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Abstract

In recent years, Socially Assistive Robotics (SAR) has attracted increasing attention for its potential to promote
cognitive, emotional, and physical wellbeing across various populations [1] [2]. Among SAR platforms, the
humanoid robot NAO has been extensively employed in educational and clinical [3] contexts due to its versatile
motor and social interaction features. Building on previous findings that cognitive training can improve working
memory in older adults [4] [5] this pilot study investigates whether a human-robot interaction (HRI) protocol can
modulate key psychological and usability related variables. This study aims to explore whether HRI, particularly
when including a minimal user-customization element such as a pre-interaction choice, influences perceived
enjoyment, self-efficacy, anxiety, technophobia, and usability. Based on existing literature on human-computer
and human-robot interaction [6] [7], we hypothesized that participants in the experimental group would report
greater enjoyment and self-efficacy, lower anxiety and technophobia, and increased perceived usability compared
to those in the control condition. To evaluate these outcomes, we implemented a pre-post design using validated
questionnaires derived from the Technology Acceptance Model 3 (TAM3) [8], the System Usability Scale (SUS)
[9], and the Technophobia assessment [10]. The results indicated general improvements across both groups on
several psychological dimensions, with a notable increase in perceived external control in the experimental group
compared to the control group.
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1. Introduction

In recent years, the growing diffusion of digital technologies and the demographic shift toward aging
populations have brought new challenges to cognitive intervention and well-being support among older
adults. Cognitive training programs have gained traction to preserve mental functioning and quality of
life [11]. However, traditional interventions often lack motivational engagement and personalization
two factors known to influence adherence and outcomes in elderly populations [12]. In this context,
Socially Assistive Robotics (SAR) has emerged as a promising field, offering motivational, cognitive, and
emotional support through structured human-robot interaction [13] [2]. Recent advancements in digital
neuropsychological tools have highlighted the potential of combining tangible interfaces, augmented re-
ality, and machine learning for the assessment and training of cognitive functions [14][15][16][17].These
approaches align with the broader goals of socially assistive robotics, which aim to combine interaction
and assessment in real life contexts. SAR systems are physically embodied agents designed to assist
users via social rather than physical interaction, thereby enhancing learning, rehabilitation, or therapy.
Among SAR platforms, the humanoid robot NAO has gained considerable attention due to its versatility
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and multimodal interaction capabilities. With 25 degrees of freedom, touch sensors, cameras, and
multilingual speech recognition, NAO has been successfully employed in educational, clinical, and
rehabilitation contexts [1]. Research has demonstrated NAO’s effectiveness in promoting engagement
in children with autism [18], supporting physical therapy [19], and facilitating cognitive training in
older adults [5]. Despite promising findings on user engagement and emotional benefits, little is known
about how subtle variations in robot behavior such as offering users a choice of interaction style affects
perceptions of usability, agency, or emotional engagement, particularly in aging populations. Prior
work has shown that even superficial customization can shape users’ feelings of control, trust, or
frustration [12] [7]. Understanding these dynamics is crucial in designing meaningful interactions
in Human-Robot Interaction (HRI). Despite growing adoption, relatively little is known about how
subtle variations in robot interactions such as allowing users to customize behavior affect perceptions
of usability and emotional engagement in older adults. To address this, we designed an exploratory
study where participants engaged in a memory training administered by HUGO, a robotic cognitive
trainer based on NAO humanoid robot.

2. Materials and Methods

2.1. Participants

The study involved a total of 26 participants, divided into two age-based subgroups: 12 older adults
(M = 65.42 years, SD = 6.35) and 14 university students (M = 21.64 years, SD = 1.08). The
participants were evenly assigned to two experimental conditions: 13 in the experimental group, who
were allowed to choose the robot’s interaction style (friendly or uthoritarian) and 13 in the control group,
who interacted with a neutral version of the robot without any choice. In experimental conditions,
participants were presented with a brief explanation stating that the robot hUGO could interact in
different styles, either friendly or authoritative, and were asked to choose their preferred mode. The
friendly style was described as warmer and encouraging, while the authoritative style was presented as
more direct and instructional. However, this manipulation was illusory: in reality, the robot’s behavior
was kept identical across all conditions, with no actual difference in verbal style, tone, or gestures.
This design allowed us to explore the impact of perceived customization rather than real behavioral
changes, isolating the psychological effect of offering a choice in the absence of genuine personalization.
Participants were not informed that the styles were simulated and reported their subjective experience
as if their choice had been implemented.

2.2. Training Procedure

Participants underwent a cognitive memory training protocol inspired by Borella and collaborators [20]
[21] and adapted for socially assistive robotics, following the implementation described in Gigliotta et
al. [4] and in the development of the platform hUGO (Hunamoid to Go). The training was delivered
by hUGO, a social robot platform based on NAO, programmed through Choregraphe with Python
and equipped with automatic speech recognition (ASR) and text-to-speech (TTS) capabilities [4]. The
training spanned three sessions, progressively increasing in difficulty and cognitive demand: Session
1 (= 60 minutes): introduction to dual-task recall (e.g., word and category retrieval); Session 2 (=~ 30
minutes): intermediate-level recall and task-switching. Session 3 (=~ 25 minutes): advanced tasks with
interference control and increased memory load. The robot guided the participants through verbal
prompts and exercises, providing feedback and transitions between training blocks. The sessions were
designed to progressively increase in difficulty by manipulating cognitive load and task-switching
requirements (e.g., recalling animal names, recognizing acoustic cues, serial recall tasks).



Figure 1: hUGO in a training session with an older adult

2.3. Measures
2.3.1. Technology Acceptance Model 3

To assess participants’ attitudes toward the robot and its interaction, we administered a reduced set of
TAMS3 items. This was done to minimize cognitive load, especially for older participants, and preserve
the core psychological constructs relevant to Human-Robot Interaction (HRI). The selected dimensions
were: 1) Enjoyment (e.g., “Using the robot is enjoyable”); 2) Self-Efficacy (e.g., “I feel confident in
interacting with the robot”); 3) Anxiety (e.g., “I feel anxious when using robots”); 4) External Control
(e.g., “The system is under the control of an external entity”). This selection was guided by the TAM3
model’s focus on user perception and affective responses in technology mediated environments and
aligned with prior literature on technology acceptance in aging populations. Additionally, in line
with the approach described in [8], we computed a composite Perceived Ease of Use (PEOU) score by
averaging the four selected dimensions (Enjoyment, Self-Efficacy, Anxiety, and External Control). This
composite measure was calculated for both pre- and post-intervention conditions to evaluate changes
in overall perceived usability of the robotic system. The use of composite PEOU reflects the integrated
cognitive affective appraisal of the system’s accessibility and aligns with the theoretical underpinnings
of TAM3.

2.3.2. Technophobia Scale

In this study, we adopted an extended version of the Technophobia Scale originally developed by
Sinkovics et al. [10], which was originally designed to assess anxiety and resistance toward automated
technologies such as ATMs. Given the significant contextual shift from financial technologies to socially
assistive robots (SAR), we opted to include a broader set of items adapted to our specific experimental
setting involving human-robot interaction during cognitive training. All items were grouped post hoc
into three conceptual dimensions aligned with contemporary research in HRI and technophobia: 1) Per-
ceived Personal Failure; 2) Convenience Perception; 3) Human-Robot Comparison/Preference. Rather
than adhering strictly to the original subscales (discomfort, cognitive anxiety, attitudinal resistance), we
aggregated items thematically to form constructs that better reflect contemporary challenges in socially
assistive robotics and user self-perception, especially among vulnerable populations. This decision
followed the exploratory and adaptive use of Sinkovics’ scale as suggested in related literature, such as
its use in SAR and HRI research. This item grouping approach was informed by recent studies on the
acceptance of social robots among older adults, which emphasize hybrid constructs involving emotional,
cognitive, and comparative perceptions [7] [6]. These adapted dimensions reflect user attitudes more
holistically in HRI scenarios.



Changes in Psychosocial Variables Before and After NAO Training
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Figure 2: Mean scores of psychosocial variables (Enjoyment, Self-Efficacy, Anxiety, and Personal Failure) before
and after the NAO-based training. Error bars represent 95% confidence intervals. Significant increases were
found in Enjoyment and Self-Efficacy, along with a significant reduction in Anxiety. A marginal improvement
was observed in Personal Failure

2.3.3. Usability

Perceived usability of the hUGO system was assessed using the System Usability Scale [9]. The SUS
was only included in the post-test phase, after participants had completed all training sessions.

3. Results
The sample consisted of 26 participants, equally distributed between an experimental group (n = 13),

who could choose the robot’s interaction style, and a control group (n = 13), who interacted with a
neutral version of the robot.

3.1. Within-Subjects Analyses (Pre-Post Differences)

Table 1

Summary of paired-sample t-test results for psychological variables before and after the NAO-based intervention.
Variable t(df) p Cohen’sd EffectSize Result
Enjoyment -3.261 (25) .003 0.639 Large Significant increase
Self-efficacy -2.214(25) .036 0.434 Medium Significant increase
Anxiety 2.195(25) .038 0.430 Medium Significant decrease
Personal failure -1.909 (25) .068 - Trend-level Marginal reduction
External control ns ns - - No significant difference
Convenience ns ns - - No significant difference
Human-machine comparison ns ns - - No significant difference

To assess the effects of cognitive training with NAO, paired-sample ¢-tests were conducted. The
results are presented in Fig. 2 and Table 1.:



« Enjoyment significantly increased after the training, ¢(25) = “3.261, p = .003, d = 0.639,
indicating enhanced engagement during human-robot interaction.

« Self-efficacy also improved, ¢(25) = “2.214, p = .036, d = 0.434, reflecting greater perceived
ability in managing the robot.

« Anxiety levels significantly decreased, ¢(25) = 2.195, p = .038, d = 0.430, suggesting reduced
emotional discomfort in interacting with the system.

« Personal failure showed a marginal reduction, ¢(25) = “1.909, p = .068, indicating a trend
toward reduced frustration or self-blame following the training.

No significant pre-post differences were found for perceived external control, convenience, or human vs.
machine comparison. Additionally, a composite score for Perceived Ease of Use (PEOU) was calculated
as the mean of the four TAM3 dimensions: Enjoyment, Self-Efficacy, Anxiety, and External Control.
This score showed a marginal improvement post-intervention, £(25) = “1.997, p = .0568, with a
medium effect size (d = 0.392), suggesting a possible increase in overall usability perception.

3.2. Between-Subjects Analyses (Experimental vs Control Group)

Table 2

Summary of between-group comparisons on change scores (post—pre) using ANCOVA and MANCOVA.
Variable Test F(df) p n? Effect Interpretation
External Control ANCOVA  F(1,23) =5.18 .032 184 Exp > Ctrl  Significant group difference
Group effect (DVs)  MANCOVA  F(7,14) =3.86 .011 .660 - Significant multivariate effect
Convenience ANCOVA  F(1,20) = 3.95 .061 - Ctrl > Exp  Trend-level difference
SUS Usability Score t-test - ns d=-0.679 Exp>Ctrl Moderate effect, not significant
Enjoyment t-test - ns - - No significant difference
Self-efficacy t-test - ns - - No significant difference
Anxiety t-test - ns - - No significant difference

Independent sample t-tests and ANCOVA were used to examine group differences in the change
scores (post—pre), controlling for baseline values where appropriate. A significant group effect emerged
for perceived external control, F((1,23) = 5.18, p = .032, n? = .184, with the experimental group
reporting more external control than the control group. This suggests that being allowed to choose the
robot’s style paradoxically increased the feeling that external factors influenced the interaction. The
MANCOVA showed a significant multivariate effect of group on the dependent variables, Wilks’ A = .34,
F(7,14) = 3.86, p = .011, 772 = .66. Post hoc tests confirmed the difference in external control and
suggested a trend toward higher perceived convenience in the control group, F'(1,20) = 3.95,p = .061.
No statistically significant between-group differences emerged for enjoyment, self-efficacy, anxiety,
or SUS usability scores, although descriptively the experimental group showed higher usability (SUS)
scores (M = 38.65 vs. 30.58), with a moderate effect size (d = “0.679), pointing to a possible impact
of interactive agency on perceived usability (see Table 2)

Table 3
Regression models predicting usability and psychological variables.
Outcome Predictor B p  Model F(df) R?> Interpretation
SUS Score Enjoyment 509 006 F(3,21) =498 .416 Positive predictor of usability
External Control -.454 .012 Negative predictor of usability
Enjoyment (Post) External Control ~ .572  .003 - - External control increases enjoyment
Self-efficacy External Control ~ .471  .014 - - Positive effect on confidence
Anxiety -402  .041 - - Negative effect on confidence

Regression analyses explored the predictors of key subjective outcomes, as shown in Fig. 3 and
Table 3.



Regression of SUS on Changes in Enjoyment and External Control
70
° e Enjoyment

— External Control

60

u
o
[ ]

SUS Usability Score
o
o
[ ]
/
| [ )
L
[ ]

[ [ ] [ ] [ ] .
30 ® ® °® °
° ° o
[)
° °
20 ° ° ° ° °
°
10
-4 -2 0 2 4 6

Change in Predictors (Enjoyment / External Control)

Figure 3: Linear regression plots illustrating the predictive relationship between changes in Enjoyment and
External Control (independent variables) and the SUS usability score (dependent variable). The blue line
represents the positive association between Enjoyment and usability, while the green line shows the negative
association between External Control and usability.

« Usability (SUS score) was significantly predicted by both enjoyment (5 = .509, p = .006) and
external control (3 = “.454, p = .012), F(3,21) = 4.98, p = .009, R? = .416. This supports the
hypothesis that a positive and autonomous interaction experience enhances usability perceptions.

- Enjoyment post-intervention was positively predicted by external control, 8 = .572, p = .003,
suggesting that perceiving more control (even if externally driven) can enhance engagement.

« Self-efficacy was positively influenced by external control (8 = .471, p = .014) and negatively by
anxiety (8 = 7.402, p = .041), confirming the role of emotional and cognitive factors in shaping
confidence in human-robot interaction.

Being able to choose the robot’s interaction style may increase the subjective perception of external
control, suggesting that too much agency in HRI may not always result in increased autonomy. The
control group, which had no choice, reported less external control and possibly more convenience.
Future studies may explore whether less customization results in a smoother, more seamless interaction.
Enjoyment and external control are strong predictors of usability. This suggests that interventions
should balance autonomy with simplicity to optimize perceived effectiveness and user satisfaction.

4. Discussion

The results of this study suggest that even a brief cognitive training protocol mediated by the NAO
robot can promote significant psychological improvements, particularly in terms of enjoyment, self-
efficacy, and reduced anxiety. These findings align with previous research highlighting the potential
of Socially Assistive Robotics (SAR) to support active aging and psychosocial well-being among older
adults [11] [4]. The HUGO congnitive trainig platform, based on NAO, likely served as a motivational
facilitator, fostering engagement through its embodied presence, social cues, and structured interaction
[22]. Beyond the general pre—post improvements, a significant difference was observed between the
experimental and control groups in terms of perceived external control. Specifically, participants who



had the opportunity to choose the robot’s interaction style (e.g., “friendly” or “authoritative”) reported
higher levels of external control. This counterintuitive result may be explained by the phenomenon of
illusory choice, as discussed by Sullivan-Holt and collaborators [23]. When personalization options
are presented in a superficial or abstract manner without clear consequences or observable differences,
they may undermine the sense of user agency by highlighting the system’s pre-programmed nature. In
our study, participants made their choice prior to any actual interaction with the robot, which likely
prevented them from meaningfully associating the chosen label with specific behaviors. Without a
concrete referent, the choice may have felt vague or irrelevant, failing to create a genuine sense of
personalization. Instead of enhancing autonomy, this superficial customization may have inadvertently
increased participants’ awareness that the system was externally controlled and scripted, thus increasing
their perceived external control rather than reducing it. Regression analyses further support this
interpretation. Enjoyment was a positive predictor of perceived usability (SUS), whereas external control
negatively predicted usability. These results are consistent with previous HRI findings, where positive
affect enhances user evaluations, while a lack of perceived autonomy undermines trust and engagement
[7] [23]. Taken together, these findings highlight the delicate balance between personalization and
user empowerment in Human-Robot Interaction. Overall, while personalization is widely considered
a means of increasing user engagement and autonomy, the current study shows that poorly timed
or insufficiently grounded choices may backfire, especially when users are asked to make decisions
before understanding their implications. These results contribute to the ongoing development of
adaptive and embodied cognitive assessment tools emphasizing the value of integrating interaction
style, user preferences, and neuropsychological modelling within SAR based interventions [24]. Future
research should investigate how the timing, framing, and concreteness of customization influence
user perceptions, especially in vulnerable populations such as older adults. In this regard, adaptive
neurorobotic platforms such as those proposed in cognitive modelling studies [24], could be designed to
replicate diagnostic tasks in real world settings, building on recent efforts to enhance ecological validity
through intelligent systems and tangible interfaces [14].Introducing progressive or experience based
personalization, where choices are offered after the user has interacted with the system, may represent
a more effective strategy to support both perceived agency and usability in SAR applications.
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