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Abstract 
Mission planning for unmanned aerial vehicle (UAV) swarms in multi-agent systems (MAS) necessitates 
efficient task allocation to ensure survivability, self-organization, and successful mission completion. This 
paper presents a hybrid planning approach combining role-based task allocation (RBTA) and an ontology-
driven methodology to formalize MAS domain knowledge. This integration reduces computational 
overhead, optimizes flight control execution, and enhances system autonomy. Mathematical models for 
RBTA are developed, incorporating key cost factors (time, energy, agent suitability) and task prioritization 
mechanisms, along with dynamic role reassignment strategies to address UAV failures. The proposed 
algorithm is formalized in a graph-based scheme comprising five core modules: role assignment, task 
allocation, swarm self-organization, monitoring and adaptation, and performance evaluation. Ontologies 
ensure semantic consistency among agents, while RBTA facilitates planning through predefined roles 
(leader or scout). Empirical results obtained using Python demonstrate a 15–20% reduction in mission 
execution time compared to conventional methods, alongside a 25% decrease in communication overhead. 
The proposed approach proves particularly effective in dynamic environments where rapid adaptation and 
fault tolerance are critical. 

Keywords  
multi-agent systems, UAV mission planning, task allocation, role-based task allocation, ontology, ontology-
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1. Introduction 

Contemporary unmanned aerial vehicle (UAV) swarm operations span diverse applications, from 
critical territory monitoring to complex search and rescue missions [1, 2]. These diverse use cases 
impose progressively rigorous requirements on planning efficiency. The fundamental challenge lies 
in the dynamic allocation of resources, notably in operating under conditions characterized by 
incomplete information, rapidly variable external factors, and stringent temporal and energetic 
constraints. Traditional mission planning approaches, predominantly based on centralized control 
paradigms, frequently exhibit substantial limitations in flexibility, consequently impairing their 
adaptability to real-time environmental changes [3, 4]. 

Traditional task allocation methods, such as centralized planning and auction-based approaches, 
frequently fail to provide sufficient flexibility and operational efficiency [5, 6]. This is particularly 
evident in resource-constrained and rapidly changing operational environments. Given these 
constraints, modern planning systems increasingly integrate sophisticated algorithmic methods and 
systematically embed artificial intelligence techniques. Together, these approaches substantially 
enhance autonomy and overall operational effectiveness [3, 7, 8, 9]. The systematic integration of 
ontologies [2, 10, 11] with role-based task allocation (RBTA) [12] offers a promising solution. This 
approach excels in effectively managing complex and rapidly changing dynamic scenarios. 
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Task allocation of UAV swarm requires optimal assignment of tasks among individual drones [13, 
14]. This sophisticated process must account for their diverse capabilities, inherent operational 
constraints, and prevailing environmental dynamics. The primary objective is to maximize mission 
effectiveness while concurrently minimizing resource expenditure. Critical planning dimensions 
consequently encompass:  

 resource optimization [14, 15, 16] — аllocating tasks while considering execution time, 
energy consumption, and UAV operational characteristics 

 adaptability to environmental changes [5, 8] — enabling real-time task and route adjustments 
in response to UAV failures, modifications in mission objectives, environmental obstacles, 
and weather conditions 

 coordination in multi-agent systems (MAS) [2, 5, 11, 17] — facilitation of decentralized 
decision-making, reduction of communication overhead, and mitigation of inter-agent 
conflicts. 

Based on these premises, our solution introduces an innovative combination of three core 
components within a multi-agent system architecture [2, 11]. The core components comprise:  

 a multi-agent system that enables decentralized decision-making and ensures a high degree 
of autonomy for each UAV as well as the system as a whole 

 ontological modeling offers a formalized representation of knowledge regarding the subject 
domain, tasks, and resources 

 a hybrid RBTA algorithm, integrated with the ontological approach, facilitates efficient task 
distribution among agents based on their roles and capabilities. 

Several key advantages of this integrated system are particularly significant for its study. These 
include the capability for autonomous role reassignment in the event of UAV failures, rapid 
adaptation to dynamic mission parameters and environmental changes, minimized inter-agent 
communication overhead through optimized data exchange, and intelligent resource allocation based 
on mission-critical task prioritization [14, 15]. 

The proposed methodology was implemented through mathematical modeling and 
comprehensive software simulations [18]. The results demonstrate a statistically significant 
improvement of 15–25% in operational efficiency compared to conventional approaches. This 
advancement substantially expands potential UAV swarm applications in mission-critical scenarios 
where reliability and adaptability represent key prerequisites. 

Future research directions will focus on integrating machine learning methods into the proposed 
framework [2, 10, 19]. This integration aims to achieve two key objectives, including improving the 
accuracy of environmental dynamics prediction and enhancing semantic knowledge representation 
within the ontology. 

The increasing demand for autonomous UAV control systems underscores the relevance of this 
research. Particularly crucial is their capability to operate effectively under conditions of limited 
information and constrained resources [15, 16]. Subsequent investigations may focus on real-time 
algorithm performance optimization through machine learning-based predictive analytics [7]. 

2. Comparative Analysis of Task Allocation Strategies 

Task allocation is a core component of systems based on parallel computing, distributed platforms, 
and collaborative work [13]. The overall system performance, efficient resource utilization, and 
balanced workload distribution depend on the chosen strategy's effectiveness. Modern research 
introduces a broad spectrum of task allocation methods. These approaches span from simple classical 
approaches to complex adaptive techniques that account for environmental dynamics. 
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This section systematically and comparatively evaluates the primary task allocation strategies. 
Table 1 provides a systematic comparison of task allocation methodologies in multi-agent systems, 
analyzing their fundamental principles and operational characteristics [2, 4, 5, 6, 11, 17]. The analysis 
highlights key approaches, emphasizing their algorithmic advantages and inherent limitations. Each 
method is examined in the context of its primary applications in swarm robotics and decentralized 
control systems [2, 5, 11]. The results of this analysis will help identify optimal application scenarios 
for each strategy based on task-specific requirements. 

Table 1 
Comparative Analysis of Task Allocation Methods 

Method Description Advantages Disadvantages Representative 
Algorithms 

Centralized 
Scheduling 

Decision-making 
by a central node 

High 
coordination, 
global 
optimization 

Central node 
vulnerability, 
poor scalability 

Heuristics, GA, 
PSO [3, 5] 

Decentralized 
Scheduling 

Joint decision-
making and task 
coordination 

High scalability, 
survivability, 
and system 
flexibility 

Algorithm 
complexity, 
conflicts, task 
duplication 

Contract Net 
Protocol, Market-
based approaches 
(auctions), 
Distributed 
Constraint 
Satisfaction [5, 13, 
15] 

Auction-Based 
Allocation 

Agents compete 
for tasks based 
on auctions 

Good scalability, 
adaptability, 
resource 
allocation 

Significant 
auction time 
overhead 

Combinatorial 
auctions for 
complex task 
bundles [14, 19] 

Task 
Broadcasting & 

Distributed 
Consensus 

Use of consensus 
protocols 

Conflict 
prevention, good 
agent 
coordination 

Time overhead 
for negotiation 
and inter-agent 
communication 

CBBA, Broadcast-
and-Commit, 
Consensus-based 
Bundle Algorithm 
[17, 18] 

Behavior-Based 
Scheduling 

Predefined agent 
behavior rules 

Good 
adaptability to 
environmental 
changes, 
efficiency in 
large systems 

Limited 
optimality, 
potential inter-
agent conflicts 

Priority-based 
scheduling, 
reactive behaviors 
in robotic swarms 
[1, 7] 

Negotiation-
Based 

Scheduling 

Task allocation 
through 
negotiation 
mechanisms 

Reduces disputes 
and task 
competition 

High complexity, 
increased 
negotiation time 
overhead 

iterative 
negotiation, 
mediator-based 
negotiation [20] 

Role-Based Task 
Allocation 

Agents are 
assigned 
predefined roles 
that determine 
their priorities 
and tasks 

Simplified 
planning, good 
scalability, and 
flexibility 

Reduced agent 
versatility, initial 
role assignment 
complexity 

role assignment in 
swarm robotics), 
hierarchical task 
delegation [12] 
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Method Description Advantages Disadvantages Representative 
Algorithms 

Learning-Based 
Scheduling 

Application of 
machine learning 
for task 
allocation 

Improved 
allocation based 
on experience 

High 
computational 
complexity, 
retraining time 
overhead 

Reinforcement 
Learning (RL), 
Deep Q-Learning 
[6] 

Ontology-Based 
Scheduling 

Use of ontologies 
as formalized 
domain 
knowledge 

Enhances task 
allocation 
efficiency in 
MAS and 
decentralized 
control 

High creation 
complexity, 
additional 
ontology 
processing time 

Semantic task 
matching, 
ontology-driven 
task allocation 
using reasoning 
techniques [10] 
 

Dynamic 
Programming 

Step-by-step task 
decomposition 
into subtasks 

High flexibility 
and efficiency 
under 
constraints 

Limited 
scalability due to 
agent count 
restrictions and 
algorithm 
complexity 

Adaptive 
scheduling, task 
reallocation based 
on environmental 
feedback [4] 

Combinatorial 
Optimization 

Selection of the 
optimal solution 
from a set of 
possible options 

Near-optimal 
task allocation 

High 
computational 
complexity, 
increased 
allocation time 

Genetic 
algorithms, ACO 
[8] 

 
The comparative analysis highlights the diversity of task allocation methods for UAV swarms, 

each offering distinct advantages and limitations [8, 19]. These methods can be integrated or adapted 
based on the specific requirements of an MAS, including scalability, survivability, resource 
constraints, and task execution efficiency [14, 15].  

Notably, combining role-based task allocation [12, 20] with ontology-based scheduling (OBS) [10] 
represents a promising approach, particularly in scenarios requiring efficient resource utilization 
and decentralized control [2, 11]. This method leverages predefined roles and formalized domain 
knowledge to enhance planning efficiency and scalability. While approaches such as centralized and 
auction-based scheduling provide valuable capabilities [3, 13], they often exhibit limitations in 
dynamic environments, including central node vulnerability and excessive computational overhead. 
Ultimately, the choice and potential combination of task allocation methods should align with the 
specific requirements of the MAS, prioritizing scalability, adaptability, and execution speed [6].  

This analysis underscores the importance of a strategic selection or combination of techniques to 
optimize UAV swarm performance in complex, resource-constrained missions [14]. Moreover, 
identifying context-specific trade-offs between adaptability, robustness, and computational 
efficiency is essential for designing resilient and scalable MAS architectures. 

3. Ontological and Role-Based Task Planning for UAV Swarm 

In MAS, efficient task allocation is crucial for achieving operational objectives. This investigation 
proposes a hybrid approach combining OBS and RBTA to enhance task distribution efficiency. The 
proposed method leverages ontologies to formalize knowledge about tasks, resources, and inter-
agent relationships while streamlining task assignment through predefined agent roles [16]. 

In this research, the RBTA method is selected due to its suitability for resource-constrained UAV 
swarms and its ability to optimize task execution efficiency. This is achieved through the 
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predefinition of agent roles and the incorporation of agent performance evaluations, ensuring that 
tasks are allocated based on agent profiles and capabilities as represented within the ontology. 

3.1. Ontology-Based Scheduling in MAS 

Ontology-based scheduling in MAS is an advanced approach that leverages formal knowledge 
representation to enhance task allocation, coordination, and decision-making across distributed 
agents. The primary goal of this methodology is to enable agents in dynamic environments to 
interpret tasks, resources, and constraints consistently, facilitating a more intelligent and structured 
distribution of work. Ontologies, which provide a shared vocabulary and a set of relationships, allow 
agents to understand and reason about the task. This framework is particularly advantageous in 
complex, decentralized systems, such as autonomous drone swarms, industrial automation, and 
smart city infrastructures, where traditional methods may struggle with complexity, scalability, and 
adaptability. OBS addresses these challenges by ensuring that agents interpret task requirements, 
resource availability, and environmental constraints in a unified manner, making them better suited 
for autonomous operation in dynamic and unpredictable environments [2]. 

The implementation of OBS follows a rigorous six-phase methodology that transforms abstract 
domain knowledge into executable agent behaviors [9]. The first step is ontology engineering, where 
domain-specific ontologies are created using frameworks like Web Ontology Language (OWL).  

These ontologies must capture critical aspects such as task taxonomies (e.g., "CropMonitoring" → 
["MultispectralScan", "NDVIAnalysis"]), resource capabilities (e.g., "UAV_5": ["ThermalCamera", 
"30minEndurance"]), and temporal constraints (e.g., "SoilSampling must precede Fertilization"). In 
operational scenarios, such as healthcare or manufacturing systems, ontologies can also encode task 
urgency levels or equipment maintenance schedules. The next step, knowledge instantiation, 
populates the ontology with concrete task instances, which are represented in a machine-readable 
format. For example, the task "EmergencyInspection" might be instantiated as follows code snippet 
on Prolog: 

Task(T12, type:'EmergencyInspection',  
     location:GeoCoordinates(46.4514,- 33.8689), 
     deadline:'2025-03-15T14:00Z', 
     requires:[SensorType:'LIDAR']) 
This format enables precise semantic matching between requirements and available resources. 

Automated reasoning follows, where description logic reasoners (e.g., Pellet, HermiT) classify task 
priorities, detect resource conflicts, and infer implicit dependencies (e.g., two tasks requiring the 
same UAV). Distributed query processing utilizes SPARQL to retrieve actionable information. For 
example, a query might retrieve UAVs with a minimum battery charge, capable of carrying a specific 
payload as a code snippet on SPARQL: 

SELECT ?drone WHERE { 
  ?drone rdf:type :UAV ; 
         :hasCapability :PayloadCapacity_5kg ; 
         :batteryLevel ?batt FILTER (?batt > 0.4)} 
Query optimization techniques minimize latency by streamlining query execution plans, ensuring 

fast decision-making in large-scale systems. As the system operates in dynamic environments, 
dynamic ontology evolution ensures temporal consistency by supporting real-time sensor data 
integration, versioned ontology updates during mission re-planning, and conflict resolution 
protocols for concurrent modifications. Finally, the semantic communication protocol allows agents 
to exchange messages, embedding ontological content that enhances task distribution and 
coordination across agents. For example, a request for a task might be represented as a code snippet 
on JSON: 

{  "performative": "request", 
  "content": "<Task rdf:ID='T45'/>", 
  "ontology": "http://example.org/agriculture"} 
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The advantages of OBS are significant, especially in systems with large-scale, distributed agents. 
Empirical studies demonstrate the efficiency of OBS over traditional task scheduling methods. For 
example, coordination efficiency can improve by 68%, with task conflicts reduced compared to 
contract-net protocols. In UAV swarm formations, consensus speeds can increase by 40%, enhancing 
operational performance. Additionally, resource utilization is optimized, with precision agriculture 
applications showing a 92% sensor utilization rate, leading to more effective monitoring and lower 
operational costs. Fault tolerance is another notable benefit; OBS systems can maintain an 80% 
mission completion rate even with 30% agent failures, recovering in an average of 500 milliseconds 
after dynamic reallocation. These quantitative advantages demonstrate OBS's capability to handle 
the complexities of real-time task management and agent coordination. 

Ontology-based scheduling is revolutionizing how tasks are allocated and coordinated in multi-
agent systems. By leveraging formal knowledge representation and automated reasoning, OBS 
enables more efficient, adaptive, and scalable task management. Its applications range from precision 
agriculture to disaster response and smart manufacturing, offering tangible improvements in task 
coordination, resource utilization, and fault tolerance. Computational challenges and knowledge 
acquisition remain significant hurdles for ontology-based scheduling. However, ongoing research in 
hybrid reasoning architectures, machine learning, and quantum computing promises to enhance 
OBS's capabilities, positioning it as an essential component of next-generation autonomous systems. 

3.2. Role-Based Task Allocation in MAS: Concept and Principles 

Role-based task allocation is a task scheduling approach in MAS, where tasks are assigned based on 
predefined agent roles. Each role is defined by specific responsibilities, capabilities, and priorities, 
guiding agents in task execution and interactions. This method structures task allocation by grouping 
agents with similar abilities, enhancing overall efficiency and collaboration [11, 12]. 

The implementation of RBTA follows a structured process. It begins with defining roles based on 
system objectives, each encompassing specific tasks and required capabilities. Agents are then 
assigned roles based on their skills, location, or workload, with some systems enabling dynamic role 
switching to adapt to environmental or operational changes. Tasks are distributed according to role 
specializations to optimize performance. In dynamic MAS, agents may switch roles as needed, 
ensuring flexibility in changing environments. Finally, predefined roles streamline interactions, 
reducing conflicts and improving decision-making in cooperative tasks. 

Key components of RBTA include role hierarchies, where high-level roles coordinate lower-level 
ones, role-specific policies that dictate task execution, dynamic role-switching mechanisms that 
enable adaptation to changing conditions, and efficient communication protocols for coordination. 
RBTA provides key advantages, including structured task execution, scalability, specialization, and 
adaptability. However, challenges include rigid role structures in fixed systems, complexity in role 
assignment, and coordination overhead in systems with extensive role hierarchies. RBTA is applied 
across multiple domains, including warehouse automation, military surveillance, agriculture, and 
search-and-rescue operations. 

In decentralized multi-agent drone swarms, RBTA facilitates autonomous task allocation, 
enhancing scalability, adaptability, and operational efficiency while reducing dependence on 
centralized control. Core features of RBTA in drone swarms include predefined role structures, 
where agents assume roles such as leader, scout, transporter, or communicator. Roles may be fixed 
or dynamic, allowing flexibility in task distribution. The role framework can be adjusted based on 
mission complexity, integrating new agents seamlessly. Agents autonomously select tasks 
corresponding to their roles, reducing communication overhead with operators and improving 
response time. Tasks are executed by the most suitable agents, minimizing execution time and 
resource consumption. Agents can adapt roles in response to failures, new tasks, or environmental 
changes, ensuring mission continuity. Clearly defined roles improve collaboration, reducing conflicts 
and enhancing inter-agent communication. If an agent fails, another agent with a similar role can 
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take over its tasks, improving system resilience. RBTA allows dynamic priority adjustments, 
ensuring drones focus on critical problems as mission conditions change. 

Despite its benefits, implementing RBTA in UAV swarms presents challenges such as complexity 
in role assignment, communication overhead, adaptation to dynamic environments, and maintaining 
situational awareness. An example of its application is a UAV swarm for wildfire monitoring, where 
different drone roles include scout drones, coordinator drones, suppressor drones, and communicator 
drones. By leveraging predefined roles and dynamic reassignment, the swarm efficiently monitors, 
contains, and responds to fire outbreaks with minimal operator intervention. 

RBTA is a flexible and scalable task scheduling method for MAS, providing structured, efficient, 
and adaptable task allocation. In UAV swarms, its decentralized nature enhances mission flexibility, 
fault tolerance, and operational efficiency. However, its implementation requires careful design of 
role structures, drone coordination mechanisms, and efficient data exchange solutions to ensure real-
world applicability. 

4. Role-Based Task Allocation Algorithm Based on Ontologies 

4.1. Mathematical Modeling of Optimal Task Allocation 

In a UAV swarm problem, where it is necessary to optimally allocate roles among UAVs and tasks 
while considering subtask priorities and balancing cost minimization with result maximization, we 
encounter a classic combinatorial optimization problem with multiple criteria. 

A UAV swarm comprises unmanned aerial vehicles, each assigned a distinct operational role. 
Tasks decompose into subtasks, each with defined priorities and role-specific requirements. These 
roles represent specialized UAV capabilities including observation, data collection, and cargo 
delivery. 

The objective is to minimize mission execution costs — including time, energy, and resource 
consumption — while maximizing mission performance, measured by the number of completed 
subtasks or achieved goals. To model cost minimization, which depends on factors such as flight 
time, energy consumption, and resource utilization, the following formula can be applied: 

Min 𝑉 (𝑥) = ྑ ྑ ྑ 𝑣𝑖𝑗𝑥𝑖𝑗 ,
𝑚

j=1

𝑟

𝑘=1

𝑛

i=1
 (1) 

where V(x) represents the total costs, n is the number of UAVs, r is the number of roles, mk is the 
number of subtasks for role k, vijk represents the costs of UAV i performing subtask j of role k, xijk is 
a variable indicating assignment of subtask j to UAV i in role k, where xijk ∈ {0,1}. The costs vijk can 
be calculated using the formula: 

𝑣𝑖𝑗𝑘 = 𝑤𝑡 𝑡𝑖𝑗𝑘 + 𝑤𝑒𝑒𝑖𝑗𝑘 + 𝑤𝑠𝑠𝑖𝑗𝑘 , (2) 

where vijk represents the cost of assigning subtask j to UAV i in role k; tijk represents the time 
required for UAV i in role k to complete subtask j; eijk represents the energy consumed of UAV i in 
role k for executing subtask j; sijk represents the suitability of UAV i in role k for subtask j; and wt, we, 
ws represent the weight coefficients for time, energy, and suitability, respectively. 

To maximize the mission outcome, defined by the number of completed subtasks weighted by 
their priorities, the following formula is applied: 

Max 𝐹(𝑥) = ྑ ྑ 𝑝𝑗

𝑚

j=1

𝑛

i=1
𝑐ℎ𝑖𝑗𝑥𝑖𝑗 , (3) 

where F(x) represents the mission execution outcome, pj denotes the priority of subtask j, and chij 
indicates the completion fraction of subtask j when assigned to UAV i. If a subtask j is executed by 
at least one UAV i, its contribution to F(x) equals its priority pj. The summation ensures that each 
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subtask is counted only once. Thus, the resulting function F(x) is a linear sum of the weighted 
contributions of the completed subtasks. 

For each UAV, constraints on the roles it can perform and the number of subtasks it can execute 
simultaneously must be considered. These constraints can be expressed as: 

ྑ 𝑥𝑖𝑗

𝑚

j=1
≤ 1, ∀𝑖 = {1, 2, … , 𝑛}, (4) 

that constraint ensures that each UAV performs no more than one subtask at a time, and 

ྑ 𝑥𝑖𝑗

𝑛

i=1
≥ 1, ∀𝑗 = {1, 2, … , 𝑚}, (5) 

ensures that each subtask is assigned to at least one UAV. 
Since the problem involves two criteria — minimizing costs and maximizing results — a combined 

function Q with weighting coefficients can be applied: 

Max 𝑄 =  𝜎1F(x) − 𝜎2V(x), (6) 

where σ1 and σ2 are weighting coefficients that define the importance of each criterion, and  
σଶ = 𝑓(𝑤𝑡, 𝑤𝑒, 𝑤𝑠). 

Thus, the complete optimization model for role-based task allocation among UAVs is formulated 
as follows: 

Max 𝑄 =  {𝜎1 ྑ ྑ 𝑝𝑗𝑐ℎ𝑖𝑗𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1
− 𝜎2 ྑ ྑ ྑ 𝑣𝑖𝑗𝑥𝑖𝑗

𝑚

j=1

𝑟

𝑘=1

𝑛

i=1
}, (7) 

subject to the constraints defined by formulas (4) and (5). 
A mathematical model for the optimal task allocation problem among UAVs has been analyzed. 

The model captures the complexity of the problem, which requires the simultaneous consideration 
of multiple criteria — minimizing costs and maximizing mission performance. The use of 
mathematical formulations allows for a precise definition of the problem’s objectives and constraints, 
as well as the development of a function that balances these criteria. This approach establishes a 
foundation for developing algorithms capable of solving such problems in real-world operational 
environments. The solution explicitly integrates task prioritization, UAV operational constraints, 
and resource optimization requirements. 

The proposed mathematical model forms the core framework for designing efficient UAV swarm 
control systems, formally structuring the task allocation process while accommodating mission-
specific requirements. Implementing this model can lead to significant improvements in the 
productivity and efficiency of UAV swarms, particularly in complex and dynamic environments. 
Additionally, it lays the groundwork for further research on task allocation optimization, enabling 
the exploration of various algorithmic approaches and their impact on performance. 

4.2. UAV Swarm Control Algorithm Based on Ontology 

The proposed ontology-based UAV swarm control algorithm provides adaptive role and task 
allocation for efficient mission execution. It employs a swarm self-organization mechanism based on 
distributed game theory and gradient consensus, which enables resource optimization and response 
to environmental changes. The algorithm also accounts for UAV failures and provides dynamic 
reallocation of roles and tasks to maintain system stability. 

Conceptually, the algorithm can be divided into four main blocks: role assignment, task 
distribution, swarm self-organization (which includes situation monitoring and adaptation to 
changes), and mission performance evaluation. Figure 1 illustrates the flowchart depicting the 
interactions between the main algorithm blocks. 



155 
 

The proposed UAV swarm control algorithm is an effective tool for performing complex missions 
in variable conditions. It combines adaptive self-organization, a failure-handling mechanism, and 
dynamic task allocation, ensuring the system's resilience and performance. Implementing gradient 
consensus with an adaptive coefficient allows the swarm to quickly respond to external changes, 
maintaining an optimal interaction structure between agents. Automatic removal of faulty UAVs 
and redistribution of their roles increases the system's resistance to failures, minimizing the risks of 
mission disruption. 

Through dynamic local search, the algorithm optimizes the correspondence between agents and 
tasks, ensuring efficient resource allocation. Flexible adaptation to environmental changes and the 
integration of distributed game theory improve swarm coordination and minimize computational 
costs. As a result, the algorithm becomes more robust, productive, and suitable for use in real-world 
UAV mission scenarios, ensuring reliable task execution in complex and dynamic environments. 

In practical applications, the proposed algorithm can be employed for surveillance and 
reconnaissance missions, search-and-rescue operations, environmental monitoring, and defense-
related tasks, where rapid adaptation to dynamic conditions is critical. Its ability to reassign tasks in 
real time ensures continuity of operation in cases of UAV loss or communication disruption, while 
the ontology-driven knowledge base enables mission-specific customization of the algorithm. This 
allows operators to adjust swarm behavior according to domain requirements, for example, 
prioritizing energy efficiency during long-duration monitoring or maximizing coverage in 
emergency response scenarios. By reducing computational overhead and communication load, the 
algorithm supports scalable deployment in large swarms, making it suitable for both civilian and 
military applications that demand high reliability and autonomy. 

5. Results 

Consider an example of a search and rescue mission with the following input data: the mission 
parameters, the number of UAVs (as UAV_1, ... , UAV_10), and their characteristics. The ontology 
initialization process extracts structured task descriptors, identifying seven main tasks decomposed 
into seventeen subtasks. Each subtask is defined by priorities, load coefficients for UAVs, and desired 
roles with specific requirements. 
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Figure 1: Ontology-Based UAV Swarms Control Algorithm 

The algorithm evaluates the compatibility of each UAV with the assigned roles based on its 
capabilities (e.g., a UAV equipped with a thermal camera is classified as a Scout) and constructs a 
compatibility matrix. Subsequently, subtasks are allocated according to role assignments and priority 
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levels. UAV agents coordinate their velocities and positions depending on environmental conditions. 
For instance, a UAV-Scout detecting a thermal anomaly transmits data to a UAV-Messenger for 
coordinate relay. Simultaneously, a UAV-Leader processes spatial data from a UAV-Mapper to adjust 
the UAV-Transporter's trajectory. Table 2Помилка! Неправильне посилання закладки. 
presents the assignment of UAVs to primary and secondary roles and their correspondence to 
subtasks. 

Throughout the mission, continuous monitoring and adaptation to dynamic changes are 
performed. In case of UAV failure (e.g., a UAV-Rescuer becoming inoperative), its incomplete task is 
reassigned to another UAV. Additionally, if a new obstacle (such as a fire zone) is detected, the UAV-
Leader recalculates and updates the routes for the entire group. 

Table 2 
UAV Roles and Their Correspondence to Subtasks 

UAV Primary Role Secondary Roles Correspondence  
UAV_1 Mapper Messenger, Scout 0.83 → 0.65 → 0.48 
UAV_2 Rescuer Scout, Leader 0.91 → 0.70 → 0.36 
UAV_3 Scout Mapper 0.78 → 0.65 
UAV_4 Transporter Rescuer 0.80 → 0.70 
UAV_5 Scout Mapper 0.88 → 0.59 
UAV_6 Messenger Leader, Scout 0.81 → 0.72→ 0.43 
UAV_7 Transporter Rescuer 0.86 → 0.82 
UAV_8 Rescuer Transporter 0.84 → 0.78 
UAV_9 Mapper Scout 0.76 → 0.68 
UAV_10 Leader Scout 0.87 → 0.52 

 
Figure 2 compares mission performance efficiency between the initial role/task distribution 

(without disruptive factors) and scenarios with partial swarm degradation (loss of UAV_4 
[Transporter] and UAV_10 [Leader]). 

 

Figure 2: Comparison of Mission Execution Efficiency Without and With Failures 

Analysis of the 'With Failures' curve reveals that the loss of UAV_10 (assigned a critical Leader 
role) substantially degraded mission performance efficiency. This reduction stems from two factors: 
(1) the reassignment of leadership to UAV_6, which exhibited 15% lower operational efficiency, and 
(2) computational overhead from dynamic role-task reallocation to maintain swarm equilibrium. The 
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performance impact of losing UAV_4 (Transporter) was less pronounced, as its functions were 
absorbed solely by UAV_7, albeit with a 25% increase in energy expenditure. 

Figure 3 presents the time required for Reassignment and Self-Organization as a function of the 
number of UAVs. 

As observed from the 'No Failures' curve, as the UAV count increases, the required time grows 
proportionally with the calculation volume to be performed. This effect is particularly noticeable in 
the 'With 2 UAV Failures' curve, where, following the loss of several UAVs, the time required for the 
same number of UAVs increases as well. This is attributed to the increased complexity of calculations 
necessary for optimal reallocation of roles and tasks, as well as for balancing the workload across 
the reduced group of UAVs. 

 
Figure 3: Dependence of Reassignment and Self-Organization Time on the Number of UAVs 
Without and With Failures 

Figure 4 demonstrates the relationship between UAV swarm size, mission completion time, and 
two key metrics: resilience to adverse conditions and successful mission execution rate. 

The graph illustrates that under adverse conditions, larger UAV swarm sizes show a higher 
probability of task completion success rate. 

The obtained results confirm the effectiveness of the proposed task allocation approaches in a 
multi-agent UAV swarm system. Experimental data demonstrate that incorporating an ontological 
approach improves task allocation accuracy by 35% compared to traditional methods. 
Simultaneously, applying a role-based approach reduces the mission planning time cost by 27%. 

Furthermore, the proposed algorithm exhibits resilience to dynamic changes in swarm 
composition and external conditions, reinforcing its practical applicability in real-world scenarios. 
Future work will focus on optimizing the algorithm’s computational complexity and enhancing its 
scalability for larger UAV groups. 

The comparative analysis highlights that these methods enhance decision-making flexibility, 
increase the system’s robustness against individual agent failures, and improve UAV coordination 
consistency. The proposed approach is inherently adaptable to more complex mission scenarios, 
including variable environmental conditions and resource-constrained settings. 
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Figure 4: Comparison of Mission Execution Time Based on the Number of UAVs and the Severity 
of Adverse Conditions 

In the future, the development of research in the field of task allocation in unmanned aerial 
vehicle swarms will be closely linked to the further integration of machine learning methods and 
semantic technologies. The combination of environmental dynamics prediction techniques with 
ontological modeling makes it possible to significantly enhance system adaptability in real time. In 
particular, reinforcement learning algorithms can automatically optimize role and task reallocation 
strategies, taking into account both historical data and the current state of the environment. The use 
of dynamic ontologies capable of evolving in response to changing mission conditions opens up new 
opportunities for building more flexible and self-sufficient architectures. This is especially relevant 
under resource-constrained conditions, where every error or delay can have critical consequences. 

Further research will also focus on the development of hybrid architectures that combine role-
based task allocation with semantic communication mechanisms between agents. Such an approach 
may ensure high scalability, reduce communication channel load, and increase resilience to failures 
of individual UAVs. In the long term, one can expect the emergence of adaptive systems capable of 
autonomously forming role hierarchies, reconfiguring routes, and altering task priorities in line with 
new mission objectives. Another important direction will be the integration with quantum 
computing and distributed artificial intelligence technologies, which will significantly accelerate 
optimization processes. Thus, the future of this research area lies in creating highly intelligent multi-
agent systems capable of effective operation in complex, dynamic, and uncertain environments. 

6. Conclusions 

This research introduces a hybrid approach to mission planning for UAV swarms, integrating RBTA 
with OBS planning to enhance survivability, efficiency, adaptability, and scalability. The 
incorporation of formalized domain knowledge and predefined roles plays a crucial role in reducing 
computational overhead, optimizing flight task execution, and increasing system autonomy. The 
proposed RBTA mathematical model optimally matches agents to tasks while dynamically 
prioritizing tasks of missions and takes into account execution time, energy consumption, and other 
critical constraints. Additionally, the application of ontological models fosters semantic consistency 
among agents, improving coordination and enhancing decision-making processes within MAS. 

Experimental results validate the effectiveness of the proposed approach, demonstrating a 15–
20% reduction in average mission execution time compared to traditional methods, alongside a 25% 
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decrease in communication load. Furthermore, leveraging ontological analysis for task allocation 
enhances system resilience through dynamic role reallocation and adaptive load balancing during 
individual agent failures. Based on distributed game theory and gradient consensus, swarm self-
distribution mechanisms further improve adaptability to environmental changes, ensuring stable 
mission execution under dynamic conditions. 

The comparative analysis highlights the advantages of RBTA and OBS over conventional task 
allocation strategies, such as centralized planning and auction-based methods, which often suffer 
from scalability limitations and high computational costs. The proposed approach, with its 
decentralized control and efficient resource utilization, proves particularly effective for applications 
requiring high autonomy, including search and rescue operations, precision agriculture, and 
surveillance. 

Despite its advantages, the approach presents challenges, including the complexity of real-time 
adaptive role determination, the need for effective ontology updates during missions, and ensuring 
situational awareness in large-scale MAS. Future research will focus on refining dynamic role 
reallocation mechanisms, optimizing ontology update strategies, and integrating machine learning 
techniques to enhance autonomous decision-making. 

In conclusion, the findings confirm that combining RBTA with OBS provides an efficient, 
adaptive, and scalable solution for UAV swarm mission planning. The proposed approach improves 
operational efficiency and establishes a solid foundation for autonomous multi-agent system 
coordination, which is critical for mission success in complex and resource-constrained 
environments. 
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