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Abstract 
This paper addresses the problem of identifying the parameters of a mathematical model for a dynamic 
system based on its acceleration curve. The system is modeled using a high-order transfer function. An 
algorithm is developed to estimate the unknown parameters, and its performance is evaluated with respect 
to the number of data points in the original curve. The proposed identification method targets the unknown 
coefficients of the characteristic polynomial and employs a geometric approach that involves numerically 
integrating the area under the error function curve. The paper also examines the challenges associated with 
implementing the algorithm. A computational example is presented, and statistical regression analysis 
confirms both the adequacy of the model and the effectiveness of the proposed method. 
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1. Introduction 

In the development of automatic control systems for critical infrastructure, having a precise 
representation of the plant is highly advantageous. Yet, this is not always feasible. Frequently, both 
the structure and the parameters of a dynamic system’s model remain uncertain, and analytical 
derivation is impossible. Under such conditions, experimental identification techniques provide an 
effective alternative. Existing identification approaches are typically based on frequency response 
analysis [1], impulse transient characteristics [2], or regression analysis [3]. 

A key feature of using frequency characteristics is the need for specialized equipment to measure 
the amplitude ratio (output to input) and the phase shift between input and output sinusoidal signals. 
Such devices may not always be available or sufficiently accurate. The impulse transient method 
may also require knowledge of logarithmic characteristics, which can complicate its application. The 
third approach, regression analysis, relies on data processing using the least squares method. 

An alternative approach presents the designer with a dilemma: either to synthesize the control 
system using learning methods that adapt to existing operating conditions, or to perform system 
identification, in which the structure and parameters of the dynamic object are clarified. In such 
cases, establishing the model’s structure and parameters may be less complex. Consequently, 
approaches that provide reasonable accuracy while maintaining simplicity of implementation are 
particularly attractive. This study emphasizes the identification of the control object’s mathematical 
model through a geometric method. 
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2. Paper Review 

Parametric optimization is a key area of modern research, widely used to address a variety of 
engineering problems. These methods typically rely on output measurements and simplified 
mathematical models. Examples of such studies can be found in [1–3]. For instance, Sharma et al. [1] 
proposed a method for identifying power plant parameters using output data measurements. 
Murotsu [2] identified a mathematical model of a robot using only the linear angular velocities and 
accelerations of a freely moving and rotating satellite platform. The results of identification are often 
used to tune controllers. For example, Osadchyy et al. [3] developed an identification method based 
on a simplified model of the control object to adjust the parameters of a PID controller. 

Raskin [4] proposed an original method for identifying the state of an object, based on a non-
productive inference mechanism that replaces traditional production rules with probability 
distributions of states. 

Most developed approaches are based on the least squares method. To improve identification 
accuracy, researchers often introduce various enhancements. For example, using the least squares 
method, Dozein et al. [5] developed a technique for identifying dynamic models of photovoltaic 
distributed converters and entire systems, accounting for time delays. Tyuryukanov et al. [6] 
proposed a method to ensure slow coherence in a small group of generators through their evaluation, 
detection, and improved aggregation. 

Identification methods based on linear regression models are presented in [7, 8]. Cardona and 
Serrano [7] carried out the identification of a quadcopter UAV’s nonlinear dynamics through 
autoregressive modeling, employing GNU Octave software tools. In another study, Rubaiyat et al. 
[8] suggested an approach for parameter estimation in mathematical models formulated by partial 
differential equations. Their approach uses a cumulative distribution of the signed type, transforming 
the parameter estimation problem for a nonlinear system into a linear regression task. 

A natural approach to solving such problems is to incorporate existing constraints on the system 
parameters. For example, the recursive identification procedure proposed by Ping et al. [9] takes into 
account restrictions on the transmission coefficient and is applied to systems with low-quality 
measurements. Zeng et al. [10] established a necessary and sufficient condition for the accuracy of 
identification systems based on sampled data, using the Koopman operator as the foundation of their 
analysis. 

The robustness of the developed algorithms in reducing measurement errors is improved through 
the use of projective methods. In particular, the affine sign projection algorithm enhances the 
identification process under measurement noise conditions, as presented by Chu [11]. This approach 
incorporates both least squares and hybrid immune methods. Wang and Han [12] proposed an affine 
projection algorithm based on the least mean squares (LMS) algorithm and a higher-order error 
power criterion. Li et al. [13] introduced an adaptive algorithm for system identification in the 
presence of impulse noise affecting the input signal. Subsequently, Li et al. [14] developed an 
adaptive affine projection-type algorithm, which incorporates a cost function tailored to input 
signals distorted by impulse noise. 

Camlibel et al. [15] proposed a linear system identification method based on an online 
experimental framework, where input signals are selected iteratively and guided by previously 
collected data samples. A key drawback of this approach is its inherent complexity, which exceeds 
that of methods relying on constant input data or simpler online experimental procedures. 

Hao et al. [16] proposed a parameter identification method for dynamic models using a multi-
strategy nonlinear RIME algorithm. Kadupitiya et al. [17] introduced a scoring system for solving 
problems presented in both numerical and textual formats. To reduce the computational complexity 
of system identification, Kang and Ahn [18] developed an iterative nonlinear identification scheme 
employing a moving window approach. Jin and Baek [19] achieved significant reductions in 
computational cost through their work on the indirect estimation of excitation forces in reduced-
order system models. 
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Another challenging class of systems to identify are nonlinear systems, which include switching-
type systems. Zheng et al. [20] proposed an iterative identification algorithm for a high-speed train 
model represented as a second-order switching dynamic system. This model combines two 
subsystems: a fast-switching nonlinear static component and a non-switching linear dynamic 
component. Cheng et al. [21] developed an algorithm for identifying the vibration load of a 
continuous system, based on numerical integration using the SSM-Newmark-β method. Ren et al. 
[22] addressed the recursive identification of a nonlinear, nonparametric system characterized by a 
finite impulse response, where measurements are taken using an event-triggered scheme. Their 
approach relies on binary identification and stochastic approximation techniques. Juraev et al. [23] 
proposed a method for identifying nonlinear systems using digital information about the system 
state, obtained in discrete form. 

A modern approach to parametric identification leverages various learning algorithms, neural 
networks, and evolutionary strategies. For example, Lv et al. [24] proposed a recursive neural 
network for identifying system dynamics in cases where there is no feedback between input and 
output, particularly for systems with unknown order or delay. Liu et al. [25] introduced a deep 
learning-based fault detection scheme for industrial processes, which integrates multiple denoising 
autoencoders with a Softmax classifier. The identification process involves the use of a sparse 
denoising autoencoder, while the Softmax classifier is optimized using a state transition algorithm. 
Sun et al. [26] addressed identification challenges in dynamic switched networks (SDNs), modeled 
as switched linear dynamic systems, and proposed a sufficient condition for identification based on 
time shifts, formulated in the Lyapunov matrix form. Fabiani et al. [27] focused on designing a 
machine learning model for an unknown dynamic system using a finite set of state–input data points. 
Rukkaphan and Sompracha [28] tackled the optimal identification of a control system modeled by a 
fractional-order pressure process, employing the cuckoo search algorithm to find optimal parameters 
within a constrained space. Han et al. [29] proposed an approach combining dataset-enhanced 
learning with particle swarm optimization to identify nonlinear dynamic systems. 

The analysis of the presented studies highlights the need for developing simple, accessible, and 
effective methods for identifying unknown parameters of dynamic systems. 

3. Problem statement 

Consider a set of points xi, where i = 1, …, N, obtained from an experiment. The experiment involves 
measuring the output of the system under study at fixed discrete time intervals T. These 
measurements reflect the system’s response to a standard input stimulus, such as a unit step function. 
For research purposes, the collected values are normalized to fall within the range xi ∈ [0, 1]. 

The analysis is carried out under the assumption that the measurements are free of noise and that 
external disturbances can be disregarded. A fixed observation window t ≤ Tmax is defined to guarantee 
the acquisition of a sufficient number of data samples. Furthermore, the system under investigation 
is presumed to be representable by a transfer function of the following structure: 

𝑊м(𝑠) =
ଵା௕భ௦ା௕మ௦మା⋯ା௕೘௦೘

ଵା௔భ௦ା௔మ௦మା⋯ା௔೙௦೙ , (1) 

where ai and bi are the coefficients to be determined, with ai  0, bi  0, and s is the Laplace transform 
operator. 

The goal of the study is to determine the coefficients ai and bi of the transfer function such that 
its impulse response closely approximates the experimental measurement data. The accuracy of this 
approximation is assessed using the squared integral error criterion over the observation interval, 
defined as: 

𝐼(𝑁) = ෍(ℎ[𝑖] − ℎ∗[𝑖])ଶ

ே

௜ୀଵ

, 
(2) 
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where h* and h represent the numerical values of the impulse response obtained from the experiment 
and the transfer function, respectively. The adequacy of the model is further validated through 
statistical analysis. 

4. Features of method implementation 

The identification of the structure and parameters of dynamic systems is performed by analyzing the 
transition function, also known as the acceleration curve, obtained in response to a unit step input. 
The parameters estimated include the system's delay time, gain coefficient, and inertia  assuming 
the system can be described by a first-order differential equation. The presence of inflection points 
in the transition function indicates that the system is of higher order. In practical applications, it is 
typically assumed that the order of the system’s characteristic equation does not exceed three. 

In certain cases of automatic control system design, it is more practical to use a transfer function 
instead of a differential equation, as it can fully represent the system dynamics. In such cases, the 
area method can be employed to determine the structure and parameters of a transfer function of 
the form (1). This method enables the estimation of the unknown coefficients in transfer function (1) 
using the normalized acceleration curve h(t) of the control object. A necessary condition for the 
physical realizability of the transfer function is the inequality n  m.  

4.1. Fundamentals of the method  

The method is based on the Taylor series expansion of the function inverse to (1) in the vicinity of 
the point  = 0, expressed as: 

1

𝑊м(𝑠)
=

1 + 𝑎ଵ𝑠 + 𝑎ଶ𝑠ଶ + ⋯ + 𝑎௡𝑠௡

1 + 𝑏ଵ𝑠 + 𝑏ଶ𝑠ଶ + ⋯ + 𝑏௠𝑠௠
= 1 + 𝑆ଵ𝑠 + 𝑆ଶ𝑠ଶ + ⋯ + 𝑆௞𝑠௞ + ⋯ 

(3) 

At the same time 𝑊м
ିଵ(0) = 𝑆଴ = 1. 

The coefficients Sk are determined by subtracting the right-hand side of equation (3) from both 
sides, bringing the expression to a common denominator, and equating the coefficients of like powers 
of s. This procedure yields the following expression: 

𝑎௞ = 𝑏௞ + 𝑆௞ + ෍ 𝑏௜𝑆௞ି௜

௞ିଵ

௜ୀଵ

 
(4) 

Equation (4) involves (n + m) unknown parameters. Consequently, in order to compute the 
coefficients ak and bk, it is required to form a system of independent equations by representing the 
variables Sk from equations (3) and (4) in terms of these coefficients, for k = 1,2,3,… 

To evaluate Sk, the deviation function ε(t) is introduced, defined as the difference between the 
transient response h(t) and the input signal 1(t). According to equation (3), this relation can be 
expressed in terms of their Laplace transforms, i.e., L{ε(t)} [30, p. 8.4]. 

𝐿{(𝑡)} = 𝐿{1(𝑡) − ℎ(𝑡)} = 𝐿{1(𝑡)} − 𝐿{ℎ(𝑡)} =
1

𝑠
− 𝑊м(𝑠)

1

𝑠
=

1 − 𝑊м(𝑠)

𝑠
= 𝛦(𝑠). 

(5) 

Note that equation (5), by the definition of the Laplace transform [30], takes the form of an 
integral given by: 

𝐸(𝑠) = න (𝑡)𝑒ି௦௧𝑑𝑡

ஶ

଴

 
(6) 

If e-st is expressed as an alternating series, then equation (6) can be rewritten as: 
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𝐸(𝑠) = න (𝑡)𝑑𝑡

ஶ

଴

− 𝑠 න
𝑡(𝑡)

1!
𝑑𝑡

ஶ

଴

+ 𝑠ଶ න
𝑡ଶ(𝑡)

2!
𝑑𝑡 − ⋯ + 𝑠௜ න

(−𝑡)௜(𝑡)

𝑖!
𝑑𝑡 + ⋯

ஶ

଴

ஶ

଴

 
(7) 

Series (7) can alternatively be expressed as an infinite power series, as shown in [31]: 

𝛦(𝑠) = μ଴ + μଵ𝑠 + μଶ𝑠ଶ + ⋯ = ෍ μ௜𝑠௜,

ஶ

௜ୀ଴

 
(8) 

in which the weighting coefficients i are written in the form 

μ௜ = න
(−𝑡)௜ε(𝑡)

𝑖!
𝑑𝑡

ஶ

଴

. 
(9) 

Stability of the system implies that all roots of the characteristic equation of model (1) have 
negative real parts, lying in the left half of the complex plane. Under this condition, series (8) is 
convergent, and therefore the coefficients μi take finite values. 

To establish the relationship between the coefficients i and Si, we use equation (5), substituting 
E(s) from equation (8) and the inverse model 𝑊м

ିଵ(𝑠) from equation (3). As a first step, we rewrite 
equation (5) in the following form: 

൫1 − 𝑠𝐸(𝑠)൯𝑊м
ିଵ(𝑠) = 1. (10) 

After performing the specified substitutions, we obtain the following expression: 

1 − μ଴𝑠 − μଵ𝑠ଶ − μଶ𝑠ଷ − ⋯ + 𝑆ଵ𝑠 − μ଴𝑆ଵ𝑠ଶ − μଵ𝑆ଵ𝑠ଷ − ⋯ + 𝑆ଶ𝑠ଶ − μ଴𝑆ଶ𝑠ଷ − ⋯ +

𝑆ଷ𝑠ଷ = 1. 
(11) 

After reducing similar terms and equating the coefficients at the same powers (11) of the variable 
s, we can obtain Sk from (3) in the form of a recurrence relation in the form 

𝑆௞ = μ௞ିଵ + ∑ μ௜𝑆௞ି௜ିଵ
௞ିଶ
௜ୀ଴ . (12) 

4.2. Identification algorithm 

An algorithm for identifying the parameters of a mathematical model of type (1) is proposed: 

1. From the measurements of the transition function h(t) of the considered mathematical model, 
given as a set of discrete points over the interval t ∈ [0, Tmax], the values of ε(t) are obtained 
according to expression (5). 

2. The controlled object is represented by a mathematical model expressed as a transfer function 
of type (1), under the condition bi=0. 

3. The coefficients μi are determined through numerical integration of expression (9), for i=0, 1, 
2,…. The coefficients Sk are then computed using the recursive relation (12), and the 
coefficients ak are obtained from expression (4), for k = 1, 2, 3,…. 

4. The transition function of the obtained model is investigated, and its adequacy is determined. 

5. Simulation 

Consider a system whose behavior is described by a third-order transfer function expressed as 
follows: 

𝑊(𝑠) =
1

𝑎ଷ𝑠ଷ + 𝑎ଶ𝑠ଶ + 𝑎ଵ𝑠 + 1
 

(13) 
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It is assumed that the system is controllable, the roots of the corresponding characteristic 
polynomial have negative real parts, and the coefficients a1, a2, and a3 take the following values: 
a1 = 7, a2=10.25, and a3=1.25. 

For the system under consideration, the transition function can be obtained in analytical form. 
This function will be used to determine the points of the acceleration characteristic. The normalized 
values of the transition function can be calculated using the following expression: 

ℎ(𝑡) = 1 + 0.0095𝑒ି଻.ସ଺ସଵ௧ + 0.3157𝑒ି଴.ହଷହଽ௧ − 1.3252𝑒ି଴.ଶ௧ (14) 

The graph of the transition functions (5) is shown in Figure 1. 

 

Figure 1: The system’s acceleration characteristic is obtained according to equation (14). 

Applying the geometric approach requires numerical integration of ε(t), the function describing 
the deviation from the system’s steady state. Figure 2 illustrates the behavior of ε(t) for t ∈ [0, 50]. 

Numerical integration was carried out using two methods: the trapezoidal method and the 
parabolic (Simpson’s) method. The results of the transfer function coefficient estimation, based on 
the proposed approach, are presented in Table 1. 

Table 1 
Calculation of W(s) by numerical integration 

Parameter Real value Trapezoid method Parabola method 

 t = 5 t = 2 t = 5 t = 2 t = 1 

0 7 6.2388 6.0597 11.5120 8.0919 7.0465 
1 -39 -7.2016 -19.8914 -13.7408 -22.4131 -38.2203 
2 200 15.5514 59.5734 17.7082 60.3439 198.3902 
a1 7 6.2388 6.0597 11.51 8.0919 7.0465 
a2 10.25 31.7207 16.8284 118.8 43.0660 11.4324 
a3 1.25 168.5205 41.0126 1227 227.4658 9.6299 
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Figure 2: Function (t). 

The data presented in Table 1 indicate that, for both the trapezoidal and parabolic integration 
methods, the accuracy of the results is influenced by the step size Δt; in particular, smaller steps lead 
to higher accuracy. Because a recursive procedure is employed to compute the coefficients ak, the 
precision diminishes with increasing k due to the accumulation of numerical errors. Negative 
coefficient values should be discarded, which may justify reducing the model order. 

The results obtained using the trapezoidal method with t = 2 and the parabolic method with t 
= 1 are the closest to the actual values. Therefore, two identification models can be used, with their 
corresponding transfer functions having the following forms. The first mathematical model, derived 
using the trapezoidal method, is given by the transfer function: 

𝑊ଵ(𝑠) =
1

41.0126𝑠ଷ + 16.8284𝑠ଶ + 6.0597𝑠 + 1
 

(15) 

and the second, with the transfer function 

𝑊ଶ(𝑠) =
1

9.6299𝑠ଷ + 11.4324𝑠ଶ + 7.0465𝑠 + 1
. 

(16) 

The transition functions are constructed based on the points of the acceleration function (14) and 
the identified models (15) and (16). The graphs of these step responses are shown in Figure 3. 

Table 2 presents the evaluation of identification accuracy based on criterion (2). 

Table 2 
Calculation of W(s) by numerical integration 

Method t Criterion I(N) 

trapezium 
5 0.1218 
2 0.0773 

Parabola 

5 1.8691 
2 1.7011 
1 0.0047 
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Figure 3: Transient characteristics of the models, represented by transfer functions (13), (15), and 
(16). 

The analysis of Figure 3, supported by the results in Table 2, indicates that the most accurate 
identification was achieved using the parabolic method with a data sampling interval of t = 1. 

6. Assessing the adequacy of the model to the object 

We will evaluate the adequacy of the W2(s) model based on the type of regression line, the 
equation of which is written in the form 

𝑦м = 𝑎 + 𝑏𝑦଴. (17) 

In this scenario, the unknown coefficients a and b in equation (17) are determined using the least 
squares method, and then their statistical analysis is performed using the confidence probability  = 
0.95.  

First, the estimates of the coefficients a and b are computed using the following formulas [32] 

𝑏෠ =
𝑁 ∑ 𝑦௢𝑦м − ∑ 𝑦௢𝑦м

𝑁 ∑ 𝑦௢
ଶ − (∑ 𝑦௢)ଶ

, 
(18) 

  

𝑎ො =
∑ 𝑦м − 𝑏෠ ∑ 𝑦௢

𝑁
 

(19) 

where N denotes the total number of points along the curve, N=51. 
The following data were obtained under experimental conditions: 𝑏෠ = 0.4072, 𝑎ො = 0.5168. 
Let us now check the significance of the obtained coefficients. To do this, we estimate the sample 

variance yo using the formula 

𝑆௬೚
ଶ =

1

𝑁 − 1
෍(𝑦௢ − 𝑦

௢
)ଶ = 0.0621, 

(20) 

where 𝑦 is the mean, 𝑆௬೚
= 0.2492, and the variance yм 

A
m

p
lit

u
de
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𝑆௬м
ଶ =

1

𝑁 − 2
෍(𝑦м − 𝑦ොм)ଶ = 0.0216, 

(21) 

where 𝑦ොм = 𝑎ො + 𝑏෠𝑦௢, 𝑆௬м
= 0.147. Next, we calculate 

𝑆௕ =
𝑆௬м

𝑆௬೚
√𝑁 − 1

=
0.147

0.2492√50
= 0.0835, 

(22) 

 

𝑆௔ = 𝑆௬м
ඨ

1

𝑁
+

𝑦
௢

ଶ

(𝑁 − 1)𝑆௬೚
ଶ

= 0.0756. 

(23) 

For the confidence level =0.95, we have 𝑡భషబ.వఱ

మ

(𝑁 − 2) = 𝑡଴.ଽ଻ହ(49) = 2. 

We check the significance of the coefficient |b|=0.4072 > 𝑡଴.ଽ଻ହ(49)𝑆௕ = 0.167.  
Therefore, with a reliability of  = 0.95, we conclude that the regression coefficient is significant.  
We test the hypothesis about the equality of the regression coefficient b0 = 0.4: 

|𝑏 − 𝑏଴| = 0.0072 < 𝑡଴.ଽ଻ହ(49)𝑆௕ = 0.167  

Therefore, the hypothesis is not rejected. Then, the confidence interval for b is 

0.2402  𝑏  0.5742.  

We will solve this problem for the coefficient a in a similar way. We check the hypothesis a=0.5: 
|a|=0.5168 > 𝑡଴.ଽ଻ହ(49)𝑆௔ = 0.0432.  

Therefore, the coefficient a with a probability of 0.95 does not differ significantly from 0.5. Thus, 
its value can be equated to 0.5. The two-sided confidence interval for a has the form 

𝑎ො − 𝑡଴.ଽ଻ହ(49)𝑆௔   𝑎  𝑎ො + 𝑡଴.ଽ଻ହ(49)𝑆௔. (24) 

0.3656  𝑎  0.668.  

Thus, the regression equation yм by yo is adequately represented by the equation 
yм = 0.5 + 0.4072yo. 

According to Fisher's criterion, 𝐹 =
ௌ೤м

మ

ௌ೤೚
మ = 0.348.   

The tabular value of FТ is obtained using the FINV function of the Excel package. In this case, we 
have FT(0.05;49;49)=1.61. Since F < FT, we conclude that the compared variances are indistinguishable 
and, therefore, that the regression equation is adequate. This conclusion allows us to increase 
confidence in the constructed model. 

7. Conclusion 

The paper deals with the problem of determining the parameters of a dynamic system using a model 
of a specified form via an identification procedure. The proposed method employs a geometric 
approach, where the area under the curve of the derivative of the acceleration deviation function, 
with respect to a given state, is obtained using numerical integration. The analysis shows that, among 
the tested methods, the parabolic (Simpson’s) method achieves the highest identification accuracy 
when the number of acceleration data points is held constant. 

The proposed algorithm may be suitable for determining the initial values of the tunable 
coefficients of a PID controller, aligning with one of the tuning approaches described in [33–35]. 
This can be particularly beneficial for control systems used in critical infrastructure applications.  
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Future research should focus on improving the accuracy of the method, with the goal of ensuring 
that the roots of the characteristic polynomial of the identified model closely approximate those of 
the original dynamic system. 
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