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Abstract

Recognizing affective states from physiological signals is essential for enabling emotion-aware systems, par-
ticularly in human-robot interaction. This paper presents a hybrid deep learning framework for multimodal
emotion recognition that integrates deep feature extraction with handcrafted physiological descriptors. The
system processes electrocardiogram, photoplethysmogram, and galvanic skin response signals to predict arousal
and valence in a continuous regression setting. To our aim, we evaluate two fusion strategies — feature-level
and decision-level fusion — using two public affective datasets (AMIGOS and DEAP). Features extracted from
each modality via a shared one-dimensional convolutional neural network and signal-specific physiological
metrics are either concatenated (feature-level fusion) or separately modeled and combined at the prediction
level (decision-level fusion). A broad set of machine learning regressors, including boosting methods and tree
ensembles, is explored. Experiments were conducted with a leave-one-subject-out cross-validation protocol to
assess generalization across users. Results show that feature-level fusion generally outperforms decision-level
fusion, achieving the best root mean square error of 0.089 for arousal and 0.053 for valence. Statistical analyses
confirm the significance of these differences, particularly favoring adaptive boosting and random forest under
feature fusion. The proposed architecture offers a robust and interpretable solution for physiological emotion
recognition and provides a solid foundation for real-time applications in emotion-aware social robotics and
human-centered adaptive systems.
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1. Introduction

Among key areas of modern human-computer interaction, affective computing aims to enable machines
to recognize, interpret, plan, and respond to human emotions. A central task in this field is emotion
recognition, which involves automatically analyzing emotional cues from multiple sources such as
facial expressions, speech, and physiological signals, mimicking human perception of emotions [1].
Foundational scientific models guide emotion classification: Ekman’s model defines six basic universal
emotions—joy, sadness, anger, fear, surprise, and disgust—plus a neutral state [2], while Russell’s
circumplex model represents emotions along continuous valence and arousal dimensions [3]. These
frameworks underpin emotion recognition system design, which has been extensively studied across
diverse modalities.

Recent advances have broadened affective computing applications into mental health monitoring,
personalized interfaces and intelligent decision-making systems, highlighting the need for robust
Multimodal Emotion Recognition (MER) [4]. A particularly promising application is in socially assistive
robots, which leverage emotion recognition to enable adaptive, user-centered interactions in, e.g.,
caregiving, rehabilitation, and education [5]. Integrating continuous valence-arousal estimation into
robot control architectures supports these applications by allowing real-time perception of user affective
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states. A modular design, where an independent emotion recognition component interacts with a robot’s
deliberative and reactive layers, is effective [6, 7, 8]. This component can process physiological signals
through feature extraction and fusion pipelines to produce continuous affective state estimates. These
estimates can inform behavior planners, enabling dynamic adjustment of robot responses, e.g., detecting
distress in eldercare and modulating speech or assistance accordingly [9]. Embedding this framework
fosters socio-emotional intelligence in assistive robots, improving user acceptance, care adherence, and
natural interaction [10, 11]. However, real-world deployment introduces practical challenges such as
signal degradation from motion artifacts, variable sensor placement, and latency constraints that can
impact real-time responsiveness. Addressing these challenges requires efficient, noise-tolerant models
and lightweight architectures suitable for on-device inference, as highlighted in applications involving
robot-assisted rehabilitation systems [12].

A critical component of effective MER systems lies in the feature extraction process, which transforms
raw multimodal data into informative and discriminative representations for emotion classification [13].
Traditional methods [14] often rely on time-domain features, including statistical and signal-based
measures such as peak count, peak amplitude, variability, signal power, mean, standard deviation,
minimum, maximum, and mean differences. Additional frequency-domain and time-frequency features
have also been widely explored to capture complex temporal and spectral patterns [15]. However, with
the rise of deep learning, there has been a paradigm shift toward automated feature learning, which is
especially beneficial for processing complex, heterogeneous data sources [16]. Convolutional Neural
Network (CNN) has become essential for extracting deep features in physiological and non-physiological
modalities due to its ability to learn hierarchical, discriminative representations.

CNNss capture complex spatiotemporal patterns in Electroencephalogram (EEG) [17], with models
like ScalingNet achieving strong results on DEAP and AMIGOS [18, 19, 20]. Extensions incorporate
global-local receptive fields [21] and hierarchical fusion [22]. For Electrocardiogram (ECG) and Photo-
plethysmogram (PPG), CNN autoencoders and multimodal CNNs effectively classify emotions [23, 24].
Galvanic Skin Response (GSR) signals, indicative of arousal, benefit from CNN-long short-term memory
models for end-to-end learning [25]. Our work applies CNN-based extraction on GSR (DEAP, AMIGOS),
ECG (AMIGOS), and PPG (DEAP), leveraging their proven efficacy [26]. In vision, CNNs extract facial
expression features from images and videos [27]. For audio, CNNs analyze spectrograms and are often
paired with recurrent layers to capture temporal dynamics [28]. Textual emotion recognition also
uses CNNss to capture semantic and syntactic cues [29, 30]. CNNs additionally facilitate cross-modal
fusion, such as EEG-text [21] and audio-visual [31] integrations. Fusion strategies are critical in MER to
integrate signals from physiological, visual, and audio modalities, enhancing accuracy and robustness.
Three main strategies exist:

Feature-Level Fusion combines features from multiple modalities before classification. For physiolog-
ical data, Hassan et al.[32] extracted features from Electrodermal Activity (EDA), Electromyography
(EMG), and PPG using deep belief networks, achieving high accuracy on DEAP. Zhang et al.[33] fused
EEG, EMG, GSR, and respiration signals with a deep regularized framework, improving valence and
arousal prediction. Similarly, CNN-based fusion of facial and vocal features showed superior perfor-
mance [34]. Decision-Level Fusion combines outputs from modality-specific classifiers. Zhao et al.[35]
fused CNN-based EEG, electrooculography, and GSR decisions, outperforming unimodal models. Xu
et al.[36] blended manual and deep features from audio-visual inputs using ensemble classifiers. This
preserves modality specificity but may miss inter-modality correlations. Hybrid Fusion integrates both
feature and decision levels. Yan et al. [37] combined facial, texture, and audio features early, then fused
decisions later, improving recognition in unconstrained environments. These studies collectively sug-
gest that while decision-level fusion preserves the uniqueness of each modality, feature-level and hybrid
strategies can better exploit inter-modal relationships, especially relevant for physiological signals,
which offer involuntary and robust indicators for affective state recognition. Therefore, identifying the
optimal fusion strategy is crucial for developing personalized emotion-aware robotic systems.

To this end, our work proposes a hybrid deep learning framework that combines deep features
with handcrafted physiological descriptors to enhance affect recognition from ECG, PPG, and GSR
signals. This work builds on our recently proposed DeepPhysioNet, a deep physiological feature



extraction method for affective state recognition from wearable sensing. Here, we focus on evaluating
its effectiveness under different fusion strategies, highlighting its potential for real-world affective
computing. By evaluating both feature-level and decision-level fusion strategies on the AMIGOS and
DEAP datasets, we demonstrate that integrating modalities at feature level consistently leads to superior
performance. Through rigorous experimentation using Leave-One-Subject-Out Cross-Validation (LOSO-
CV) and a diverse set of regression models, we achieve state-of-the-art results, particularly in predicting
valence and arousal. Unlike existing works that focus either on handcrafted descriptors or fixed fusion
architectures, our contribution lies in validating the discriminative power of DeepPhysioNet’s features
and providing a systematic comparison of fusion strategies tailored for physiological signals. These
findings not only validate the effectiveness of feature-level fusion but also underscore the potential of
our architecture as a foundation for real-time, personalized, and emotion-aware robotic systems.

2. Proposed Framework

To effectively capture both low-level temporal patterns and high-level physiological descriptors from
multimodal biosignals, we propose a hybrid deep learning framework that integrates data-driven feature
learning with domain-specific physiological knowledge. As shown in Figure 1, the system is designed
to process signals such as ECG and GSR, which are acquired independently per subject and trial, and to
flexibly support multimodal affective state estimation.
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Figure 1: A. Overview of the proposed deep learning framework for multimodal affective state prediction
from physiological signals. Raw physiological signals (e.g., ECG, GSR) are independently processed by a shared
One-Dimensional (1D) CNN architecture to extract deep features. These are concatenated with handcrafted
features to form hybrid representations. B. Two fusion strategies are supported: feature-level fusion, where
combined features from multiple modalities are fed to a single regression model; and decision-level fusion, where
separate regressors are trained per modality and their predictions are integrated via a late fusion layer.

At its core, the architecture relies on a shared 1D CNN, composed of stacked convolutional layers with
increasing filter widths, each followed by batch normalization, max pooling, and dropout. This sequence
enables the extraction of deep, hierarchical features from raw signals. A global average pooling layer
compresses the temporal dimension, followed by fully connected layers that generate compact deep
embeddings of each modality. To improve both interpretability and physiological robustness, these
deep features are concatenated with handcrafted features computed per modality. These can include



classic time- and frequency-domain metrics, such as Heart Rate Variability (HRV) parameters and skin
conductance indices, depending on the physiological signal given in input to the network. The result is
a joint feature vector that integrates learned representations and expert-designed descriptors. Moreover,
the proposed deep feature extraction framework is particularly suitable for managing deep multimodal
learning. It supports two complementary fusion strategies:

» Feature-Level Fusion, where the feature vectors from multiple modalities are concatenated
into a single representation and passed to a regression layer. This approach enables end-to-end
learning across modalities and supports direct exploitation of multimodal dependencies.

+ Decision-Level Fusion, in which independent regressors are trained for each modality. Their
outputs, i.e., predicted arousal or valence values, are later combined through a late fusion ensemble,
introducing robustness to sensor-specific noise and missing data. This strategy preserves the
individual modality characteristics and has been shown to outperform feature-level fusion in
scenarios with degraded or noisy signals. For instance, in [38], decision-level fusion achieved a
significantly higher accuracy by separately learning from audio and visual features and combining
results via an ensemble method, while [39] highlights its advantage in low-quality multimodal
data environments.

Thanks to its modular and modality-agnostic design, the proposed framework can be easily adapted
to different physiological channels and experimental settings. Its ability to combine physiological
insight with deep learning makes it particularly suited for affective computing applications in real-
world human-robot interaction scenarios, such as emotion-aware social robots deployed in domestic
environments for personalized monitoring and adaptive interaction. Moreover, its low computational
footprint and flexible signal handling make it appropriate for embedded use, where resources are limited
and robustness against sensor noise or dropout is essential for sustained user engagement.

3. Experiments

In order to validate the proposed framework, we present experiments carried out to cope with the
problem of affective state recognition based on multimodal physiological signals. The task is formulated
as a continuous regression problem, targeting the prediction of arousal and valence dimensions. Both
feature-level and decision-level fusion strategies are evaluated, and their comparative performance is
analyzed in the following section. To this end, two widely adopted affective computing datasets were
used to develop and evaluate the proposed framework. Both datasets provide multimodal physiolog-
ical recordings collected during exposure to emotionally evocative stimuli and include subjectively
annotated arousal and valence values for each trial. The AMIGOS dataset [20] contains recordings
from 40 participants in both individual and group settings. In this study, only the individual sessions
were considered, focusing on ECG and GSR signals acquired while participants watched short video
clips. After each clip, participants reported their perceived arousal and valence using continuous
self-assessment scales, and external annotations of arousal and valence were provided by independent
observers, enabling evaluation against both subjective self-assessments and externally judged emotional
states. The DEAP dataset [19] includes data from 32 participants who each watched 40 one-minute
music videos in a controlled laboratory environment. For our experiments, PPG and GSR signals were
used. Participants rated their affective responses on a 9-point Likert scale for both arousal and valence
dimensions.

3.1. Feature Extraction

Each physiological signal (ECG, PPG, GSR) was processed using the hybrid pipeline introduced in this
work, which combines deep feature extraction through a shared 1D CNN architecture with domain-
informed handcrafted features. This design enables the generation of compact, modality-independent
representations that capture both latent signal dynamics and physiologically meaningful descriptors.



For cardiovascular signals such as ECG and PPG, a shared set of HRV metrics was extracted based
on Inter-Beat Interval (IBI), which was derived through peak detection algorithms [40]. The specific
features computed in this study are listed in Table 1. For GSR, which is a well-established indicator of

Table 1

Description and mathematical formulation of HRV-related features extracted from ECG and PPG signals.
Feature Description Equation
IBI Average time between consecutive heart-

beats, computed from R-peaks (ECG) or
pulse peaks (PPG). t; denotes the times-
tamp of the i-th detected peak.

R
IBI = N_1 ;(tm —1)

Root Mean Square
of Successive Dif-
ferences (RMSSD)

Time-domain HRV metric that quantifies
short-term variability between successive
IBls.

N-2
1
RMSSD = \/ N3 ;(IBLH — IBL)?

Standard De-
viation of NN
Intervals (SDNN)

Standard deviation of all inter-beat inter-
vals, reflecting overall HRV. I Bl is the mean
IBI.

N
1 R
SDNN = [—— Y (IBJ, - TBI?
\/N_ll;( ,—IB])

Frequency Signal
Quality Index
(FsQl)

Spectral-based quality index indicating the
proportion of total power contained in
the LF (0.04-0.15 Hz) and HF (0.15-0.4
Hz) bands. Computed using Welch’s peri-
odogram.

FSQl = Pip+ Pye

Total

sympathetic nervous system activity, the extracted features are summarized in Table 2. All handcrafted

Table 2
Description and mathematical formulation of GSR-based physiological features extracted per trial.
Feature Description Equation
Skin Conductance | Number of SCR detected during the trial
Responses (SCR) | using a threshold-based peak detection al-
Peak Count gorithm (amplitude > 0.01 pS). Detected

via NeuroKit2’s eda_process() method
[41].

Mean SCR Ampli-
tude

Average amplitude of the detected SCR
responses. M is the number of SCRs, A; is
the amplitude of the j-th SCR.

M
1
M SCR=— A

Mean GSR Level

Average value of the raw GSR signal over
the trial duration. In discrete terms, the
mean over all Nsamples.

N
Mean GSR = — 3" GSR,
N i=1

features were normalized and concatenated with CNN-based embeddings to form a 68-dimensional
vector for ECG/PPG and a 67-dimensional vector for GSR per trial.

3.2. Supervised Model for Emotion Recognition

A supervised regression pipeline was implemented to predict arousal and valence from the extracted
multimodal features, exploring two complementary fusion strategies: feature-level fusion and decision-
level fusion. In both configurations, model hyperparameters were optimized via grid search within
each fold of the LOSO-CV protocol, ensuring consistent and unbiased evaluation.



In the feature-level fusion approach, the deep and handcrafted features extracted from different
modalities (ECG and GSR) were concatenated into a single feature vector per trial. This unified
representation allows regression models to capture inter-modality correlations and learn joint patterns
across signals [42]. In contrast, the decision-level fusion strategy involves training separate models for
each modality and subsequently combining their predictions using ensemble methods [43], a technique
shown to enhance robustness in multimodal affective computing scenarios [44].

To evaluate the proposed framework across both fusion strategies, a diverse set of machine learning
regressors was employed, encompassing both simple and advanced models. This variety ensures broad
coverage of learning paradigms and robustness to overfitting, nonlinearity, and noise. Specifically, we
included:

+ Linear Regression (LR), for its interpretability and as a baseline linear model [45];

« Support Vector Regressor (SVR), effective for capturing nonlinear relations with good generaliza-
tion [46];

+ Random Forest (RF), an ensemble of decision trees that reduces variance via bagging [47];

« Gradient Boosting (GB) and Adaptive Boosting (AdaBoost), which sequentially build additive
models to minimize error, offering strong performance in many real-world regression tasks [48],
[49];

+ XGBoost (XGB) and LightGBM (LGBM), highly efficient GB implementations that support regu-
larization and scalability, particularly suited for tabular data [50], [51];

« CatBoost, which natively handles categorical features and stabilizes training through ordered
boosting [52].

All models were applied both in the feature-fusion pipeline and in the decision-fusion meta-regressor
framework, enabling a comprehensive comparison of their capacity to model multimodal physiological
data in the context of affective state estimation.

3.3. Experimental Evaluation.

The proposed framework was validated through a LOSO-CV scheme. In each iteration, data from
one subject in the AMIGOS dataset were excluded from training and used solely for testing, while
the remaining AMIGOS subjects, together with all participants from the DEAP dataset, were used
for training. This evaluation protocol reflects a realistic deployment scenario in which models must
generalize to new users whose physiological patterns are not seen during training.

Model performance was quantified using the Root Mean Square Error (RMSE), a commonly adopted
metric in affective computing tasks involving continuous affect prediction [14]. RMSE penalizes larger
deviations more heavily and is defined as:

N
1 . 2
RMSE = [< ) (i — )
N i=1
where j; and y; represent the predicted and true values for the i-th trial, respectively, and N is the
total number of predictions. Lower RMSE values indicate more accurate predictions of arousal and
valence dimensions.

3.4. Statistical Analysis.

To evaluate the impact of fusion strategies on predictive performance, we first assessed, for each
regression model individually, whether feature-level fusion or decision-level fusion yielded significantly
lower RMSE values. This comparison was conducted separately for arousal and valence using the
Wilcoxon signed-rank test, applied to paired RMSE scores computed across subjects. This approach
allowed us to determine which fusion strategy was more effective on a per-model basis, accounting for
subject-level variability.



Subsequently, we investigated the relative performance of all models within each fusion strategy and
emotion dimension. A Friedman test [53] was employed to assess whether statistically significant dif-
ferences existed in model performance, considering the repeated-measures design. The null hypothesis
(Hy) stated that all models performed equally (i.e., no difference in median RMSE), while the alternative
hypothesis (H;) assumed that at least one model differed significantly from the others.

To identify which specific model pairs contributed to any significant effects found by the Friedman test,
we performed pairwise comparisons using the Wilcoxon signed-rank test with Bonferroni correction to
control for multiple comparisons. This procedure was repeated for both arousal and valence, and for
both fusion types.

Only results with adjusted p-values < 0.05 were considered statistically significant and annotated
in the corresponding visualizations. This two-level statistical analysis framework enabled us to draw
robust conclusions on the effectiveness of fusion strategies and the relative merits of different models
in multimodal affective state prediction.

4. Results and Discussion

To provide a comparative overview of the predictive performance across models and fusion strategies,
Figure 2 reports the RMSE distributions obtained for each model under both feature-level and decision-
level fusion. Results are shown separately for the arousal and valence prediction tasks. For each pair
(model, task), statistical significance was assessed using Wilcoxon signed-rank tests, comparing feature-
vs. decision-level fusion. Statistically significant differences are annotated with standard asterisk
notation, while non-significant results are labeled as “ns”.
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Figure 2: Comparison of model performance across fusion strategies for arousal and valence prediction. Bars
show mean RMSE =+ standard deviation per model, grouped by fusion type. Significance markers denote Wilcoxon
test results comparing fusion strategies within each model: ns = not significant, * p < .05, ** p < .01, *** p < .001,
EEE 5 <0001,

The results shown in Figure 2 confirm that, in general, feature-level fusion leads to better performance
than decision-level fusion across most of the tested models. This outcome aligns with established find-
ings in multimodal learning, where early fusion strategies often benefit from the ability to capture joint
dependencies and correlations across modalities at the feature level [42]. By integrating the comple-
mentary characteristics of physiological signals (e.g., GSR and ECG) into a shared representation before
model training, feature fusion allows the regressors to exploit richer contextual information. However,
this trend is not consistent across all models. For instance, in the case of LR and AdaBoost during
arousal prediction, decision-level fusion shows slightly better or equivalent performance. This inversion
may be attributed to the limited capacity of linear or shallow models to exploit the high-dimensional
fused feature space effectively. In such cases, learning separate unimodal models and aggregating their
outputs can act as a form of regularization, reducing the risk of overfitting and improving robustness



to noisy features or modality-specific artifacts. Moreover, ensemble-based methods like RF and GB
generally benefit more from feature-level fusion, likely due to their capacity to handle heterogeneous
features and non-linear interactions. In contrast, models with more rigid assumptions or sensitivity
to feature scaling (e.g., LR) may struggle when exposed to the increased complexity introduced by
early fusion. These findings underscore the importance of selecting appropriate fusion strategies in
relation to the model architecture and the characteristics of the input modalities. While feature-level
fusion appears generally preferable, decision-level fusion can still provide competitive performance in
scenarios where model simplicity or modularity is required.

To further investigate the comparative performance of the different regression models across fusion
strategies and emotion dimensions, we conducted a non-parametric Friedman test. This test assesses
whether there are statistically significant differences in model performance when evaluated on the
same subjects, based on RMSE rankings. The results of this analysis are reported in Table 3. For both
arousal and valence prediction tasks, and under both feature-level and decision-level fusion strategies,
the Friedman test returned extremely low p-values (all < 1071?), clearly rejecting the null hypothesis
that all models perform equally. This confirms that the choice of model has a significant impact on
performance, regardless of the fusion strategy adopted. Interestingly, the highest Friedman test statistic
was observed in the valence prediction task under feature-level fusion (186.86), indicating particularly
large differences in model performance in this configuration. This may be due to the nature of valence
representation in physiological signals, which could benefit more from richer multimodal embeddings
learned during feature fusion. Overall, the analysis highlights that both the fusion strategy and the
emotion dimension being predicted play a crucial role in shaping the relative effectiveness of the
regression models.

Table 3
Friedman Test Results
Fusion Strategy Emotion Friedman Test Statistic p-value
Feature-level Fusion  “‘rousal 123.85 1.21x107%
Valence 186.86 6.93x 107
Decision-level Fusion Arousal 111.45 1.92x 107
Valence 134.69 3.01x107%

A natural continuation of the statistical analysis following the Friedman test is provided by the
pairwise Wilcoxon comparisons summarized in Figure 3. This set of heatmaps displays the adjusted p-
values resulting from multiple pairwise tests between models within each combination of fusion strategy
and emotion dimension. The Bonferroni correction was applied to account for multiple comparisons,
and significance levels are indicated using a standard asterisk notation.

The results confirm and extend the Friedman test findings, revealing several significant pairwise
differences in model performance. In particular, models such as AdaBoost and XGB consistently
outperform others under feature-level fusion, especially for the valence dimension. Conversely, the
performance gaps under decision-level fusion appear slightly narrower, although significant differences
still emerge.

4.1. Comparison with Related Studies.

To further contextualize the effectiveness of the proposed framework, Table 4 presents a comparison with
the benchmark results reported by [14]. That study employed traditional hand-crafted features—such
as Hjorth parameters, spectral entropy, wavelet-based energy and entropy, and empirical mode decom-
position descriptors—combined with conventional classifiers like k-Nearest Neighbors (KNN) and RF
for affective state prediction using the AMIGOS dataset.

In contrast, our approach integrates deep feature learning with handcrafted physiological metrics
and explores both feature-level and decision-level fusion strategies. The results indicate a consistent
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Figure 3: Adjusted p-value heatmaps from pairwise Wilcoxon signed-rank tests between predictive models,
shown separately for each combination of fusion strategy (feature-level vs. decision-level) and emotion dimension
(arousal vs. valence). The tests were computed on subject-level RMSE values, and Bonferroni correction was
applied. Asterisks indicate significance levels (* p < .05, ** p < .01, *™* p <.001, *™** p < .0001.).

Table 4

RMSE comparison of prior studies and our proposed methods for Arousal and Valence prediction using physio-
logical signals. The comparison emphasizes the impact of feature extraction techniques and fusion strategies.
Best-performing models in each configuration are highlighted in bold.

Ref. Dataset Feature Extraction Fusion Type Arousal RMSE Valence RMSE
[14]  AMIGOS Traditional Feature-level (KNN, RF) KNN:0.129, RF:0.148  KNN:0.175, RF:0.195
Ours AMIGOS+DEAP  Deep Feature + Handcrafted Decision-level (AdaBoost) 0.116 0.119

Ours AMIGOS+DEAP  Deep Feature + Handcrafted Feature-level (RF, AdaBoost) RF:0.089 Ada:0.053

improvement in RMSE performance for both arousal and valence dimensions. Specifically, decision-level
fusion using AdaBoost achieves RMSE scores of 0.116 for arousal and 0.119 for valence, outperforming
the baseline models in [14]. Even greater performance gains are observed with feature-level fusion,
where RF and AdaBoost models attain RMSE values as low as 0.089 and 0.053, respectively.

These findings confirm the advantages of combining deep representations with early fusion mecha-
nisms, especially when dealing with complex, multimodal physiological data. They also demonstrate
the superiority of the proposed pipeline in comparison to existing handcrafted approaches, supporting
its suitability for real-world affective computing applications.

5. Conclusion

This study presented a neural framework for multimodal affective state recognition based on physi-
ological signals. The proposed architecture integrates deep feature extraction via a shared 1D CNN
with signal-specific handcrafted physiological metrics, enabling a robust representation of autonomic
responses related to emotional arousal and valence. In addition to designing an effective feature ex-
traction pipeline, we systematically investigated two widely adopted fusion strategies, i.e, feature-level
and decision-level fusion, within a supervised regression setting. The framework was validated on two
benchmark datasets, AMIGOS and DEAP, using a LOSO-CV protocol to simulate real-world generaliza-
tion to unseen subjects. A wide range of machine learning regressors was tested to assess the flexibility
and robustness of the extracted features under different fusion paradigms. Our results demonstrate that
feature-level fusion consistently outperforms decision-level fusion in most scenarios, particularly when
coupled with ensemble-based models such as RF and AdaBoost. Statistical analyses using Wilcoxon
and Friedman tests confirmed the significance of these findings, highlighting the impact of both model
selection and fusion strategy on performance. When compared with previous work based on traditional
feature engineering and classical classifiers, our approach achieved lower RMSE values for both arousal
and valence prediction tasks, confirming the value of combining deep representations with physiological
insights. In future work, we plan to systematically evaluate fusion strategies under non-optimal condi-



tions (e.g., simulated noise or missing modalities), to better understand their robustness and suitability
for real-world settings. This analysis will help determine whether feature-level fusion remains effective
or if decision-level fusion offers greater resilience in such scenarios. In addition, we plan to conduct
ablation studies by removing specific modalities to assess the contribution of each physiological signal.
We will also compare our approach with classical machine learning models trained on handcrafted
features tailored to each modality. These insights will inform the deployment of our proposed frame-
work in real-time applications, using biosignals collected during human-robot interaction to support
emotionally adaptive behavior. In particular, we aim to integrate the model into social robotic platforms,
enabling them to continuously estimate users’ affective states and adapt their communicative strategies
accordingly, paving the way toward more empathic and responsive assistive technologies.
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