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Abstract

We propose an algorithm for service composition based on the Al planning algorithm Q-learning and its
optimization, aimed at selecting optimal service sequence with use of quality criteria (QoS). We analyze
practical application of the proposed method in the task of personalized planning of educational materials
study by students. Modified Q-learning method is used for generation of personal learning pathways
where learning objects (LOs) with their metadata and their functional and non-functional properties are
considered as services with specific QoS. Q-learning method generates a composite service that is
represented by partially ordered set of accessible LOs that is optimal for a particular student in current
environment by selected criteria.
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1. Introduction

The importance of personalized learning of adult learners with diverse experiences has
significantly increased under the war conditions in Ukraine as it enables the effective use of human
resources and optimization of study duration. Traditional approaches for learning planning often
prove to be insufficiently flexible or overly complex to implement in large educational programs
and within tight time constraints.

A personalized approach allows for the definition an individual set of learning objects (LOs) and
the creation a study plan tailored to the specific needs of the learner. However, this process
demands substantial effort from qualified experts in adult learning and involves the consideration
of numerous characteristics, including student goals and competencies, accessible learning tools
and means for dynamic reaction on changes within the educational environment.

The application of reinforcement learning algorithms that can make decisions in complex and
dynamic environments, supports the generation of such LO sequences based on selected efficiency
criteria, such as study duration, resource costs and the quality of competencies given by LOs.

2. Problem definition

The main goals of LO concept involve the reuse of heterogeneous information modules developed
for learning purposes [1]; their unified indexing that enables their search, storing and selection in
special repositories; interaction between such objects, including their comparison [2]. In our study,
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we consider LOs as a specific subclass of information objects accompanied by metadata that
characterize different aspects of their use for learning purposes. LO metadata allows:

e retrieving relevant information from appropriate LO repositories according to its semantic
similarity to some particular educational task (for example, metadata can be processed in
requests for additional information about some learning course or for student to acquire
their competencies);

e ensuring reuse of LOs developed for one learning course in other courses or in different
educational tasks;

e determining semantics of domain-specific relations between LOs (for example, to specify
the possible order of LO study or to find the intersection of LO content).

Let us introduce the basic terms that we use in this paper to define the practical educational
task that can be solved on base of Q-learning.

Learning Object (LO) is a discrete element of educational content, accompanied by metadata and
description of its role and functions in the learning process. Each LO can be formalized as a service,
where the input data represents the learner's requirements, and the outputs are the competencies
gained by studying the content of the LO.

Learning course (LC) is a standalone unit of learning content used for educational purposes that
can be defined by: its topics and competencies received by student who study this course;
requirements (competencies, skills and knowledge) of student who has an opportunity to
understand course content; forms of content representation; access conditions, etc. LCs can use one
or more LOs for representation of knowledge provided to students.

Personal Learning Trajectory (PLT) is the concrete route the learner actually follows inside one
or more pathways for implementing the learning process for one or more LCs. It takes into account
the type, form, and goal of education, the learner's competencies, skills, goals and preferences;
knowledge about learning course; competencies and possibilities of teacher; set of pertinent LOs
that are similar to learning course competencies; intermediate results of the learning process; test
results and progresses [3]. It should be noted that defining a set of LC competencies, retrieval for
pertinent LOs in repositories and other information storages, transformation LO metadata
according to the needs of the task PLP constructing is beyond the scope of this study, but it uses
the authors' previous research.

Personal learning pathway (PLP) is a PLT element of represented by partially ordered set of
accessible LOs that defines the possible way of LO study for particular student according to his/her
current competencies so that each next object is feasible for the learner’s current skills and
constraints. The pathway reflects prerequisites and practical limits and is intended to move the
learner toward the target competence [4].

Algorithm proposed in this work is adapted from our prior work [5] that addressed the problem
of constructing a composite service using the Q-learning method [6]. Service composition is the
process of selecting and combining individual services to achieve some previously defined final
result. Here, both the functionality and the quality of services (QoS) [7] are critical evaluation
criteria. The study of each LO by student we consider as a service characterized by:

e  functional requirements: individual competencies (knowledge) necessary to study a given
LO (inputs) and the competencies (knowledge) gained as a result (outputs).

e non-functional properties (QoS): some quality of services parameters such as cost, study
duration, course rating, etc.

In accordance with the definitions provided above, the task of this research can be formulated
as follows: using the functional parameters of the available LOs we have to construct a set of
possible PLPs. Study of these PLPs achieves a defined set of the target competencies (a target state).
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Then we have to determine the optimal PLP on base of the non-functional properties of analyzed
LO services. A key requirement is to incorporate LO service QoS: cost, duration, quality rating, etc.

LO services are represented in a dynamic information environment. Both the set of available
LOs and their parameters, as well as the initial and target states of the student, can be changed.
Moreover, evaluation criteria and the relative priorities of LO parameters can also be changed.

We propose to use the Reinforcement Learning method (Q-learning) for PLT development to
generate multiple possible PLPs (according to knowledge about LC domain) and then to select the
optimal PLP based on characteristics of LO services.

If LOs are considered as services, then PLP construction can be seen as a specific case of service
composition. In this context we use such understanding of ML terms:

e  initial state: the set of student competencies before the start of study;
e  target state: the set of competencies that student can achieve through the LC study.

The set of available LOs and their properties can be changed dynamically, while LO metadata
allows determining the QoS values for the respective services can be changed as well.

3. Machine Learning and Components of ML Tasks

Machine Learning (ML) is a field of Al that studies algorithms that learn from data and experience
to improve task performance without explicit programming; it uses statistical models to detect
patterns and to make decisions in a data-driven way [8,9]. Reinforcement learning (RL) is a method
for sequential decision making in which an agent acts in its environment and immediately observes
the result of each choice.

After every step the agent receives scalar feedback: a reward when the action helps to reach the
goal and a penalty when it does not. Using this stream of feedback the agent adjusts its behavior to
maximize the total long-term return over a sequence of steps. [10].

The Q-learning method is a subclass of Reinforcement Learning techniques. In Q-learning the
agent keeps a table of scores Q(s,a) for “state-action” pairs. After each step it increases the score of
choices that lead to better outcomes and decreases the score of choices that do not. Over time the
table helps the agent pick actions that bring a higher long-term reward.

We represent the PLP construction in terms of the ML task main components:

e  Environment is a set of LOs defined by inputs (existing competencies) and outputs (new
competencies);

e  Agentis a mean for generation of the partially ordered LO set to achieve a specific goal;

e  Stateis the set of competencies that agent possesses at a given moment in time;

e  Action is the LO study selected by agent from the set of available objects;

e  Goalis an acquiring a required set of competencies (Target state).

Main objective of ML use is to determine the sequence of actions (LO study) that transitions the
student from the Initial state (prior competencies) to the Target state (desired competencies) with
maximum efficiency.

Al methods provide the capability to automate action planning in dynamic environments to
achieve specified goals. The specifics of the proposed approach is the adaptation of learning
process planning to personified student's needs by use of Q-learning [11]. This adaptation is
achieved by the selection of LOs that correspond to the defined goals. Q-learning enables the
identification of the agent's optimal action strategy.

The reasons for the Q-learning algorithm choice are determined by its differences from other
ML methods. Now many other AI methods are developed, but they have differences and
shortcomings that can be critical to solving our problem:
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e  Greedy algorithms do not take into account future rewards and can generate non-optimal
solutions;

e Dynamic programming requires complete knowledge of the environment that is not
possible to PLP generation in real time;

e  Graph algorithms are not adapted to the student actions and do not change the learning
strategy dynamically;

e Deep learning (DNN, RNN) requires large amounts of data and complex processing of data
sets that takes a lot of time.

Q-learning balances between ease of implementation, adaptability and efficiency. Thus, Q-
learning is suitable for PLP building because it adapts to the competencies of learner for study path
optimizing, takes into account values of LO QoS parameters and balances the quality of learning,
flexible and easily scalable for LO number and structure complexity.

During the learning process, the agent selects LO services matching the available inputs and
evaluates the reward for each selected service, taking into account QoS parameters such as course
duration, cost, rating and learning complexity, in accordance with their semantics. For example, a
learner might choose one service for studying a programming language after utilizing a
foundational service about programming theory, considering factors such as one LO requiring
more time, while another is less expensive.

4. Methodology of PLP construction

Proposed methodology of PLP construction based on RL contains the next elements:

Basic Math

Higher MathCource
QoS:
cost - 1200 $
duration - 60 days
rating - 5

Discret Math Linear Algebra

knowledge knowledge

Figure 1: An example of inputs, outputs and QoS characteristics of LO service.

1. Representation of the Learning Environment: Each LO study is represented as a service
that is defined by (Figure 1):

e  Inputs: Prior knowledge (competencies) required to LO study;
e  Outputs: Knowledge (competencies) gained after LO study;
e QoS (Quality of Service): Quality characteristics such as LO duration, cost and rating.

Every PLP is represented as a graph (Figure 2), where the nodes correspond to LOs, and the
edges correspond to LO inputs and outputs.
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Figure 2: An example of PLP for study “Machine Learning” competence.

2. Q-learning application: Q-learning algorithm is applied to identify the optimal PLP from the
feasible ones. This method enables the discovery of optimal action strategies in environments.
During ML process, the agent evaluates the value of each LO based on QoS parameters, including
course duration, complexity and rating. The outcome of this process is the optimal sequence of
LOs.

3. The workflow algorithm at a general level includes the next steps:

e The initial state is determined by the actual set of student's competencies;
e The agent selects the LO that transform the set of competencies closer to the target state;

e Training concludes if the target state is obtained or the predefined number of iterations is
completed.

Let's consider the key elements of Q-learning in the Task of LO Service Composition.

State. The set of current input parameters that determine the possibility of invoking a specific
LO service. The set of all possible states represents the state space S, where the Initial and Target
states are separately distinguished. In addition, we highlight separately the Terminal state,
Negative and/or unpromising states. Terminal state is a state where the agent cannot perform any
operations or reaches its goal. Negative and/or unpromising state is a state where the agent cannot
find any action that would bring it closer to the Target state, i.e. it cannot move towards the goal,
and therefore the episode must end with a penalty. A state is considered as negative in the
following situations: 1. all actions are impossible for this state (i.e. no service can be performed);
2. all available actions (services) cannot transfer the agent to new useful state (i.e. any actions do
not bring the agent closer to the Target state).

If an available action does not lead to the target state or does not add useful outputs, it can be
considered erroneous and a penalty can be imposed for its execution.

Action: As stated above, action is the invocation (execution) of a LO service that transforms data
(changes state of agent).

Transition Function: This rule determines the resulting state after invoking a specific service.
The transition function maps how an operation on the current state (invoking a specific service)
leads to a new state. Formally, it can be represented as: 7'(s,4)=s" [12], where sis a current state

(set of available input and output parameters); a is an action (service invocation); s* s a new state
(set of newly available parameters).
According to the WSC-MDP model [13]:
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e each transition (service execution) has a transition probability P(s'|s, ws) and an expected
reward for the transition Z(s’|s,ws)defined by Pand A;

e the sum of transition probabilities at a single service node always equals 1.
In the terms of our task, transition function depends on:

o Outputs of the service: These are added to the current state to form the next state;
e  Constraints on service availability: Conditions that determine whether a specific service can
be executed.

To simplify the problem, we represent the transition function in our implementation as a
transition table that defines the next state for each state-action pair. This table is generated based
on LO inputs and outputs. The transition function can be defined both with and without
accumulation. We use the approach with accumulation, as it better reflects real-world scenarios:
the set of student competencies expands during the LO study process. This concept can be

illustrated by the following example (Figure 3). Let’s assume the initial system state s ={X X, J.
As a result of invoking the service Service_1, that has inputs { X, X, }and outputs { X}, this

operation modifies the state by adding a new output: s'={X , X , X }.

Reward Function evaluates the quality of the chosen action based on QoS parameters (e.g.,
availability, execution time, throughput, etc.). We consider it in more detail below.

5. Key elements of Q-learning

Let's consider the key elements used by Q-learning method.
State (s) is defined by the available input and output data.
Action (a) is a specific service selected by the agent that can be executed in the current state.
Q-table is a table that stores values Q(s, a), wheres is a current state,a is an action that agent
can take in this state.
Q(s,a) is an expected value of this action in the given state, considering future rewards.

The base rule for updating the Q-value Q(s,a) in Q-learning is:

Q(s,a)=Q(s,a)+a” (R+y maxQ(s,a’) - Q(s,a)), (1)

where:

e R isareward received for performing action a in state s ;

e s isanew state reached after performing action a;

e a is the best possible action for the next state s';

e o (Learning Rate) determines how much the new information influences the current Q-
value;

e 7 (Discount Factor) accounts for the importance of future rewards that balances immediate
and long-term rewards;

e  maxQ(s,a’)is the maximum Q-value of all possible actions in the new state s".

Formula (1) incrementally defines updates the Q-value for a given state-action pair and helps
the agent to learn the optimal policy by balancing immediate rewards and the expected future
outcomes.

Reward(R) is a reward (positive because the agent's action contributes to achieving the goal) or
penalty (negative because the agent's action leads to an undesirable outcome) received by the agent
after performed action.

195



The reward in the Q-learning algorithm is the value that the agent receives after performing a
specific action (invoking a web service) in a given state. It indicates how beneficial or detrimental
the action was in achieving the ultimate goal, which is obtaining the target output data in the
composite service.

We propose to use additional parameters: Global Weights of QoS and Global QoS Modality.
Global Weights are coefficients used to establish the relative importance of various QoS parameters
(e.g., cost, duration, rating) in the decision-making process. They determine influences of
parameters on efficiency and the selection of the optimal service composition path. The parameters
of Global QoS Modality define the mode of optimality interpretation for QoS values (what is better -
the maximal or the minimal ones). So, according to these values, the search for the optimal is
determined by the requirement to maximize or minimize a certain QoS parameter.

Using the above parameters of Global Weight and Global Modality, we define the final
calculation formula of the total value of Reward(R) as:

R(s,cz)=2wi*ri(s,d)—1, (2)
=1
where

e nis a total number of QoS parameters;

e  w;is a weight (global importance) assigned to the i-th QoS parameter;

e ri(s,a) is a normalized value of the i-th QoS parameter (e.g. cost, duration, rating),

determined by the following rule:

r(sa)=att (sa)-att / att, —att ~ if parameter i needs to be maximized, or

att.(s,a)—att . . . ..
M if parameter i needs to be minimized,;

r(sa)=1-
at[max - df[m[ﬂ

* att,(sa) is the value of the QoS parameter for action aa in state s, and @7, and a#f

minimum and maximum QoS values among all possible services.

Here is a brief explanation of formula (2). Normalizing QoS parameter values brings them to a
common scale with values from 0 to 1 to avoid the influence of different measurement units. We
take into account the semantics of QoS parameters (objective of maximization or minimization): if
parameter needs to be maximized, we use its normalized value, and if parameter needs to be
minimized, we invert its normalized value in the negative one.

Additionally, the normalized QoS parameter values are weighted according to their relative
importance for current task. Then we sum up all weighted normalized values of parameters and
apply penalties for redundant steps to discourage unnecessary ones: the reward is reduced by some
constant value (we use -1). This approach allows for consideration of all QoS parameters and
ensures an effective selection of the optimal path while adhering to the conditions of maximization
or minimization.

We use formula (2) for aggregation of multiple QoS parameters into a single reward value,
reflecting their relative importance in the decision-making process and optimizing the selection of
LO services in the composition and enables the normalization of quality attributes to obtain a
unified reward value.

This value can be utilized to enhance the efficiency of the Q-learning algorithm, ensuring an
optimal combination of LO services in the composition while considering multiple QoS parameters
with different importance and semantic modality.

In addition, we add parameter for QoS Aggregation Method to determine how the composite PLP
need to be calculated (by summation or averaging).

Policy (m) is an agent strategy used to select actions based on the current information.
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In Q-learning the agent follows an e-greedy policy: agent chooses a random action with a
probability &; agent chooses the action with the maximum Q(s,a) value with 1-¢.

6. Main steps of Q-learning algorithm for PLP construction

Taking into account the specifics of the task and its conditions and constraints, Q-learning
algorithm used for PLP construction consists of the following general steps and substeps:

o  [Initialization defines the initial state as the student's current competencies; sets the target
state as the desired set of competencies; initializes the environment: space of states,
transition table, QoS variables, Global QoS Weights and Global QoS Modality, QoS
Aggregation Method (summation or averaging), Q-table; forms transition table;

o Agent Training implements the e-greedy strategy to balance exploration and exploitation;
calculates rewards based on QoS parameters and goal achievement; incorporates global
weights and modalities of QoS parameters to refine reward calculations;

e  Optimization prevents dead-end states; excludes excessive or unnecessary actions (check for
terminal, negative and/or unpromising states);

e Optimal Solution Retrieval determines the optimal path based on QoS parameters from the
generated paths and calculates the composite QoS values in accordance with QoS
Aggregation method.

7. Example and explanation of test results

Let us consider an example of PLP graph generation on base of proposed approach. We analyze LC
"Machine Learning Knowledge" that operates with the set of competencies (Table 1) that students
achieve from study of some relevant LOs and then can use them to study more complex LOs. The
vertices of this graph represent LOs, and the edges represent actions or the choice of a specific LO.

Table 1
Set of LC competencies
Competence denotation Competence title

X1 "Basic Mathematics"
X2 "Linear Algebra Knowledge"
X3 "Probability Knowledge"
X4 "Python Knowledge"
X5 "Advanced Python Knowledge"
X6 "Calculus Knowledge"
X7 "Machine Learning Knowledge"
X8 "Data Science Expertise"
X9 "Programming”

The following LOs are relevant to LC and use competencies X1-X9 in their work (Table 2):

We start with an initial state that includes "Basic Mathematics" and aim to achieve knowledge
of "Machine Learning Knowledge". In the graph (Figure 3), we see various LOs and possible paths
of their study. This graph shows multiple possible PLPs from base knowledge to specialized
expertise in the fields of machine learning and data science. It uses information represented into
Table 1 and defines transformation of input data about student competence into the resulting one
that is caused by learning of selected LCs.
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Linear Algebra

Path 3

High Maths

Calculus

Path 2

Path 1

Probability

Programming Theory

Advanced Python ath 3 [Path 2

Python Course

ML Basics

Figure 3: Example of LC competency study pathways for PLP

To analyze the properties of the proposed algorithm, we develop its software implementation
using Python language with standard libraries. In addition, we use DiGraph library to visualize
optimal path of LO study where edges represent actions (LO study) and nodes represent states (LO
inputs/outputs). Information generated by DiGraph we use for building of Figure 4.
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Figure 4: Visualization of the optimal PLP.
Table 2 shows information about used LOs.
Table 2
Set of available LOs, their input and output competencies
LO title LO requires competencies LO provides competencies
“Linear Algebra” "Basic Mathematics" "Linear Algebra Knowledge"
“Probability theory” "Basic Mathematics" "Probability Knowledge"
“Calculus” "Basic Mathematics" "Calculus Knowledge"
“High Math” "Basic Mathematics" "Linear Algebra Knowledge",
"Probability Knowledge",
"Calculus Knowledge"
“Programming Theory” "Basic Mathematics" "Programming Theory
Knowledge"
“Python” "Programming Theory Knowledge" "Python Knowledge"
“Advanced "Basic Mathematics" "Programming Theory
Programming Knowledge", "Python
Theory&Python” Knowledge"
“ML Basics” ""Calculus Knowledge", "Linear "Machine Learning
Algebra Knowledge", "Probability Knowledge"
Knowledge", "Python Knowledge"
“Data Science” "Machine Learning Knowledge" "Data Science Expertise”

For testing, we generate a set of 1,000 services with 100 inputs/outputs, resulting in 27,357
states. The test was performed on a MacBook Pro with an Apple M1 Pro chip and 16 GB of
memory. The execution time is acceptable (table generation time: 315.1149 seconds, training time:
6.6559 seconds), and the constructed LO study path demonstrates high quality.

The reward graph across episodes (Figure 5) illustrates how the reward is changed during the
agent's learning. As observed, the initial reward is low but gradually increases, indicating the
agent's learning process and its ability to find optimal PLP. The positive trend in the graph
demonstrates the success of the learning and improvements in the Q-learning algorithm.
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Figure 5: The Learning Rate graph (rewards across episodes)

The TD Error graph (Figure 7) reflects the temporal changes of difference error value during
learning process. At the beginning, the error is high because an agent is just starting to explore the
environment. Over time, the error decreased, indicating improvements in the agent's predictions
regarding future rewards and the stabilization of the learning process.
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Figure 6: The temporal difference error graph across learning episodes

8. Differences of proposed method from basic Q-learning

Proposed method for construction of LO service compositions differs from the classical Q-
learning algorithm by adapting to the specific requirements of the selected task.
The main differences are:
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Dynamic selection and correction of agent actions. An agent selects a sequence of LO services
taking into account specific QoS parameters. Classical Q-learning is mainly focused on a static
environment, where the set of actions is predetermined, and in our case, agent actions depend on
the current set of achieved states and the combination of inputs and outputs of each LO service.

QoS analysis. This method includes an assessment of the quality of services based on QoS to
form a reward that provides more accurate assessment of the benefit from each service selection.
The number of QoS parameters is not fixed. In addition, unlike common examples with QoS
optimization, we introduce global weights and global modality of QoS parameters to take into
account the relative importance of different aspects (for example, LO duration or rating, parameter
modality) in process of calculating the reward for using a particular LO service. Such
generalization allows to adapt the model to specific task conditions, increases its flexibility and
accuracy in choosing the optimal composite service (PLP) while classical Q-learning focuses only
on the final reward and does not take into account QoS that is critical for LO services.

Loop prevention mechanisms. The complexity of building multi-component PLPs causes the need
in restrictions on the number of steps without progress to avoid loop route. These restrictions
expand the capabilities of classical Q-learning, where such loops are not so critical.

Handling negative and unpromising states. The proposed method has a mechanism that prevents
actions that have not transitions for current state, and penalty is used for such actions: agent
checks for possible actions in each state and receives a penalty for unpromising actions. This
extension is useful for handling exceptions or unpromising states, but it is not supported by classic
Q-learning method.

Defining learning parameters according to the input data size. This extension provides the
possibility for automatic determining: the number of episodes (it depends on the state table and the
complexity of the task); the limit of steps per episode (it can be based on the number of states and
the average length of the possible path); the threshold number of steps without progress (it avoids
looping depending on the complexity of the environment); Q-learning hyperparameters: the
epsilon learning strategy and the epsilon parameter decrease method (it ensures the optimal
balance between exploration and exploitation); the alpha learning rate (it adapts the maximum
path length and learning stability).

Such modification of Q-learning allows the agent not only to find possible paths through the list
of available LOs, but also to improve adaptively the selection strategy based on feedback from the
environment. Thereby, the system has an ability to generate automatically PLP with optimal
functionality and values of QoS parameters. This approach is especially useful in dynamic
environments, where the characteristics of LO services (duration, price, rating, etc.) can be
changed. Use of Q-learning allows to select optimal composition options, taking into account not
only the available services, but also their current performance. The main components of the
proposed method remain within the framework of classical Q-learning (update formula, e-greedy
strategy, etc.), but the improvements made make its implementation more flexible and robust, that
makes it more effective in environments with high dynamics and complex performance
requirements.

9. Conclusion and prospects

The proposed Al planning algorithm enables the creation of LO service compositions based on
Q-learning and optimizes the selection of optimal service execution path based on QoS criteria. We
test this approach for PLP design task to automate selection of relevant LO sequences and their
optimizing according to the individual needs of students.

The approach proposed in this research incorporates the use of global weights for QoS
parameters, allowing precise prioritization of various aspects of LO service quality and optimizing
PLPs based on these priorities. By leveraging additional characteristics for global weights and
calculation methods for final values, the approach effectively formulates the problem to account for
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both the maximization and minimization of different QoS parameters. Such solution ensures a
more precise and efficient decision-making process.

The use of different aggregation methods for each QoS parameter allows fine-tuned calculations
of QoS values for the chosen composite service. For instance, upon completion of the algorithm,
the output PLP is generated with account of QoS values of LOs such as total duration, overall cost,
and the average rating of learning. The computation method is determined by the semantics of
each characteristic.

Agent training utilizes the e-greedy strategy to balance exploration and exploitation.
Optimizations to avoid dead-end states include checks and exclusions of excessive or unnecessary
actions. Training concludes once the target state is achieved or the predefined number of iterations
is completed.

Testing process, particularly with large-scale tasks, shows a number of problems and limitations
that become evident in large environments and complicate algorithm scalability. As the task
complexity increases (e.g., it has more states, actions, and factors), the algorithm becomes harder to
scale and requires substantial computational resources.

Q-learning and its modifications use Q-table to store values for each “states-action” pair (our
modified method uses also a transition table). The number of states and actions in large or
continuous environments grows exponentially and causes difficulties in processing and
management of these tables. Another problem is the low generalization of similar states in Q-
learning, which significantly slows down the learning process: states with common features are
analyzed independently and require a large number of additional calculations. Q-learning is
suitable only for discrete states and actions, but many real-world tasks involve continuous state
and action spaces.

Other difficulties arise in selecting algorithm parameters. Q-learning efficiency heavily depends
on e-greedy strategy (e defines the probability of random action selection) and requires additional
efforts for parameter tuning. In complex environments, this algorithm can be unstable due to
fluctuations in Q-values, especially with stochastic rewards or transitions. Furthermore, Q-learning
lacks a memory mechanism (the agent updates values only for the current state and action),
leading to the loss of information from previous explorations.

These limitations are significant for large-scale tasks that require high scalability and
generalization. Therefore, we plan to explore other ML methods, such as Deep Q-Networks (DQN),
and analyze their potential for more efficient handling of these challenges. The aim of this research
is to improve efficiency by enhancing the agent's learning speed, increasing stability, addressing
the limitations of the Q-learning method in complex environments with a large number of states or
continuous data, and making the algorithm more scalable and effective.

Declaration on Generative Al

During the preparation of this work, the authors used elements of Chat GPT-4 for grammar and
spelling check. After using these services, the authors reviewed and edited the content as needed
and take full responsibility for the publication’s content.
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