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Abstract

Mission planning for unmanned aerial vehicle (UAV) swarms in multi-agent systems (MAS) necessitates
efficient task allocation to ensure survivability, self-organization, and successful mission completion. This
paper presents a hybrid planning approach combining role-based task allocation (RBTA) and an ontology-
driven methodology to formalize MAS domain knowledge. This integration reduces computational
overhead, optimizes flight control execution, and enhances system autonomy. Mathematical models for
RBTA are developed, incorporating key cost factors (time, energy, agent suitability) and task prioritization
mechanisms, along with dynamic role reassignment strategies to address UAV failures. The proposed
algorithm is formalized in a graph-based scheme comprising five core modules: role assignment, task
allocation, swarm self-organization, monitoring and adaptation, and performance evaluation. Ontologies
ensure semantic consistency among agents, while RBTA facilitates planning through predefined roles
(leader or scout). Empirical results obtained using Python demonstrate a 15-20% reduction in mission
execution time compared to conventional methods, alongside a 25% decrease in communication overhead.
The proposed approach proves particularly effective in dynamic environments where rapid adaptation and
fault tolerance are critical.
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1. Introduction

Contemporary unmanned aerial vehicle (UAV) swarm operations span diverse applications, from
critical territory monitoring to complex search and rescue missions [1, 2]. These diverse use cases
impose progressively rigorous requirements on planning efficiency. The fundamental challenge lies
in the dynamic allocation of resources, notably in operating under conditions characterized by
incomplete information, rapidly variable external factors, and stringent temporal and energetic
constraints. Traditional mission planning approaches, predominantly based on centralized control
paradigms, frequently exhibit substantial limitations in flexibility, consequently impairing their
adaptability to real-time environmental changes [3, 4].

Traditional task allocation methods, such as centralized planning and auction-based approaches,
frequently fail to provide sufficient flexibility and operational efficiency [5, 6]. This is particularly
evident in resource-constrained and rapidly changing operational environments. Given these
constraints, modern planning systems increasingly integrate sophisticated algorithmic methods and
systematically embed artificial intelligence techniques. Together, these approaches substantially
enhance autonomy and overall operational effectiveness [3, 7, 8, 9]. The systematic integration of
ontologies [2, 10, 11] with role-based task allocation (RBTA) [12] offers a promising solution. This
approach excels in effectively managing complex and rapidly changing dynamic scenarios.
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Task allocation of UAV swarm requires optimal assignment of tasks among individual drones [13,
14]. This sophisticated process must account for their diverse capabilities, inherent operational
constraints, and prevailing environmental dynamics. The primary objective is to maximize mission
effectiveness while concurrently minimizing resource expenditure. Critical planning dimensions
consequently encompass:

e resource optimization [14, 15, 16] — allocating tasks while considering execution time,
energy consumption, and UAV operational characteristics

e adaptability to environmental changes [5, 8] — enabling real-time task and route adjustments
in response to UAV failures, modifications in mission objectives, environmental obstacles,
and weather conditions

e coordination in multi-agent systems (MAS) [2, 5, 11, 17] — facilitation of decentralized
decision-making, reduction of communication overhead, and mitigation of inter-agent
conflicts.

Based on these premises, our solution introduces an innovative combination of three core
components within a multi-agent system architecture [2, 11]. The core components comprise:

e a multi-agent system that enables decentralized decision-making and ensures a high degree
of autonomy for each UAV as well as the system as a whole

e ontological modeling offers a formalized representation of knowledge regarding the subject
domain, tasks, and resources

e ahybrid RBTA algorithm, integrated with the ontological approach, facilitates efficient task
distribution among agents based on their roles and capabilities.

Several key advantages of this integrated system are particularly significant for its study. These
include the capability for autonomous role reassignment in the event of UAV failures, rapid
adaptation to dynamic mission parameters and environmental changes, minimized inter-agent
communication overhead through optimized data exchange, and intelligent resource allocation based
on mission-critical task prioritization [14, 15].

The proposed methodology was implemented through mathematical modeling and
comprehensive software simulations [18]. The results demonstrate a statistically significant
improvement of 15-25% in operational efficiency compared to conventional approaches. This
advancement substantially expands potential UAV swarm applications in mission-critical scenarios
where reliability and adaptability represent key prerequisites.

Future research directions will focus on integrating machine learning methods into the proposed
framework [2, 10, 19]. This integration aims to achieve two key objectives, including improving the
accuracy of environmental dynamics prediction and enhancing semantic knowledge representation
within the ontology.

The increasing demand for autonomous UAV control systems underscores the relevance of this
research. Particularly crucial is their capability to operate effectively under conditions of limited
information and constrained resources [15, 16]. Subsequent investigations may focus on real-time
algorithm performance optimization through machine learning-based predictive analytics [7].

2. Comparative Analysis of Task Allocation Strategies

Task allocation is a core component of systems based on parallel computing, distributed platforms,
and collaborative work [13]. The overall system performance, efficient resource utilization, and
balanced workload distribution depend on the chosen strategy's effectiveness. Modern research
introduces a broad spectrum of task allocation methods. These approaches span from simple classical
approaches to complex adaptive techniques that account for environmental dynamics.

148



This section systematically and comparatively evaluates the primary task allocation strategies.
Table 1 provides a systematic comparison of task allocation methodologies in multi-agent systems,
analyzing their fundamental principles and operational characteristics [2, 4, 5, 6, 11, 17]. The analysis
highlights key approaches, emphasizing their algorithmic advantages and inherent limitations. Each
method is examined in the context of its primary applications in swarm robotics and decentralized
control systems [2, 5, 11]. The results of this analysis will help identify optimal application scenarios

for each strategy based on task-specific requirements.

Table 1
Comparative Analysis of Task Allocation Methods
Method Description Advantages Disadvantages Representative
Algorithms
Centralized Decision-making High Central node Heuristics, GA,
Scheduling by a central node coordination, vulnerability, PSO [3, 5]
global poor scalability
optimization
Decentralized  Joint decision- High scalability, Algorithm Contract Net
Scheduling making and task survivability, complexity, Protocol, Market-
coordination and system contflicts, task based approaches
flexibility duplication (auctions),
Distributed
Constraint
Satisfaction [5, 13,
15]
Auction-Based  Agents compete Good scalability, Significant Combinatorial
Allocation for tasks based adaptability, auction time auctions for
on auctions resource overhead complex task
allocation bundles [14, 19]
Task Use of consensus Conflict Time  overhead CBBA, Broadcast-
Broadcasting &  protocols prevention, good for  negotiation and-Commit,
Distributed agent and inter-agent Consensus-based
Consensus coordination communication Bundle Algorithm
(17, 18]
Behavior-Based Predefined agent Good Limited Priority-based
Scheduling behavior rules adaptability to optimality, scheduling,
environmental potential  inter- reactive behaviors
changes, agent conflicts in robotic swarms
efficiency in (1, 7]
large systems
Negotiation-  Task allocation Reduces disputes High complexity, iterative
Based through and task increased negotiation,
Scheduling negotiation competition negotiation time mediator-based
mechanisms overhead negotiation [20]
Role-Based Task Agents are Simplified Reduced  agent role assignmentin
Allocation assigned planning, good versatility, initial swarm robotics),
predefined roles scalability, and role assignment hierarchical task
that determine flexibility complexity delegation [12]
their  priorities
and tasks
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Method Description Advantages Disadvantages Representative
Algorithms
Learning-Based Application of Improved High Reinforcement
Scheduling machine learning allocation based computational Learning (RL),
for task on experience complexity, Deep Q-Learning
allocation retraining  time [6]
overhead
Ontology-Based Use of ontologies Enhances task High creation Semantic task
Scheduling as formalized allocation complexity, matching,
domain efficiency in additional ontology-driven
knowledge MAS and ontology task  allocation
decentralized processing time using reasoning
control techniques [10]
Dynamic Step-by-step task High flexibility Limited Adaptive
Programming  decomposition and efficiency scalability due to scheduling, task
into subtasks under agent count reallocation based
constraints restrictions and on environmental
algorithm feedback [4]
complexity
Combinatorial ~ Selection of the Near-optimal High Genetic
Optimization = optimal solution task allocation computational algorithms, ACO
from a set of complexity, (8]
possible options increased

allocation time

The comparative analysis highlights the diversity of task allocation methods for UAV swarms,
each offering distinct advantages and limitations [8, 19]. These methods can be integrated or adapted
based on the specific requirements of an MAS, including scalability, survivability, resource
constraints, and task execution efficiency [14, 15].

Notably, combining role-based task allocation [12, 20] with ontology-based scheduling (OBS) [10]
represents a promising approach, particularly in scenarios requiring efficient resource utilization
and decentralized control [2, 11]. This method leverages predefined roles and formalized domain
knowledge to enhance planning efficiency and scalability. While approaches such as centralized and
auction-based scheduling provide valuable capabilities [3, 13], they often exhibit limitations in
dynamic environments, including central node vulnerability and excessive computational overhead.
Ultimately, the choice and potential combination of task allocation methods should align with the
specific requirements of the MAS, prioritizing scalability, adaptability, and execution speed [6].

This analysis underscores the importance of a strategic selection or combination of techniques to
optimize UAV swarm performance in complex, resource-constrained missions [14]. Moreover,
identifying context-specific trade-offs between adaptability, robustness, and computational
efficiency is essential for designing resilient and scalable MAS architectures.

3. Ontological and Role-Based Task Planning for UAV Swarm

In MAS, efficient task allocation is crucial for achieving operational objectives. This investigation
proposes a hybrid approach combining OBS and RBTA to enhance task distribution efficiency. The
proposed method leverages ontologies to formalize knowledge about tasks, resources, and inter-
agent relationships while streamlining task assignment through predefined agent roles [16].

In this research, the RBTA method is selected due to its suitability for resource-constrained UAV
swarms and its ability to optimize task execution efficiency. This is achieved through the
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predefinition of agent roles and the incorporation of agent performance evaluations, ensuring that
tasks are allocated based on agent profiles and capabilities as represented within the ontology.

3.1. Ontology-Based Scheduling in MAS

Ontology-based scheduling in MAS is an advanced approach that leverages formal knowledge
representation to enhance task allocation, coordination, and decision-making across distributed
agents. The primary goal of this methodology is to enable agents in dynamic environments to
interpret tasks, resources, and constraints consistently, facilitating a more intelligent and structured
distribution of work. Ontologies, which provide a shared vocabulary and a set of relationships, allow
agents to understand and reason about the task. This framework is particularly advantageous in
complex, decentralized systems, such as autonomous drone swarms, industrial automation, and
smart city infrastructures, where traditional methods may struggle with complexity, scalability, and
adaptability. OBS addresses these challenges by ensuring that agents interpret task requirements,
resource availability, and environmental constraints in a unified manner, making them better suited
for autonomous operation in dynamic and unpredictable environments [2].

The implementation of OBS follows a rigorous six-phase methodology that transforms abstract
domain knowledge into executable agent behaviors [9]. The first step is ontology engineering, where
domain-specific ontologies are created using frameworks like Web Ontology Language (OWL).

These ontologies must capture critical aspects such as task taxonomies (e.g., "CropMonitoring" —
["MultispectralScan", "NDVIAnalysis']), resource capabilities (e.g., "UAV_5": ["ThermalCamera",
"30minEndurance"]), and temporal constraints (e.g., "SoilSampling must precede Fertilization"). In
operational scenarios, such as healthcare or manufacturing systems, ontologies can also encode task
urgency levels or equipment maintenance schedules. The next step, knowledge instantiation,
populates the ontology with concrete task instances, which are represented in a machine-readable
format. For example, the task "Emergencylnspection” might be instantiated as follows code snippet
on Prolog:

Task(T12, type:'Emergencylnspection’,

location:GeoCoordinates(46.4514,- 33.8689),
deadline:'2025-03-15T14:00Z',
requires:[SensorType:LIDAR'])

This format enables precise semantic matching between requirements and available resources.
Automated reasoning follows, where description logic reasoners (e.g., Pellet, HermiT) classify task
priorities, detect resource conflicts, and infer implicit dependencies (e.g., two tasks requiring the
same UAV). Distributed query processing utilizes SPARQL to retrieve actionable information. For
example, a query might retrieve UAVs with a minimum battery charge, capable of carrying a specific
payload as a code snippet on SPARQL:

SELECT ?drone WHERE {

?drone rdf:type :UAV ;
:hasCapability :PayloadCapacity_5kg ;
:batteryLevel ?batt FILTER (?batt > 0.4)}

Query optimization techniques minimize latency by streamlining query execution plans, ensuring
fast decision-making in large-scale systems. As the system operates in dynamic environments,
dynamic ontology evolution ensures temporal consistency by supporting real-time sensor data
integration, versioned ontology updates during mission re-planning, and conflict resolution
protocols for concurrent modifications. Finally, the semantic communication protocol allows agents
to exchange messages, embedding ontological content that enhances task distribution and
coordination across agents. For example, a request for a task might be represented as a code snippet
on JSON:

{ "performative": "request",

"content": "<Task rdf:ID="T45'/>",
"ontology": "http://example.org/agriculture"}
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The advantages of OBS are significant, especially in systems with large-scale, distributed agents.
Empirical studies demonstrate the efficiency of OBS over traditional task scheduling methods. For
example, coordination efficiency can improve by 68%, with task conflicts reduced compared to
contract-net protocols. In UAV swarm formations, consensus speeds can increase by 40%, enhancing
operational performance. Additionally, resource utilization is optimized, with precision agriculture
applications showing a 92% sensor utilization rate, leading to more effective monitoring and lower
operational costs. Fault tolerance is another notable benefit; OBS systems can maintain an 80%
mission completion rate even with 30% agent failures, recovering in an average of 500 milliseconds
after dynamic reallocation. These quantitative advantages demonstrate OBS's capability to handle
the complexities of real-time task management and agent coordination.

Ontology-based scheduling is revolutionizing how tasks are allocated and coordinated in multi-
agent systems. By leveraging formal knowledge representation and automated reasoning, OBS
enables more efficient, adaptive, and scalable task management. Its applications range from precision
agriculture to disaster response and smart manufacturing, offering tangible improvements in task
coordination, resource utilization, and fault tolerance. Computational challenges and knowledge
acquisition remain significant hurdles for ontology-based scheduling. However, ongoing research in
hybrid reasoning architectures, machine learning, and quantum computing promises to enhance
OBS's capabilities, positioning it as an essential component of next-generation autonomous systems.

3.2. Role-Based Task Allocation in MAS: Concept and Principles

Role-based task allocation is a task scheduling approach in MAS, where tasks are assigned based on
predefined agent roles. Each role is defined by specific responsibilities, capabilities, and priorities,
guiding agents in task execution and interactions. This method structures task allocation by grouping
agents with similar abilities, enhancing overall efficiency and collaboration [11, 12].

The implementation of RBTA follows a structured process. It begins with defining roles based on
system objectives, each encompassing specific tasks and required capabilities. Agents are then
assigned roles based on their skills, location, or workload, with some systems enabling dynamic role
switching to adapt to environmental or operational changes. Tasks are distributed according to role
specializations to optimize performance. In dynamic MAS, agents may switch roles as needed,
ensuring flexibility in changing environments. Finally, predefined roles streamline interactions,
reducing conflicts and improving decision-making in cooperative tasks.

Key components of RBTA include role hierarchies, where high-level roles coordinate lower-level
ones, role-specific policies that dictate task execution, dynamic role-switching mechanisms that
enable adaptation to changing conditions, and efficient communication protocols for coordination.
RBTA provides key advantages, including structured task execution, scalability, specialization, and
adaptability. However, challenges include rigid role structures in fixed systems, complexity in role
assignment, and coordination overhead in systems with extensive role hierarchies. RBTA is applied
across multiple domains, including warehouse automation, military surveillance, agriculture, and
search-and-rescue operations.

In decentralized multi-agent drone swarms, RBTA facilitates autonomous task allocation,
enhancing scalability, adaptability, and operational efficiency while reducing dependence on
centralized control. Core features of RBTA in drone swarms include predefined role structures,
where agents assume roles such as leader, scout, transporter, or communicator. Roles may be fixed
or dynamic, allowing flexibility in task distribution. The role framework can be adjusted based on
mission complexity, integrating new agents seamlessly. Agents autonomously select tasks
corresponding to their roles, reducing communication overhead with operators and improving
response time. Tasks are executed by the most suitable agents, minimizing execution time and
resource consumption. Agents can adapt roles in response to failures, new tasks, or environmental
changes, ensuring mission continuity. Clearly defined roles improve collaboration, reducing conflicts
and enhancing inter-agent communication. If an agent fails, another agent with a similar role can
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take over its tasks, improving system resilience. RBTA allows dynamic priority adjustments,
ensuring drones focus on critical problems as mission conditions change.

Despite its benefits, implementing RBTA in UAV swarms presents challenges such as complexity
in role assignment, communication overhead, adaptation to dynamic environments, and maintaining
situational awareness. An example of its application is a UAV swarm for wildfire monitoring, where
different drone roles include scout drones, coordinator drones, suppressor drones, and communicator
drones. By leveraging predefined roles and dynamic reassignment, the swarm efficiently monitors,
contains, and responds to fire outbreaks with minimal operator intervention.

RBTA is a flexible and scalable task scheduling method for MAS, providing structured, efficient,
and adaptable task allocation. In UAV swarms, its decentralized nature enhances mission flexibility,
fault tolerance, and operational efficiency. However, its implementation requires careful design of
role structures, drone coordination mechanisms, and efficient data exchange solutions to ensure real-
world applicability.

4. Role-Based Task Allocation Algorithm Based on Ontologies

4.1. Mathematical Modeling of Optimal Task Allocation

In a UAV swarm problem, where it is necessary to optimally allocate roles among UAVs and tasks
while considering subtask priorities and balancing cost minimization with result maximization, we
encounter a classic combinatorial optimization problem with multiple criteria.

A UAV swarm comprises unmanned aerial vehicles, each assigned a distinct operational role.
Tasks decompose into subtasks, each with defined priorities and role-specific requirements. These
roles represent specialized UAV capabilities including observation, data collection, and cargo
delivery.

The objective is to minimize mission execution costs — including time, energy, and resource
consumption — while maximizing mission performance, measured by the number of completed
subtasks or achieved goals. To model cost minimization, which depends on factors such as flight
time, energy consumption, and resource utilization, the following formula can be applied:

Min V(x) = Zn;i; ivijxij, (1)
=E =

where V(x) represents the total costs, n is the number of UAVs, ris the number of roles, my is the
number of subtasks for role k, v represents the costs of UAV i performing subtask j of role k, xj is
a variable indicating assignment of subtask j to UAV i in role k, where x; € {0,1}. The costs v can
be calculated using the formula:

Viik = Wil + We8jjk + WsSijks (2)
where v represents the cost of assigning subtask j to UAV i in role k; t; represents the time
required for UAV i in role k to complete subtask j; e; represents the energy consumed of UAV iin
role k for executing subtask j; sy represents the suitability of UAV iin role k for subtask j; and w;, we,
w; represent the weight coefficients for time, energy, and suitability, respectively.
To maximize the mission outcome, defined by the number of completed subtasks weighted by
their priorities, the following formula is applied:

n

Max F(x) = Z pj chijx;;, (3)

1= J:
where F(x) represents the mission execution outcome, p; denotes the priority of subtask j, and ch;
indicates the completion fraction of subtask j when assigned to UAV i. If a subtask j is executed by
at least one UAV i its contribution to F(x) equals its priority p. The summation ensures that each
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subtask is counted only once. Thus, the resulting function F(x) is a linear sum of the weighted
contributions of the completed subtasks.

For each UAV, constraints on the roles it can perform and the number of subtasks it can execute
simultaneously must be considered. These constraints can be expressed as:

m

Z;x,-jgl,vl'={1,2,...,n}, (4)
J:
that constraint ensures that each UAV performs no more than one subtask at a time, and

n

Z;xl-j >1,Vj=1{1,2,..,m}, (5)

1=
ensures that each subtask is assigned to at least one UAV.

Since the problem involves two criteria — minimizing costs and maximizing results — a combined
function Q with weighting coefficients can be applied:

Max Q = 01F(x) — 0, V(x), (6)
where o0, and o, are weighting coefficients that define the importance of each criterion, and
02 = flw, e, w).
Thus, the complete optimization model for role-based task allocation among UAVs is formulated
as follows:

n m n r m
Max Q = {61 Z; z; p]ch,]x,] — 0y Z ; Z VUXU}, (7)
=1 j= 1=1 k=1

J=1

subject to the constraints defined by formulas (4) and (5).

A mathematical model for the optimal task allocation problem among UAVs has been analyzed.
The model captures the complexity of the problem, which requires the simultaneous consideration
of multiple criteria — minimizing costs and maximizing mission performance. The use of
mathematical formulations allows for a precise definition of the problem’s objectives and constraints,
as well as the development of a function that balances these criteria. This approach establishes a
foundation for developing algorithms capable of solving such problems in real-world operational
environments. The solution explicitly integrates task prioritization, UAV operational constraints,
and resource optimization requirements.

The proposed mathematical model forms the core framework for designing efficient UAV swarm
control systems, formally structuring the task allocation process while accommodating mission-
specific requirements. Implementing this model can lead to significant improvements in the
productivity and efficiency of UAV swarms, particularly in complex and dynamic environments.
Additionally, it lays the groundwork for further research on task allocation optimization, enabling
the exploration of various algorithmic approaches and their impact on performance.

4.2. UAV Swarm Control Algorithm Based on Ontology

The proposed ontology-based UAV swarm control algorithm provides adaptive role and task
allocation for efficient mission execution. It employs a swarm self-organization mechanism based on
distributed game theory and gradient consensus, which enables resource optimization and response
to environmental changes. The algorithm also accounts for UAV failures and provides dynamic
reallocation of roles and tasks to maintain system stability.

Conceptually, the algorithm can be divided into four main blocks: role assignment, task
distribution, swarm self-organization (which includes situation monitoring and adaptation to
changes), and mission performance evaluation. Figure 1 illustrates the flowchart depicting the
interactions between the main algorithm blocks.

154



The proposed UAV swarm control algorithm is an effective tool for performing complex missions
in variable conditions. It combines adaptive self-organization, a failure-handling mechanism, and
dynamic task allocation, ensuring the system's resilience and performance. Implementing gradient
consensus with an adaptive coefficient allows the swarm to quickly respond to external changes,
maintaining an optimal interaction structure between agents. Automatic removal of faulty UAVs
and redistribution of their roles increases the system's resistance to failures, minimizing the risks of
mission disruption.

Through dynamic local search, the algorithm optimizes the correspondence between agents and
tasks, ensuring efficient resource allocation. Flexible adaptation to environmental changes and the
integration of distributed game theory improve swarm coordination and minimize computational
costs. As a result, the algorithm becomes more robust, productive, and suitable for use in real-world
UAV mission scenarios, ensuring reliable task execution in complex and dynamic environments.

In practical applications, the proposed algorithm can be employed for surveillance and
reconnaissance missions, search-and-rescue operations, environmental monitoring, and defense-
related tasks, where rapid adaptation to dynamic conditions is critical. Its ability to reassign tasks in
real time ensures continuity of operation in cases of UAV loss or communication disruption, while
the ontology-driven knowledge base enables mission-specific customization of the algorithm. This
allows operators to adjust swarm behavior according to domain requirements, for example,
prioritizing energy efficiency during long-duration monitoring or maximizing coverage in
emergency response scenarios. By reducing computational overhead and communication load, the
algorithm supports scalable deployment in large swarms, making it suitable for both civilian and
military applications that demand high reliability and autonomy.

5. Results

Consider an example of a search and rescue mission with the following input data: the mission
parameters, the number of UAVs (as UAV_1, ... , UAV_10), and their characteristics. The ontology
initialization process extracts structured task descriptors, identifying seven main tasks decomposed
into seventeen subtasks. Each subtask is defined by priorities, load coefficients for UAVs, and desired
roles with specific requirements.
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Ontology initialization:
0={RT.CD});
Reading characteristics C(d_i)

'

Role (R) assignment Rp amd Rs:
Building compatibility matrix A[ij]:
Alij]=1if C(d_i) satisfies r_j;
Rp{d_i)={ r_j | A[i,j]=1 and no r_k where A[ik] > A[ij]}
Rs(d_i)= {r_j | A[ij]=1 and r_j not is Rp{d_i)}

'

Task (T) distribution t_j among d_i:
d_i=argmax{d_k[Rp_k=Rp}{suitability({d_kt_j));
if no candidate — d_i=argmax{d_k}(suitability(d_k.t_j))

No

Mission complete?

Self-organization d_i (1): Mission evaluation:
Calculate local error e_i=desired_state{d_i) - actual_ state(d_i); Calculate Efficiency Q;
Adaptive update of coordination coeflicient a_i=f(e_i); Logging errors or incomplete tasks;
Adjust corrected_state(d_i) based on a_i Ontology (O) updata

'

Self-organization d_i (2):

UAV status chack f{d_i) < threshold;
Calculate Efficiency Q;
Calculate deviation A

No

Deviation A > tolerance?

Self-organization d_i (3) - Reallocation:
Remove d_i from active execution;
Check existence of Rp d_k| Rp_k= Rp_i; task distribution assign (t_j.d_k);
Search for Re d_k| Rs_k=Rp_i
Reassign role update R(d_k) and distribute tasks

Figure 1: Ontology-Based UAV Swarms Control Algorithm

The algorithm evaluates the compatibility of each UAV with the assigned roles based on its
capabilities (e.g., a UAV equipped with a thermal camera is classified as a Scout) and constructs a
compatibility matrix. Subsequently, subtasks are allocated according to role assignments and priority
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levels. UAV agents coordinate their velocities and positions depending on environmental conditions.
For instance, a UAV-Scout detecting a thermal anomaly transmits data to a UAV-Messenger for
coordinate relay. Simultaneously, a UAV-Leader processes spatial data from a UAV-Mapper to adjust
the UAV-Transporter's trajectory. Table 2ITommiaka! HempaBmiabHe NOCIUIAHHS 3aKJIAAKIL
presents the assignment of UAVs to primary and secondary roles and their correspondence to
subtasks.

Throughout the mission, continuous monitoring and adaptation to dynamic changes are
performed. In case of UAV failure (e.g., a UAV-Rescuer becoming inoperative), its incomplete task is
reassigned to another UAV. Additionally, if a new obstacle (such as a fire zone) is detected, the UAV-
Leader recalculates and updates the routes for the entire group.

Table 2
UAV Roles and Their Correspondence to Subtasks

UAV  Primary Role Secondary Roles Correspondence
UAV_1 Mapper Messenger, Scout  0.83 — 0.65 — 0.48

UAV 2 Rescuer Scout, Leader 0.91 — 0.70 — 0.36
UAV_3 Scout Mapper 0.78 — 0.65
UAV_4  Transporter Rescuer 0.80 — 0.70
UAV_5 Scout Mapper 0.88 — 0.59
UAV_6 Messenger Leader, Scout 0.81 — 0.72— 0.43
UAV_7  Transporter Rescuer 0.86 — 0.82
UAV_8 Rescuer Transporter 0.84 — 0.78
UAV_9 Mapper Scout 0.76 — 0.68
UAV_10 Leader Scout 0.87 — 0.52

Figure 2 compares mission performance efficiency between the initial role/task distribution
(without disruptive factors) and scenarios with partial swarm degradation (loss of UAV_4
[Transporter] and UAV_10 [Leader]).
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Figure 2: Comparison of Mission Execution Efficiency Without and With Failures

Analysis of the 'With Failures' curve reveals that the loss of UAV_10 (assigned a critical Leader
role) substantially degraded mission performance efficiency. This reduction stems from two factors:
(1) the reassignment of leadership to UAV_6, which exhibited 15% lower operational efficiency, and
(2) computational overhead from dynamic role-task reallocation to maintain swarm equilibrium. The
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performance impact of losing UAV_4 (Transporter) was less pronounced, as its functions were
absorbed solely by UAV_7, albeit with a 25% increase in energy expenditure.

Figure 3 presents the time required for Reassignment and Self-Organization as a function of the
number of UAVs.

As observed from the 'No Failures' curve, as the UAV count increases, the required time grows
proportionally with the calculation volume to be performed. This effect is particularly noticeable in
the 'With 2 UAV Failures' curve, where, following the loss of several UAVs, the time required for the
same number of UAVs increases as well. This is attributed to the increased complexity of calculations
necessary for optimal reallocation of roles and tasks, as well as for balancing the workload across
the reduced group of UAVs.
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Figure 3: Dependence of Reassignment and Self-Organization Time on the Number of UAVs
Without and With Failures

Figure 4 demonstrates the relationship between UAV swarm size, mission completion time, and
two key metrics: resilience to adverse conditions and successful mission execution rate.

The graph illustrates that under adverse conditions, larger UAV swarm sizes show a higher
probability of task completion success rate.

The obtained results confirm the effectiveness of the proposed task allocation approaches in a
multi-agent UAV swarm system. Experimental data demonstrate that incorporating an ontological
approach improves task allocation accuracy by 35% compared to traditional methods.
Simultaneously, applying a role-based approach reduces the mission planning time cost by 27%.

Furthermore, the proposed algorithm exhibits resilience to dynamic changes in swarm
composition and external conditions, reinforcing its practical applicability in real-world scenarios.
Future work will focus on optimizing the algorithm’s computational complexity and enhancing its
scalability for larger UAV groups.

The comparative analysis highlights that these methods enhance decision-making flexibility,
increase the system’s robustness against individual agent failures, and improve UAV coordination
consistency. The proposed approach is inherently adaptable to more complex mission scenarios,
including variable environmental conditions and resource-constrained settings.
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Figure 4: Comparison of Mission Execution Time Based on the Number of UAVs and the Severity
of Adverse Conditions

In the future, the development of research in the field of task allocation in unmanned aerial
vehicle swarms will be closely linked to the further integration of machine learning methods and
semantic technologies. The combination of environmental dynamics prediction techniques with
ontological modeling makes it possible to significantly enhance system adaptability in real time. In
particular, reinforcement learning algorithms can automatically optimize role and task reallocation
strategies, taking into account both historical data and the current state of the environment. The use
of dynamic ontologies capable of evolving in response to changing mission conditions opens up new
opportunities for building more flexible and self-sufficient architectures. This is especially relevant
under resource-constrained conditions, where every error or delay can have critical consequences.

Further research will also focus on the development of hybrid architectures that combine role-
based task allocation with semantic communication mechanisms between agents. Such an approach
may ensure high scalability, reduce communication channel load, and increase resilience to failures
of individual UAVs. In the long term, one can expect the emergence of adaptive systems capable of
autonomously forming role hierarchies, reconfiguring routes, and altering task priorities in line with
new mission objectives. Another important direction will be the integration with quantum
computing and distributed artificial intelligence technologies, which will significantly accelerate
optimization processes. Thus, the future of this research area lies in creating highly intelligent multi-
agent systems capable of effective operation in complex, dynamic, and uncertain environments.

6. Conclusions

This research introduces a hybrid approach to mission planning for UAV swarms, integrating RBTA
with OBS planning to enhance survivability, efficiency, adaptability, and scalability. The
incorporation of formalized domain knowledge and predefined roles plays a crucial role in reducing
computational overhead, optimizing flight task execution, and increasing system autonomy. The
proposed RBTA mathematical model optimally matches agents to tasks while dynamically
prioritizing tasks of missions and takes into account execution time, energy consumption, and other
critical constraints. Additionally, the application of ontological models fosters semantic consistency
among agents, improving coordination and enhancing decision-making processes within MAS.
Experimental results validate the effectiveness of the proposed approach, demonstrating a 15—
20% reduction in average mission execution time compared to traditional methods, alongside a 25%
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decrease in communication load. Furthermore, leveraging ontological analysis for task allocation
enhances system resilience through dynamic role reallocation and adaptive load balancing during
individual agent failures. Based on distributed game theory and gradient consensus, swarm self-
distribution mechanisms further improve adaptability to environmental changes, ensuring stable
mission execution under dynamic conditions.

The comparative analysis highlights the advantages of RBTA and OBS over conventional task
allocation strategies, such as centralized planning and auction-based methods, which often suffer
from scalability limitations and high computational costs. The proposed approach, with its
decentralized control and efficient resource utilization, proves particularly effective for applications
requiring high autonomy, including search and rescue operations, precision agriculture, and
surveillance.

Despite its advantages, the approach presents challenges, including the complexity of real-time
adaptive role determination, the need for effective ontology updates during missions, and ensuring
situational awareness in large-scale MAS. Future research will focus on refining dynamic role
reallocation mechanisms, optimizing ontology update strategies, and integrating machine learning
techniques to enhance autonomous decision-making.

In conclusion, the findings confirm that combining RBTA with OBS provides an efficient,
adaptive, and scalable solution for UAV swarm mission planning. The proposed approach improves
operational efficiency and establishes a solid foundation for autonomous multi-agent system
coordination, which is critical for mission success in complex and resource-constrained
environments.
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