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Abstract

This paper addresses the problem of identifying the parameters of a mathematical model for a dynamic
system based on its acceleration curve. The system is modeled using a high-order transfer function. An
algorithm is developed to estimate the unknown parameters, and its performance is evaluated with respect
to the number of data points in the original curve. The proposed identification method targets the unknown
coefficients of the characteristic polynomial and employs a geometric approach that involves numerically
integrating the area under the error function curve. The paper also examines the challenges associated with
implementing the algorithm. A computational example is presented, and statistical regression analysis
confirms both the adequacy of the model and the effectiveness of the proposed method.
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1. Introduction

In the development of automatic control systems for critical infrastructure, having a precise
representation of the plant is highly advantageous. Yet, this is not always feasible. Frequently, both
the structure and the parameters of a dynamic system’s model remain uncertain, and analytical
derivation is impossible. Under such conditions, experimental identification techniques provide an
effective alternative. Existing identification approaches are typically based on frequency response
analysis [1], impulse transient characteristics [2], or regression analysis [3].

A key feature of using frequency characteristics is the need for specialized equipment to measure
the amplitude ratio (output to input) and the phase shift between input and output sinusoidal signals.
Such devices may not always be available or sufficiently accurate. The impulse transient method
may also require knowledge of logarithmic characteristics, which can complicate its application. The
third approach, regression analysis, relies on data processing using the least squares method.

An alternative approach presents the designer with a dilemma: either to synthesize the control
system using learning methods that adapt to existing operating conditions, or to perform system
identification, in which the structure and parameters of the dynamic object are clarified. In such
cases, establishing the model’s structure and parameters may be less complex. Consequently,
approaches that provide reasonable accuracy while maintaining simplicity of implementation are
particularly attractive. This study emphasizes the identification of the control object’s mathematical
model through a geometric method.
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2. Paper Review

Parametric optimization is a key area of modern research, widely used to address a variety of
engineering problems. These methods typically rely on output measurements and simplified
mathematical models. Examples of such studies can be found in [1-3]. For instance, Sharma et al. [1]
proposed a method for identifying power plant parameters using output data measurements.
Murotsu [2] identified a mathematical model of a robot using only the linear angular velocities and
accelerations of a freely moving and rotating satellite platform. The results of identification are often
used to tune controllers. For example, Osadchyy et al. [3] developed an identification method based
on a simplified model of the control object to adjust the parameters of a PID controller.

Raskin [4] proposed an original method for identifying the state of an object, based on a non-
productive inference mechanism that replaces traditional production rules with probability
distributions of states.

Most developed approaches are based on the least squares method. To improve identification
accuracy, researchers often introduce various enhancements. For example, using the least squares
method, Dozein et al. [5] developed a technique for identifying dynamic models of photovoltaic
distributed converters and entire systems, accounting for time delays. Tyuryukanov et al. [6]
proposed a method to ensure slow coherence in a small group of generators through their evaluation,
detection, and improved aggregation.

Identification methods based on linear regression models are presented in [7, 8]. Cardona and
Serrano [7] carried out the identification of a quadcopter UAV’s nonlinear dynamics through
autoregressive modeling, employing GNU Octave software tools. In another study, Rubaiyat et al.
[8] suggested an approach for parameter estimation in mathematical models formulated by partial
differential equations. Their approach uses a cumulative distribution of the signed type, transforming
the parameter estimation problem for a nonlinear system into a linear regression task.

A natural approach to solving such problems is to incorporate existing constraints on the system
parameters. For example, the recursive identification procedure proposed by Ping et al. [9] takes into
account restrictions on the transmission coefficient and is applied to systems with low-quality
measurements. Zeng et al. [10] established a necessary and sufficient condition for the accuracy of
identification systems based on sampled data, using the Koopman operator as the foundation of their
analysis.

The robustness of the developed algorithms in reducing measurement errors is improved through
the use of projective methods. In particular, the affine sign projection algorithm enhances the
identification process under measurement noise conditions, as presented by Chu [11]. This approach
incorporates both least squares and hybrid immune methods. Wang and Han [12] proposed an affine
projection algorithm based on the least mean squares (LMS) algorithm and a higher-order error
power criterion. Li et al. [13] introduced an adaptive algorithm for system identification in the
presence of impulse noise affecting the input signal. Subsequently, Li et al. [14] developed an
adaptive affine projection-type algorithm, which incorporates a cost function tailored to input
signals distorted by impulse noise.

Camlibel et al. [15] proposed a linear system identification method based on an online
experimental framework, where input signals are selected iteratively and guided by previously
collected data samples. A key drawback of this approach is its inherent complexity, which exceeds
that of methods relying on constant input data or simpler online experimental procedures.

Hao et al. [16] proposed a parameter identification method for dynamic models using a multi-
strategy nonlinear RIME algorithm. Kadupitiya et al. [17] introduced a scoring system for solving
problems presented in both numerical and textual formats. To reduce the computational complexity
of system identification, Kang and Ahn [18] developed an iterative nonlinear identification scheme
employing a moving window approach. Jin and Baek [19] achieved significant reductions in
computational cost through their work on the indirect estimation of excitation forces in reduced-
order system models.
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Another challenging class of systems to identify are nonlinear systems, which include switching-
type systems. Zheng et al. [20] proposed an iterative identification algorithm for a high-speed train
model represented as a second-order switching dynamic system. This model combines two
subsystems: a fast-switching nonlinear static component and a non-switching linear dynamic
component. Cheng et al. [21] developed an algorithm for identifying the vibration load of a
continuous system, based on numerical integration using the SSM-Newmark-f method. Ren et al.
[22] addressed the recursive identification of a nonlinear, nonparametric system characterized by a
finite impulse response, where measurements are taken using an event-triggered scheme. Their
approach relies on binary identification and stochastic approximation techniques. Juraev et al. [23]
proposed a method for identifying nonlinear systems using digital information about the system
state, obtained in discrete form.

A modern approach to parametric identification leverages various learning algorithms, neural
networks, and evolutionary strategies. For example, Lv et al. [24] proposed a recursive neural
network for identifying system dynamics in cases where there is no feedback between input and
output, particularly for systems with unknown order or delay. Liu et al. [25] introduced a deep
learning-based fault detection scheme for industrial processes, which integrates multiple denoising
autoencoders with a Softmax classifier. The identification process involves the use of a sparse
denoising autoencoder, while the Softmax classifier is optimized using a state transition algorithm.
Sun et al. [26] addressed identification challenges in dynamic switched networks (SDNs), modeled
as switched linear dynamic systems, and proposed a sufficient condition for identification based on
time shifts, formulated in the Lyapunov matrix form. Fabiani et al. [27] focused on designing a
machine learning model for an unknown dynamic system using a finite set of state-input data points.
Rukkaphan and Sompracha [28] tackled the optimal identification of a control system modeled by a
fractional-order pressure process, employing the cuckoo search algorithm to find optimal parameters
within a constrained space. Han et al. [29] proposed an approach combining dataset-enhanced
learning with particle swarm optimization to identify nonlinear dynamic systems.

The analysis of the presented studies highlights the need for developing simple, accessible, and
effective methods for identifying unknown parameters of dynamic systems.

3. Problem statement

Consider a set of points x;, where i = 1, ..., N, obtained from an experiment. The experiment involves
measuring the output of the system under study at fixed discrete time intervals T. These
measurements reflect the system’s response to a standard input stimulus, such as a unit step function.
For research purposes, the collected values are normalized to fall within the range x; € [0, 1].

The analysis is carried out under the assumption that the measurements are free of noise and that
external disturbances can be disregarded. A fixed observation window t < T, is defined to guarantee
the acquisition of a sufficient number of data samples. Furthermore, the system under investigation
is presumed to be representable by a transfer function of the following structure:

14b;S+bys2+-+bys™ (1)
1+a;5+as%+-+a,s™’

Wy (s) =

where a; and b; are the coefficients to be determined, with a; > 0, b;> 0, and s is the Laplace transform
operator.

The goal of the study is to determine the coefficients a; and b; of the transfer function such that
its impulse response closely approximates the experimental measurement data. The accuracy of this
approximation is assessed using the squared integral error criterion over the observation interval,
defined as:

n @)
100 = )l = KD,
i=1
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where h* and h represent the numerical values of the impulse response obtained from the experiment
and the transfer function, respectively. The adequacy of the model is further validated through
statistical analysis.

4. Features of method implementation

The identification of the structure and parameters of dynamic systems is performed by analyzing the
transition function, also known as the acceleration curve, obtained in response to a unit step input.
The parameters estimated include the system's delay time, gain coefficient, and inertia — assuming
the system can be described by a first-order differential equation. The presence of inflection points
in the transition function indicates that the system is of higher order. In practical applications, it is
typically assumed that the order of the system’s characteristic equation does not exceed three.

In certain cases of automatic control system design, it is more practical to use a transfer function
instead of a differential equation, as it can fully represent the system dynamics. In such cases, the
area method can be employed to determine the structure and parameters of a transfer function of
the form (1). This method enables the estimation of the unknown coefficients in transfer function (1)
using the normalized acceleration curve h(f) of the control object. A necessary condition for the
physical realizability of the transfer function is the inequality n > m.

4.1. Fundamentals of the method

The method is based on the Taylor series expansion of the function inverse to (1) in the vicinity of
the point & = 0, expressed as:
1 14 a5+ as?+ -+ a,s™ 3)
W,(s) 1+ bys+ bys?+ -+ by,s™
At the same time W, 1(0) = S, = 1.
The coefficients S; are determined by subtracting the right-hand side of equation (3) from both
sides, bringing the expression to a common denominator, and equating the coefficients of like powers
of s. This procedure yields the following expression:

=1+5,5+ 85,82+ -+ Spsk + -

k-1 (4)
ap = bk + Sk + Z biSk—i

i=1
Equation (4) involves (n + m) unknown parameters. Consequently, in order to compute the
coefficients ai and by, it is required to form a system of independent equations by representing the
variables Sx from equations (3) and (4) in terms of these coefficients, for k = 1,2,3,...
To evaluate S, the deviation function &(#) is introduced, defined as the difference between the
transient response h(t) and the input signal 1(f). According to equation (3), this relation can be
expressed in terms of their Laplace transforms, i.e., L{e(#)} [30, p. 8.4].

L(s() = L) ~ (D)} = L) ~ LA®) =+~ W)+ = ) _ gy, O

Note that equation (5), by the definition of the Laplace transform [30], takes the form of an
integral given by:

v (6)
E(s) = f e(t)e Stdt
0
If e* is expressed as an alternating series, then equation (6) can be rewritten as:
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( [ te(t [ t2e(t (=Dt @)
E(s) = f e(t)dt — sf #dt + 52 f #dt — -t s‘f ()i—'()dt + -
0 0 ' ' 0 '
Series (7) can alternatively be expressed as an infinite power series, as shown in [31]:
o (®)
E(s) = fo + 11S + fps° + -+ = z st

i=0

in which the weighting coefficients p; are written in the form
* (—t)e(t ©)

My = f ().—()dt-
0 i!

Stability of the system implies that all roots of the characteristic equation of model (1) have
negative real parts, lying in the left half of the complex plane. Under this condition, series (8) is
convergent, and therefore the coefficients ; take finite values.

To establish the relationship between the coefficients ; and S;, we use equation (5), substituting
E(s) from equation (8) and the inverse model W, 1(s) from equation (3). As a first step, we rewrite
equation (5) in the following form:

(1 —sE(s)Wi(s) = 1. (10)

After performing the specified substitutions, we obtain the following expression:

1— oS — W% = Pps® — 4 815 — 1oS15% — Py S15% — -+ 4 S557 — ppSps® — -+ (11)
S3s3=1.
After reducing similar terms and equating the coefficients at the same powers (11) of the variable
s, we can obtain Sx from (3) in the form of a recurrence relation in the form

Sk = Mot + XI55 WiSk—io1- (12)

4.2. ldentification algorithm

An algorithm for identifying the parameters of a mathematical model of type (1) is proposed:

1. From the measurements of the transition function h(f) of the considered mathematical model,
given as a set of discrete points over the interval ¢ € [0, Tma], the values of &(t) are obtained
according to expression (5).

2. The controlled object is represented by a mathematical model expressed as a transfer function
of type (1), under the condition b=0.

3. The coefficients y; are determined through numerical integration of expression (9), for i=0, 1,
2,.... The coefficients Sy are then computed using the recursive relation (12), and the
coefficients a are obtained from expression (4), for k=1, 2, 3,....

4. The transition function of the obtained model is investigated, and its adequacy is determined.

5. Simulation

Consider a system whose behavior is described by a third-order transfer function expressed as
follows:

1 (13)

W(s) =
() ass3+azs?+a;s+1
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It is assumed that the system is controllable, the roots of the corresponding characteristic
polynomial have negative real parts, and the coefficients ai, a,, and a; take the following values:
a, =7, a;=10.25, and as=1.25.

For the system under consideration, the transition function can be obtained in analytical form.
This function will be used to determine the points of the acceleration characteristic. The normalized
values of the transition function can be calculated using the following expression:

h(t) = 1+ 0.0095e~74641t + 0.3157¢ 795359 — 1.3252¢70-% (14)

The graph of the transition functions (5) is shown in Figure 1.
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Figure 1: The system’s acceleration characteristic is obtained according to equation (14).

Applying the geometric approach requires numerical integration of &(f), the function describing
the deviation from the system’s steady state. Figure 2 illustrates the behavior of ¢(¢) for t € [0, 50].

Numerical integration was carried out using two methods: the trapezoidal method and the
parabolic (Simpson’s) method. The results of the transfer function coefficient estimation, based on
the proposed approach, are presented in Table 1.

Table 1
Calculation of W(s) by numerical integration
Parameter Real value Trapezoid method Parabola method
At=5 At=2 At=5 At=2 Ar=1

Lo 7 6.2388 6.0597 11.5120  8.0919 7.0465
1] -39 -7.2016 -19.8914  -13.7408 -22.4131 -38.2203
Lo 200 15.5514 59.5734  17.7082  60.3439  198.3902
a 7 6.2388 6.0597 11.51 8.0919 7.0465
a 10.25 31.7207 16.8284 118.8 43.0660  11.4324
as 1.25 168.5205 41.0126 1227 227.4658  9.6299
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Figure 2: Function &(t).

The data presented in Table 1 indicate that, for both the trapezoidal and parabolic integration
methods, the accuracy of the results is influenced by the step size At; in particular, smaller steps lead
to higher accuracy. Because a recursive procedure is employed to compute the coefficients ax, the
precision diminishes with increasing k due to the accumulation of numerical errors. Negative
coefficient values should be discarded, which may justify reducing the model order.

The results obtained using the trapezoidal method with At = 2 and the parabolic method with At
= 1 are the closest to the actual values. Therefore, two identification models can be used, with their
corresponding transfer functions having the following forms. The first mathematical model, derived
using the trapezoidal method, is given by the transfer function:

1 (15)

w. =
1(5) = 21012657 + 16.828457 + 6.05975 + 1
and the second, with the transfer function

W, (s) = 1 (16)
2 9.6299s3 + 11.4324s% + 7.0465s + 1’
The transition functions are constructed based on the points of the acceleration function (14) and
the identified models (15) and (16). The graphs of these step responses are shown in Figure 3.
Table 2 presents the evaluation of identification accuracy based on criterion (2).

Table 2

Calculation of W(s) by numerical integration
Method At Criterion I(N)

trapezium > 0.1218
P 2 0.0773
5 1.8691
Parabola 2 1.7011
1 0.0047
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Figure 3: Transient characteristics of the models, represented by transfer functions (13), (15), and

(16).

The analysis of Figure 3, supported by the results in Table 2, indicates that the most accurate
identification was achieved using the parabolic method with a data sampling interval of At = 1.

6. Assessing the adequacy of the model to the object

We will evaluate the adequacy of the Wa(s) model based on the type of regression line, the
equation of which is written in the form

Yu = a+ bys. (17)

In this scenario, the unknown coefficients a and b in equation (17) are determined using the least
squares method, and then their statistical analysis is performed using the confidence probability a =

0.95.
First, the estimates of the coefficients a and b are computed using the following formulas [32]

5= N2YoYu = XYoYu (18)
NYys = E¥)?
Xy —bYy, (19)
TN

where N denotes the total number of points along the curve, N=51.

The following data were obtained under experimental conditions: b = 0.4072, @ = 0.5168.
Let us now check the significance of the obtained coefficients. To do this, we estimate the sample
variance y, using the formula

! . (20)
53, === (05 —7,)" = 0.0621,

where y is the mean, S, = 0.2492, and the variance y.,
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1 . (21)

S5, =5 ) O — )* = 00216,

where 9,, = @ + by,, Sy, = 0.147. Next, we calculate
oo S 0147 (22)
TS, VN—1 02492V50
—2 (23)
1 Y,
Sy=S, |=+—2° _ =0.0756.

_I_
M IN (N — 1S3,
For the confidence level a=0.95, we have ti—095s(N — 2) = tg975(49) = 2.
2

We check the significance of the coefficient |[=0.4072 > t; 975(49) S, = 0.167.
Therefore, with a reliability of a = 0.95, we conclude that the regression coefficient is significant.
We test the hypothesis about the equality of the regression coefficient b, = 0.4:

Ib - bol = 0.0072 < t0.975(49)5b = 0.167

Therefore, the hypothesis is not rejected. Then, the confidence interval for b is

0.2402<b <0.5742.
We will solve this problem for the coefficient a in a similar way. We check the hypothesis a=0.5:
|a|=0.5168 > tg975(49)-S, = 0.0432.
Therefore, the coefficient a with a probability of 0.95 does not differ significantly from 0.5. Thus,
its value can be equated to 0.5. The two-sided confidence interval for a has the form

a—1ty975(49)-S, <a<a+tyg75(49)S,. (24)
0.3656 <a <0.668.

Thus, the regression equation y. by 1y, is adequately represented by the equation
Yu = 0.5+ 0.4072y,.
SZ
According to Fisher's criterion, F = SyTM = 0.348.

Yo
The tabular value of Fris obtained using the FINV function of the Excel package. In this case, we

have F(0.05;49;49)=1.61. Since F < Fr, we conclude that the compared variances are indistinguishable
and, therefore, that the regression equation is adequate. This conclusion allows us to increase
confidence in the constructed model.

7. Conclusion

The paper deals with the problem of determining the parameters of a dynamic system using a model
of a specified form via an identification procedure. The proposed method employs a geometric
approach, where the area under the curve of the derivative of the acceleration deviation function,
with respect to a given state, is obtained using numerical integration. The analysis shows that, among
the tested methods, the parabolic (Simpson’s) method achieves the highest identification accuracy
when the number of acceleration data points is held constant.

The proposed algorithm may be suitable for determining the initial values of the tunable
coefficients of a PID controller, aligning with one of the tuning approaches described in [33-35].
This can be particularly beneficial for control systems used in critical infrastructure applications.
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Future research should focus on improving the accuracy of the method, with the goal of ensuring
that the roots of the characteristic polynomial of the identified model closely approximate those of
the original dynamic system.
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