning models and OpenAI’s LLMs
to perform real-time scene analysis and user profiling, respectively. The proposed framework allows the
robot to automatically create spatial maps of static objects in the environment, such as chairs, tables, or
medical equipment, while simultaneously detecting and profiling human users. The system considers
conversational norms like appropriate interpersonal distance, drawing on research in proxemics [4].
The system collects user history to personalize interactions and target support during tasks, such as
object search or location assistance.

The main contribution of this early work is the design and testing of a unified framework to enable
robots to offer intelligent, adaptive, and personalized assistance by integrating three core capabilities.
First, it combines deep learning-based scene analysis with LLM-driven user profiling, allowing for
continuous updates to the robot’s understanding of the environment and individual preferences. Second,
it includes a personalized dialogue system that adapts speech content and tone based on prior or current
user interactions, improving engagement and accessibility. Third, the framework incorporates a context-
aware navigation module with spatial memory, enabling the robot to assist users in locating and reaching
objects or destinations while avoiding static and moving obstacles. These components together form a
framework for a cohesive, human-centered system that supports more natural and effective human-robot
interaction.

2. System Architecture

Our proposed system architecture consists of four integrated modules that work together to provide
personalized context-aware assistance: (1) Scene Analysis Module, (2) User Profiling System, (3) Adaptive
Navigation Controller and (4) Personalized Conversation Engine. Figure 1 illustrates the overall system
architecture.
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Figure 1: System Architecture showing four integrated modules for assistive robots.



2.1. Scene Analysis Module

The Scene Analysis Module operates within a pre-mapped environment and uses deep learning models
to enable continuous perception. As the robot autonomously explores its surroundings, it captures
visual input and processes it through Hello Robot’s existing Stretch Deep Perception module [10] to
detect both human occupants and environmental features. Stretch Deep Perception is a deep learning
module using YOLOv5 and OpenVINO models for object and face detection, respectively. The Scene
Analysis Module performs two core functions. The first core function scans the environment to identify
approachable individuals in the scene.

The second core function simultaneously identifies and catalogs static elements in the scene, such as
furniture (e.g., “table”, “chair”), architectural features (e.g., “door”, “kitchen”), and semantic waypoints
(e.g., “exit”). All identified elements are recorded into a persistent spatial memory map (in JSON format)
representing observations from the past to enable short-term spatial reasoning. This map serves as
a foundation for object search, spatial reasoning, and navigation assistance. Importantly, the system
remembers what it has recently seen, allowing it to answer user queries like “Have you seen my
medicine recently?” or guide users by navigating to the observed objects when asked “Can you take me
to the nearest chair?”.

2.2. User Profiling System

The User Profiling System manages individual user identification and preference learning through a
dynamic persistent storage mechanism. Each user profile contains identification parameters, interaction
history, and personalized interaction preferences. When the system encounters a new individual, it
initiates profile creation, gathering identification information and establishing baseline interaction
preferences using approaches similar to those developed for robot-human personality matching in
rehabilitation contexts [11]. For known users, the system retrieves existing profiles and updates them
based on new interactions. It analyzes user communication patterns and adjusts its own speech style and
interaction pace to match individual preferences, following established principles for affective-sensitive
companion systems [12]. This personalization can be extended to content selection, with the system
learning which types of information and assistance each user finds most valuable.

2.3. Adaptive Navigation Controller

The Adaptive Navigation Controller manages the robot’s physical movement while integrating collision
avoidance for static and dynamic obstacles using 2D LiDAR mounted on the Hello Robot Stretch 3
platform. Whenever an obstacle is detected, a replanning request is sent to the path planner, which
responds with a new path to help the robot avoid obstacles.

One of the important functions of this module is to approach humans detected by the Scene Analysis
Module while respecting social proxemics norms [4]. When approaching a human, the robot moves to
an appropriate conversational distance before activating the interaction protocol.

The robot relies on its spatial memory and real-time spatial information to navigate to the user’s
desired location. When a user requests help locating an object or reaching a previously seen destination,
the controller queries the environmental map built by the Scene Analysis Module. The robot can either
provide verbal directions or physically lead the user to the target, asking them to follow. This navigation
support is informed by the robot’s memory of recent visual input and the precomputed map, enabling
it to respond intelligently to commands such as “Can you take me to the chair you saw earlier?”.

2.4. Personalized Conversation Engine

The Personalized Conversation Engine acts as the primary interface for human-robot communication
and is built on top of customized LLMs derived from OpenAI’s foundation model [13]. It maintains
continuity across sessions by referencing past interactions and adapting responses to the user’s current



context and preferences. The engine draws from the User Profiling System to align its tone and
conversational structure to the individual, as indicated in the research surveyed in [1].

The system improves its responsiveness through real-time emotion detection using DeepFace analy-
sis [14, 15], which processes facial expressions to identify emotional states based on confidence scores
for detected faces. To demonstrate the usability of our framework, we targeted the emotional states
of “Happy”, “Anger”, “Sad” or “Fear” for their relevance in social interaction. Studies have shown
that happiness, sadness, and anger are the most reliably recognized emotional states, while fear is
often misinterpreted as anxiety or surprise—highlighting the practical trade-offs involved in emotion
selection [16]. Additionally, limiting the number of emotional categories has been found to improve
detection accuracy, supporting the use of a small, well-separated set in real-time HRI systems [17].
Once emotions are detected, the conversation engine employs a two-step modification process that
first adjusts the response of the base language model through emotion-specific prompt engineering,
modifying word choices and sentence structures to match the detected emotional state. It then modifies
text-to-speech parameters, such as speaking rate and vocal emphasis, accordingly.

In addition to handling everyday queries and task instructions, the system incorporates domain-
specific protocols, such as those found in [18], to deliver more specialized assistance. Its flexibility allows
the robot to converse naturally, providing not just general interaction but targeted, useful responses
aligned with the user’s needs and the environment’s current state.

3. Integrated Functionality and Implementation

Our assistive robotic framework is designed to provide context-aware, personalized support by inte-
grating user recognition, environmental awareness, adaptive conversation, and real-time navigation. It
continuously scans the pre-mapped environment to detect human faces and approaches individuals
to initiate interaction. For known individuals, it offers personalized interactions based on stored pro-
files, addressing them by name and referencing prior engagements. For new users, the system begins
by collecting information and building a user profile, setting the foundation for future personalized
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Figure 2: Hello Robot Stretch 3 platform and external studio grade microphone.

Our system is built on the commercially available Hello Robot Stretch 3 platform (Figure 2), a compact
and lightweight mobile manipulator. It features a differential-drive mobile base equipped with a 2D
LiDAR for localization and obstacle avoidance, a head-mounted Intel RealSense D435if RGBD camera,
a microphone array, and speakers to support multimodal perception and user interaction [19]. To
enhance speech recognition, a studio-grade external microphone is integrated. These sensing and
interaction modalities, combined with the onboard computer (Intel NUC 12), make the system ideal for
implementing the initial architecture, as they allow the system to maintain situational awareness; store
spatial memory of objects and environmental features; and engage in context-aware, speech-based
navigation and assistance. Our proposed framework allows the robot to respond to spatial queries (for
example, “Where did you see the coffee mug?”) and supports personalized conversations grounded in
prior interactions and user-specific patterns.



4. Evaluations

To assess the architecture, we conducted capability evaluations in three main categories: (1) object
detection and mapping, (2) face detection, and (3) emotion recognition for personalized interaction.

Object Detection and Mapping: Figure 3 shows our initial assessment of the object detection and
mapping pipeline, starting from the raw frame (Figure 3(a)). When the raw frame passes through the
deep perception module, bounding boxes and confidence scores are generated for the identified objects
as shown in Figure 3(b). The system produces more detections than the actual number of objects. To
address this, confidence-based filtering is applied, where each object category is assigned a threshold
below which detections are excluded from the mapping process.

bottie. 0,72 0.73
bottle, 0.28

(a) (b) (c) (d)
Figure 3: Shows the visualization of object detection and mapping pipeline: (a) the raw camera input frame, (b)
object detection with class labels and confidence scores, (c) face detection with bounding box and orientation,
and (d) spatial localization of detected objects (except humans) based on custom confidence-based filtering in
RViz2, with the arrow indicating the robot’s position and viewing direction.

Figure 3(c) demonstrates successful human detection within the scene, while Figure 3(d) shows the
RViz2 interface, displaying the spatial location of the detected objects on the map. While the system
detects most objects effectively, certain limitations remain as some objects are occasionally undetected
or poorly mapped. For example, the table and the orange toy as seen in Figure 3(b) are not detected
correctly and are not mapped in Figure 3(d). These limitations are attributed to the constraints of
the YOLOvVS5 architecture used in the deep perception module, highlighting the need for improved
detection models or complementary sensing modalities to achieve comprehensive scene understanding
in complex indoor environments. Figure 4 shows an enlarged view of the map showing detected objects
with green blobs and a robot with an arrow showing the robot’s orientation.

1.

Figure 4: Enhanced view of the object detection results (shown in Figure 3(d)), highlighting object mapping.



Face Detection: Building on scene perception, we evaluate face detection capabilities, which serve
as a prerequisite for user profiling and personalized navigation. In a small-scale trial with three staff
members using approximately 30 face samples, the system achieves a 70% face detection success rate
using the OpenVINO model. Figure 5 illustrates various successful and failed cases. Detection errors
are generally associated with challenging conditions such as low-light environments, excessive subject
distance, and reflective surfaces. However, the system demonstrated robustness to common appearance
variations, maintaining reliable detection when participants wore caps (Figure 5(d)) or were observed
from side-profile view (Figure 5(e)). Failures in user localization occurred when the bounding box
appeared at an incorrect location (Figure 5(a)), when no detection was made despite a visible face in
the scene (Figure 5(b)), or when multiple bounding boxes (Figure 5(c)) were detected within a frame,
resulting in navigation errors which in turn affected robot’s navigation ability to reach the person for
interaction.

(d) (e)

Figure 5: Face detection successes and failures. (a), (b) and (c) show failed detections, including false positives
and false negatives. (d) and (e) demonstrate successful detections, including a case where the person is wearing
a cap and a side-profile view, respectively.

Emotion Recognition: To evaluate the system’s capability for emotion recognition, we instruct four
individuals to make faces representing specific emotions in front of the Stretch camera and record the
output of the emotion recognition module. A data point is collected for each emotion report produced by
the module during the recorded interval for each emotion. The confusion matrix presented in Figure 6
shows that there is considerable variability in the classification performance in different emotional
categories. The “Other” category in the confusion matrix represents cases where the DeepFace model
reported no face, multiple faces with different emotions, or an emotion other than Happy, Sad, Anger,
or Fear.

The model achieves an overall classification accuracy of 68.6% across 1,861 samples using only 4
faces. The performance metrics were computed using standard formulas:

Precision = _Ir Recall = i

TP + FP TP+ FN
where TP is true positives, FP is false positives, and FN is false negatives.

The confusion matrix demonstrates varying performance across different emotion classes. Anger
recognition achieves the highest recall at 99.3% (457/460), indicating successful identification of nearly all
anger instances, though precision is moderate at 72.3% (457/632) due to false positives from other emotion
categories. Sad emotion recognition shows balanced performance with 88.5% recall (424/479) and 71.0%
precision (424/597). Happy emotion recognition exhibits asymmetric performance characteristics, with
moderate recall of 74.0% (330/446) but high precision of 94.6% (330/349), suggesting conservative but
accurate prediction behavior. Fear recognition presents the most significant challenge, demonstrating a
clear trade-off between sensitivity and specificity. The fear class achieves an extremely low recall of
13.9% (66/476), indicating that 410 out of 476 fear instances are misclassified, yet exhibits remarkably
high precision of 97.1% (66/68). This pattern suggests frequent misclassification of fear, with the
majority of fear instances being redistributed to other negative emotion categories, particularly sad
(173 instances) and anger (175 instances). These findings indicate that while the model demonstrates



conservative accuracy when predicting fear, it fails to capture the majority of true fear expressions,
likely due to overlapping feature representations among negative emotional states.

Figure 6 shows the emotion detected as “Happy” and “Sad” which is then used by the LLM to adjust
its tone when responding to the person.

. . _ Emotion Detection Results
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Figure 6: lllustrates the LLM’s personalized response based on the emotion detected using DeepFace and the
confusion matrix for detected emotions.

5. Conclusion and Future Work

This work introduces a preliminary framework for assistive social robots that integrates deep learning
based environmental perception, spatial memory guided navigation, and conversational adaptability
using large language models. The framework allows personalized, context-aware interactions through
dynamic user profiling and real-time scene understanding. Initial testing on the Hello Robot Stretch 3
platform demonstrates the feasibility of the approach in structured indoor settings, highlighting its
potential for human-centered assistance.

Future work will focus on three main directions. First, we plan to enhance object and face detection by
incorporating state-of-the-art methods, including visual language models, and to develop a multimodal
navigation system that functions effectively in previously unseen environments while preserving user
privacy. Second, we plan to explore proactive assistance features such as fall detection using pose
estimation and behavioral modeling to identify potential health risks, with careful attention to privacy
and reliability. Third, we intend to conduct small-scale clinical trials in simulated care settings and
investigate integration with existing healthcare infrastructures, including electronic health records and
caregiver support systems.

Overall, this preliminary work aims to advance the system toward real-world deployment, contribut-
ing to the development of intelligent, adaptive, and trustworthy assistive robotic platforms.
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