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Abstract 
This study investigates cyberattacks targeting industrial control systems (ICS) and proposes a formal 
methodology for their analysis. Typical attack progression scenarios are identified and modeled using 
logical attack graphs. These graphs are transformed into Boolean expressions and then into Conjunctive 
Normal Form (CNF) to enable automated analysis via SAT/SMT solvers. 
The proposed methodology allows for determining whether a given attack is feasible within a specific 
system configuration, identifying minimal configurations that either ensure security or leave the system 
vulnerable. It also considers the presence of irremediable vulnerabilities and incorporates system usability 
constraints into the analysis process. To demonstrate the approach, a computational experiment was 
conducted using the z3-python library, highlighting the applicability of the method in evaluating real-world 
ICS security scenarios.  
The proposed approach can assist in designing and implementing effective countermeasures for protecting 
critical infrastructure systems from cyber threats. 
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1. Introduction 

Industrial control systems (ICS) are frequently targeted by various types of cyberattacks [1]. 
Enhancing mathematical tools for the analysis of system security, attack prerequisites, attack 
progression, and potential consequences remains a pressing challenge. Attacks on industrial control 
systems typically focus on standard components, for which emulators and testbeds have been 
developed to facilitate research [2], [3]. Analytical tools used for studying such attacks include not 
only practical experimentation but also formal models, such as state-space representations [2], [4], 
and graph-based attack models [5]. These models offer several advantages, including the ability to 
recognize recurring patterns in complex attacks, leverage graph-specific algorithms, and store data 
in graph databases for further analysis and relationship extraction. 

One of the challenges in this domain is the construction of attack graphs for large-scale networks. 
As demonstrated in [6], attack graphs in real-world systems can comprise hundreds of nodes. This 
necessitates the use of security scanners capable of identifying system vulnerabilities. Several tools 
exist that can analyze a system and construct a logical representation of an attack graph [7]–[9]. The 
structure and underlying logic of such tools are examined in detail in [10]. 

On the other hand, logical graph-based models can be interpreted as Boolean expressions [11], 
[12], which can be further analyzed using specialized tools [13]. Among these tools are SAT (Boolean 
Satisfiability) and SMT (Satisfiability Modulo Theories) solvers, which are designed to efficiently 
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solve computationally complex problems [14], [15]. In the case of large attack graphs characterized 
by a significant number of states, the corresponding Boolean expressions may involve a vast number 
of variables. As a result, exhaustive enumeration of all possible configurations to find optimal ones 
becomes computationally infeasible within a reasonable timeframe. Therefore, it is essential to 
employ specialized verification tools such as SAT/SMT solvers. Using SAT/SMT solvers allows for 
the verification of formula satisfiability under specific constraints (e.g., usability and security 
policies) and enables the identification of variable assignments that satisfy the formula – effectively 
revealing the privileges and configurations under which an attack becomes feasible. Additionally, 
the solver can be used to determine minimal configurations and privilege distributions that prevent 
an attacker from successfully executing an attack. 

In this study, we propose logical graph-based models for several types of typical attacks, the 
feasibility of which was validated in a controlled laboratory environment. Preventive measures 
against such cyber-physical attacks are also proposed. The corresponding logical attack graphs were 
converted into Boolean expressions, and scripts were developed using the z3-python SMT solver [16]. 
These scripts enabled the analysis of system configurations and privilege distributions that either 
permit or prevent the realization of the modeled attacks. This integration of graph-based modeling 
with formal verification techniques provides a novel and practical methodology for security analysis 
and risk mitigation in ICS environments. 

2. Сyber attacks analysis 

To analyze the stages of typical cyberattacks, we use ICS laboratory, assembled as part of a project 
supported by USAID [17], which includes technological testbeds, which are built using standard 
hardware and software components commonly employed in industrial control systems. The 
technologies, communication protocols, and software-hardware tools used in these testbeds are 
designed to address a wide range of tasks within critical infrastructure environments. Laboratory 
testbeds include: ventilation and cooling system tubing with control devices; water tanks integrated 
with control system components; production line testbed equipped with Human-Machine Interface 
(HMI), production line platform, and IFM Safety system used for regulating the platform’s behavior 
in critical modes.  

A structured summary of the examined attacks is presented in Table 1. 
These include: 

1. Direct packet injection using the S7COMM protocol [18]. By utilizing the Python library 
snap7 [19], it was possible to simulate the transmission of control commands to PLCs without 
authentication. For example, in the water level control system, the operational settings of the 
pump were altered. 

2. Man-in-the-middle (MITM) attack via ARP poisoning, performed using the Ettercap tool. This 
attack enabled interception of all traffic between the operator and the controller, allowing 
data manipulation at the attacker’s discretion. In the cooling system, for instance, the fan 
speed could be increased to its maximum, potentially causing mechanical damage. 

3. Remote Code Execution (RCE) on IFM controllers by exploiting an open Telnet port [20] with 
default credentials (target:target). This vulnerability allowed commands to be executed 
directly on the controller without interacting with the operator’s programming environment. 

4. Supply Chain attack involving the insertion of a backdoor into the firmware. This attack 
scenario was examined in the context of a production line system. 

5. Privilege Escalation, in which a vulnerability in the IFM controller kernel enabled the 
acquisition of superuser privileges. 

MITM attack description. Initial Setup: 
1. In the example of the laboratory training testbeds, the available local network infrastructure 

is illustrated in Figures 1-3. 
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Table 1 
Attacks on Industrial Control System Components 

Attack Type Target Access to 
Facility 

Network  

Operator 
Panel 

Access  

Vulnerability description Target 
system 

Direct 
Packet 

Injection 

Control 
System 

+ - Unprotected S7COMM 
protocol, lack of 

authentication on the 
device. 

Water level 
control system, 
cooling system 

Data 
Substitution 

(MITM) 

Control 
System 

+ - Unprotected S7COMM 
protocol, lack of 

encryption. 

Cooling 
system 

Supply 
Chain 
Attack 

Controller - - Firmware supply chain 
vulnerability, potential for 
malicious code injection. 

IFM 

Remote 
Code 

Execution 

Control 
System 

+ - Open Telnet port with 
default credentials 

(target:target). 

IFM 

Privilege 
Escalation 

Controller + - Vulnerable controller 
kernel, possibility of 

executing kernel-level 
exploit to gain root access. 

IFM 

2. The Control Center is a Windows 11 machine equipped with a communication panel for 
interacting with physical equipment, as well as a monitoring and control system for 
observing equipment parameters. 

3. The PLC (Programmable Logic Controller) contains firmware that directly controls specific 
physical processes on the equipment and communicates with the Control Center over the 
network to receive commands and transmit operational data. 

4. Additional Windows 11 machines in the network perform various user-level functions. 
The system scenario corresponds to a configuration implemented in the laboratory environment. 

The Control Center and the PLC communicate via the S7Comm protocol. The physical equipment in 
this case includes air compressor, pump. The PLC maintains a database containing the current state 
of the equipment (e.g., pressure in a pipe, fluid level in a water tank, pump power, and the rules 
governing its adjustment). Operation of the physical devices is carried out through firmware 
functions on the PLC, which retrieve input arguments from this database. 

 
Figure 1: General structure of the laboratory network used for ICS cybersecurity experiments. 
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The Control Center can read from and write to this database using the S7Comm protocol. This 
enables interaction between the operator’s graphical user interface (GUI) and the physical 
equipment. The original Control Center and PLC are software-protected, and the attacker does not 
have direct access to them – only network-level access. 

The attacker’s scenario involves compromising a machine within the local network (Figure 1). In 
this setup, strict network policies (e.g., firewall rules) are either absent or have already been 
bypassed. 

The objective of the attack is to gain control over the physical equipment without causing any 
noticeable changes in the graphical displays of the operator’s interface. The sequential steps of the 
attack are illustrated in Figures 2 and 3. 

The attacker performs a Man-in-the-Middle (MITM) attack within the local network, placing 
themselves between the Control Center and the PLC (Figure 2). An ARP spoofing technique is used 
to impersonate each device to the other, enabling the interception and manipulation of all traffic 
exchanged between them. The attacker gains the ability to analyze the specifics of the 
communication protocol and to understand how internal communication between the Control 
Center and the PLC operates under the S7Comm protocol. As a result, the attacker identifies which 
memory cells in the PLC's internal database correspond to specific system parameters, as well as the 
functions transmitted by the Control Center.  

The attacker either records a legitimate response packet from the PLC to a request issued by the 
Control Center or crafts a custom response packet based on the observed structure. 

 
Figure 2: Network traffic capture during a Man-in-the-Middle (MITM) attack. 

After analyzing intercepted traffic, the attacker crafts a malicious interface that mimics the 
legitimate Control Center, enabling unauthorized command injection and data spoofing without 
detection by the operator (Figure 3). 

 
Figure 3: Creation of a rogue Control Center by the attacker. 

The attacker then reinitiates an active MITM attack (Figure 2). However, this time, any request 



71 
 

issued by the Control Center is intercepted, and the attacker returns falsified status information – 
such as replaying a previously recorded valid state or injecting spoofed values that mask the actual 
behavior of the physical system. 

IFM attack description. Another type of attack may be realized as a result of vulnerabilities [21], 
[22] present in certain embedded systems, such as the IFM Safety PLC, which receives signals from 
physical equipment and controls its behavior in the event of faults. Manufacturers frequently embed 
hardcoded credentials into the firmware of such devices to facilitate technical support, ease of 
deployment during production, legacy protocol compatibility, or other reasons. These credentials are 
typically immutable – logins are often identical across all devices, and passwords are either weak or 
follow predictable formats. Once network access to the device is gained, these credentials may be 
exploited by an attacker. 

An example of such an attack is demonstrated for IFM security system, in a scenario where the 
firmware includes an active Telnet service running with root privileges. The attacker can use the 
hardcoded credentials to establish a Telnet session and gain elevated access to the system. 

Upon obtaining administrative privileges, the attacker may modify the safety logic and overwrite 
the controller’s control program. For instance, this may involve disabling the emergency shutdown 
response, triggering false emergency reactions during normal operation, or disabling the processing 
of signals from visual indicators or motion sensors. The attacker may also disable relays responsible 
for stopping mechanical systems. In addition, the controller can be compromised by implanting 
malicious code, such as creating a hidden user account to maintain unauthorized access, or deploying 
a script that is triggered by a specific sensor reading or event. 

Remarks: A known kernel-level vulnerability in the controller [23] – related to a race condition – 
enables local privilege escalation. Exploiting this vulnerability requires address space probing on the 
device. However, this is not always feasible, as the device has limited computational resources, and 
brute-force attempts may require several days. To mitigate such attacks, it is recommended to use 
cryptographically secured communication protocols (e.g., S7Comm+), wherever possible. 
Additionally, the implementation of appropriate traffic monitoring and filtering policies (e.g., SIEM 
(Security Information and Event Management) systems and network firewalls) within the local 
network is critical. As further countermeasures, firmware should be updated to patched versions that 
eliminate known vulnerabilities, remote access should be restricted or disabled entirely, and external 
authentication mechanisms should be employed to reinforce access control. 

Attack using CaddyWiper malware description 
To illustrate more sophisticated attacks that operate across multiple layers of the information and 

operational systems within a critical infrastructure environment, we examine a complex attack 
involving the CaddyWiper malware [24], which was specifically designed to target the Ukrainian 
energy sector [25]. 

A schematic representation of this attack across the layers of the Purdue Model for ICS Security 
is shown in Figure 4. 

The attack sequence can be outlined with reference to the techniques classified under the MITRE 
ATT&CK framework. 

The diagram (Figure 4) illustrates how the attack progresses from initial access (e.g., phishing, 
remote services) through lateral movement, malware execution, and impact, affecting both IT 
(Information Technology) and OT (Operation Technology) layers. Each stage corresponds to specific 
tactics and techniques as defined in the MITRE ICS matrix, highlighting the multi-layered nature of 
advanced persistent threats targeting critical infrastructure. 

The Initial Access phase is achieved using a variety of techniques, given in [26]. For instance, 
adversaries may deploy CaddyWiper onto corporate devices with access to SCADA (Supervisory 
Control and Data Acquisition) systems via technique marked as T0865 (Spearphishing Attachment) 
[27], by sending phishing emails containing malicious documents. Initial access may also be obtained 
through T0822 (External Remote Services) [28], for example, by exploiting exposed RDP or VPN 
services using stolen credentials to gain access to SCADA engineering workstations. In cases where 
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insufficient attention is paid to supply chain security, T0862 (Supply Chain Compromise) [29] may 
be employed, whereby SCADA software updates or third-party contractors become vectors for 
malware injection. 

 
Figure 4: Lifecycle of the CaddyWiper malware attack. Marks 1-5 indicate attack steps. 

The next stage involves exploitation of vulnerabilities and privilege escalation. This may be 
performed using T0819 (Exploit Public-Facing Application) [30], which targets vulnerabilities in 
SCADA systems or web interfaces of PLC controllers. Alternatively, T0859 (Valid Accounts) [31] 
may be used to steal or substitute credentials in order to access SCADA servers. Adversaries may 
extend access laterally through T0847 [32] or other techniques of lateral movement, allowing 
CaddyWiper to propagate across the network from an initially compromised machine using 
mechanisms such as PsExec, Windows Management Instrumentation (WMI), or flaws in Active 
Directory Group Policy configurations. 

During the Execution phase on SCADA systems, adversaries may employ T0853 (Scripting) [33] 
by utilizing PowerShell or VBScript to deliver and execute CaddyWiper. Another potential technique 
is T0857 (System Firmware) [34], involving overwriting of the Master Boot Record (MBR) to disable 
SCADA components. 

The Impact phase involves the actual disruption of SCADA functionality using T0809 (Data 
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Destruction) [35]. This results in the deletion of SCADA configuration files and operational data, 
potentially leading to data loss and shutdown of industrial processes. The malware may also destroy 
backups and wipe log files to hinder recovery efforts. Furthermore, T0813 (Denial of Control) [36] 
may be executed to sever SCADA components from control over field devices (e.g., pumps, turbines, 
generators). 

The final phase focuses on anti-forensics and cover-up. This corresponds to T0872 (Indicator 
Removal on Host) [37], wherein CaddyWiper deletes itself after execution to avoid post-incident 
analysis. Additionally, T0809 (Data Destruction) is used to erase Historian server data, resulting in 
the loss of SCADA process history and depriving operators of critical event information. 

The identification of vulnerabilities and insecure configurations that may be exploited by an 
attacker can be conducted in a semi-automated manner using network security scanning tools. 

3. Attack models in form of graphs and Boolean expressions 

3.1. Graph models and Boolean representation of examined cyberattacks 

In this chapter, we present models of cyberattacks in the form of logical attack graphs. A logical 
attack graph is defined as 𝐺 = {𝐴, 𝑃, 𝐶; 𝐸}, where 𝐴, 𝑃, and 𝐶  are sets of vertices, and 𝐸 is the set of 
edges. The vertices 𝑎௜ ∈ 𝐴 represent direct exploits or attack actions. These nodes logically link the 
prerequisites (system configurations) to the consequences (privileges 𝑝௜ ∈ 𝑃) that the attacker may 
acquire. 

The vertices 𝑐௜ ∈ 𝐶 denote system configurations, which may either reflect implemented 
cybersecurity measures or inherent system vulnerabilities. Graphically, the elements are represented 
as follows: 𝑎௜ (attacks) as ovals, 𝑝௜ (privileges) as diamonds, and 𝑐௜ (configurations) as rectangles. 

When multiple edges lead into an attack vertex 𝑎௜ , the vertex functions as a logical AND 
(conjunction), indicating that all incoming conditions must be satisfied to enable the attack. In 
contrast, when multiple edges lead into a privilege vertex 𝑝௜ , it behaves as a logical OR (disjunction), 
meaning that the privilege can be gained if any of the conditions are met. 

Privileges 𝑝௜ may be acquired independently or as a result of exploiting vulnerable configurations. 
The attack vertices 𝑎௜ themselves are not explicitly included in the Boolean expressions, as they are 
considered intermediate steps resulting from prior conditions. 

The overall outcome of an attack scenario is represented by a Boolean value 𝐹௜: 
 𝐹௜ = 𝑇𝑟𝑢𝑒 indicates that the attack is feasible under the given configurations and privileges. 
 𝐹௜ = 𝐹𝑎𝑙𝑠𝑒 signifies that the attack is not possible under the current conditions. 

Attack model with rogue control center. In the example of the attack graph involving a rogue 
control center, we illustrate a Man-in-the-Middle (MITM) attack executed via ARP poisoning. The 
corresponding logical attack graph is depicted in Figure 5. 

The logical relationships within the graph can be expressed using the following Boolean formula: 
𝐹ଵ = (𝑐ଵ ∨ 𝑐ଶ ∨ 𝑝ଵ) ∧ (𝑐ଷ ∨ 𝑐ସ ∨ 𝑝ଶ) ∧  (𝑐ହ ∨ 𝑐଺). (1) 

Here, 𝑐௜, 𝑝௜ , and 𝑎௜ are Boolean variables representing system configurations, attacker privileges, 
and attack actions, respectively. The operator ∧ denotes logical AND (conjunction), and ∨ denotes 
logical OR (disjunction). 

In Figure 5, the graph models an attack on a PLC that combines ARP spoofing with a MITM 
technique. Specifically: 

 𝑐ଵ: a device(s) with insecure configuration, 
 𝑐ଶ: a device(s) with physical accessibility for the attacker, 
 𝑐ଷ: a communication channel that allows injection of fake messages, 
 𝑐ସ: a communication path vulnerable to fake instruction injection, 
 𝑐ହ: a monitoring and detection system that lacks integrity verification of sensor data, 
 𝑐଺: a vulnerability that permits triggering critical operating modes due to unauthenticated 

commands. 
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The privilege 𝑝ଵ corresponds to the ability to sniff network traffic and identify the IP addresses 
of the operator and the PLC. Privilege 𝑝ଶ represents the ability to impersonate a trusted sender. 

The associated attacks include: 
 𝑎ଵ: exploitation of vulnerable devices, 
 𝑎ଶ: use of social engineering or similar methods to gain internal network access, 
 𝑎ଷ: the ARP poisoning attack itself. 

The graph (Figure 5) depicts the relationships between system configurations, attacker privileges, 
and the sequence of actions required to successfully compromise a PLC through ARP spoofing.  

 
Figure 5: Logical attack graph illustrating an ARP poisoning and Man-in-the-Middle attack scenario. 

Rectangles represent system configurations, diamonds denote attacker privileges, and ovals 
indicate attack actions. Conjunctive and disjunctive logic is used to model dependencies between 
these elements. 

Attack on IFM Safety system. An attack that exploits vulnerabilities in the hardware and software 
of the existing IFM security system is represented by the logical graph in Figure 6. 

In this graph: 𝑐ଵ denotes a vulnerability to external access; 𝑐ଶ represents a configuration that is 
accessible from the local network; 𝑐ଷ corresponds to insecure administrator access, such as default 
or weak credentials; 𝑐ସ indicates a configuration that permits the execution of system-level scripts, 
which can dangerously influence control logic; 𝑐ହ is a vulnerable configuration allowing external 
command execution; 𝑐଺ refers to a PLC configuration that enables the attacker to trigger overheating 
or other hazardous states. 

The associated privileges are defined as follows: 
 𝑝ଵ: Access to the internal network, such as via default network credentials or insecure 

services. 
 𝑝ଶ: Access to system configuration files, achieved through administrator-level credentials 

(often hardcoded or poorly secured). 
 𝑝ଷ: The critical privilege that allows the attacker to inflict physical harm on the system or 

disrupt its operation. 
The attack actions include: 
 𝑎ଵ: Exploitation of device vulnerabilities, allowing the attacker to extract internal system 

information. 
 𝑎ଶ: Privilege escalation or kernel exploitation of the PLC, leading to deeper logical and 

physical intrusion into the system. 
This attack model is especially relevant for water supply systems and industrial production lines 
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that utilize IFM controllers, where such vulnerabilities can lead to serious safety and operational 
risks. 

Access to configuration files is essential for understanding the internal logic of the system and 
for making unauthorized modifications to its behavior. The Boolean expression corresponding to the 
logical attack graph presented in Figure 6 is given by: 

𝐹ଶ = (𝑐ଵ ∨ 𝑐ଶ ∨ 𝑝ଵ) ∧ (𝑐ଷ ∨ 𝑐ସ ∨ 𝑐ହ ∨ 𝑝ଶ) ∧ (𝑝ଷ ∨ 𝑐଺). (2) 

The graph (Figure 6) models how an attacker can exploit vulnerabilities in network accessibility, 
administrative access, and PLC configurations to gain critical privileges. Rectangles denote system 
configurations (e.g., insecure remote access, weak credentials), diamonds represent attacker 
privileges (e.g., internal network access, control file extraction), and ovals correspond to specific 
attack actions. The logical structure illustrates how the combination of these factors may lead to 
system compromise and potential physical harm. 

 
Figure 6: Logical attack graph representing an attack on the IFM Safety system. 

The attack model involving CaddyWiper malware. The attack model that leverages CaddyWiper 
malware can be represented using a logical graph, as illustrated in Figure 7, based on the structured 
stages of its execution. The corresponding Boolean expression for the attack feasibility is: 

𝐹ଷ = (𝑐ଵ ∨ 𝑐ଶ ∨ 𝑐ଷ ∨ 𝑝ଵ) ∧ (𝑐ହ ∨ 𝑐ସ ∨ 𝑝ଶ) ∧ (𝑐଺ ∨ 𝑐଻ ∨ 𝑝ଷ) ∧ (𝑐଼ ∨ 𝑐ଽ ∨ 𝑝ସ) ∧ (𝑐ଵ଴ ∨ 𝑐ଵଵ ∨

∨ 𝑐ଵଶ ∨ 𝑝ହ). 
(3) 

The components used in equation (3) are defined as follows: 
 Initial Access and Infection: 

𝑐ଵ: Vulnerability to phishing attacks. 
𝑐ଶ: Insecure or compromised server account credentials with SCADA access. 
𝑐ଷ: Malware infection via SCADA software updates. 
𝑝ଵ: Privilege to access SCADA systems. 

 SCADA Exploitation: 
𝑐ସ: Critical vulnerabilities in SCADA components. 
𝑐ହ: Vulnerability in the controller’s (PLC) web interface. 
𝑝ଶ: Privilege to manipulate SCADA data (e.g., hijacking or spoofing). 

 Lateral Movement: 
𝑐଺: Propagation via Windows Management Instrumentation (WMI). 
𝑐଻: Propagation via Group Policy vulnerabilities. 
𝑝ଷ: Privilege to propagate within the internal network. 

 Execution and Persistence: 
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𝑐଼ : Use of PowerShell or VBScript for malware deployment and activation. 
𝑐ଽ: Overwriting of the master boot record (MBR). 
𝑝ସ: Privilege to execute arbitrary code within SCADA environments. 

 Impact and Data Destruction: 
𝑐ଵ଴: Deletion of configuration files. 
𝑐ଵଵ: Deletion of system backup copies. 
𝑐ଵଶ: Deletion of historian data from SCADA systems. 
𝑝ହ: Privilege leading to loss of SCADA component control and disruption of industrial 
processes. 

This model reflects a multi-stage, coordinated attack that targets critical infrastructure, 
demonstrating how combinations of vulnerabilities and acquired privileges can lead to severe 
operational consequences. 

 
Figure 7: Logical attack graph modeling the execution stages of a CaddyWiper malware-based attack 

The graph (Figure 7) illustrates how a combination of vulnerabilities – ranging from phishing and 
software updates to SCADA misconfigurations – and attacker-acquired privileges can lead to full 
system compromise. Nodes in the graph represent system configurations (rectangles), attacker 
privileges (diamonds), and logical relationships among them. The structure captures multiple phases 
of the attack lifecycle, including initial access, lateral movement, malware execution, and impact on 
industrial processes, consistent with the Purdue Model. 

3.2. Network analysis methodology using graph models and SAT/SMT solvers 

We can analyze the formula using SAT/SMT solvers. These solvers require that the expressions be 
provided in Conjunctive Normal Form (CNF). The expressions 𝐹௜ must be represented in CNF. For 
𝐹ଵ, 𝐹ଶ, 𝐹ଷ this condition is satisfied.  

In the computational experiment, the following problems were formulated: 
1) Maximize the number of vulnerable configurations that remain active and/or maximize the 

number of privileges gained by the attacker, such that the expression 𝐹௜ evaluates to False, under 
the condition that certain vulnerable configurations always evaluate to True. These correspond 
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to system vulnerabilities that cannot be mitigated.  
2) Identify all combinations of configurations and privileges for which the formula 𝐹௜ evaluates to 

True. 
When solving problems 1) and 2), it is necessary to take into account the security policy 

constraints existing in the system. Such constraints may include: the inability to disable vulnerable 
services due to usability requirements, the inability to eliminate certain vulnerabilities because doing 
so would require updated hardware versions, or for other practical limitations. These constraints are 
also included as part of the SAT/SMT problem formulation. An example of input data is shown in 
Figure 8. 

 
Figure 8: Screenshot of function 𝐹ଵ input for z3-python. 

 
Figure 9: Screenshot of the output file ‘out’ part.  

In Figure 9 the excerpt from the SAT/SMT solver output is shown. It is addressing the task of 
identifying all configuration and privilege combinations that allow the attack to succeed. As shown 
in Figure 9, the number of configuration combinations that allow the attack to be executed is large 
when the number of configurations and potential privileges is high. This list can be used to analyze 
the potential preconditions for a successful attack. Some of the combinations can be filtered out by 
setting input constraints on configuration values that are not vulnerable (i.e., set to False).  

(a)   (b)  (c)  

Figure 10: Screenshot of SAT/SMT solver results for identifying the maximum number of vulnerable 
configurations and privileges under which the corresponding attack fails: (a) attack defined by 𝐹ଵ; 
(b) 𝐹ଶ; (c) 𝐹ଷ. 
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The result of identifying the maximum number of configurations and privileges under which the 
attack becomes infeasible is shown in Figure 10. This type of analysis allows for the identification of 
specific configurations and privileges that must be adjusted to prevent the attack, without 
unnecessary reconfiguration of the system.  

To prevent the attack based on ARP spoofing (𝐹ଵ), according to the logic of the SAT/SMT solver, 
it is sufficient that at least one element in the cyberattack chain – represented by a disjunction within 
parentheses – fails to hold. This can be minimally achieved by correcting the monitoring and 
detection subsystem (𝑐ହ) – for example, by introducing redundant observation channels or by 
establishing reference values to detect anomalies artificially created by the attacker. Additionally, it 
is necessary to prevent the ability to activate critical operating modes that could damage physical 
components (𝑐଺). This requires the implementation of mechanical safeguards and local control of 
critical parameters at the device level. 

 
Figure 11: Screenshot of algorithm for assessing the security of industrial control systems using 
logical attack graphs and SAT/SMT solvers. 

In other scenarios, a greater number of corrections may be required, which could involve revoking 
user privileges and potentially conflict with the system’s usability policy. In this example, 𝑐ଵ = 𝑇𝑟𝑢𝑒, 
meaning that it is not feasible to eliminate all insecurely configured devices with access to external 
networks. Similarly, 𝑐ଷ = 𝑇𝑟𝑢𝑒 indicates that integrity checks for messages cannot be implemented 
due to the lack of cryptographic verification tools on relevant devices and in the communication 
protocols used. 

For the attack on the IFM security system (𝐹ଶ), the minimal corrective strategy involves modifying 
the vulnerable PLC configuration (𝑐଺) that may expose configuration data and revoking privilege 𝑝ଷ, 
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which allows PLC reconfiguration during runtime. The computation was performed under the 
constraint 𝑝ଵ = 𝑇𝑟𝑢𝑒, which represents access with default credentials. Unfortunately, this cannot 
be mitigated because the credentials are hardcoded into the devices' firmware.  

The general methodology of critical infrastructure network assessment is represented in the form 
of pseudocode (Figure 11). The Figure 11 outlines the step-by-step process: from modeling attacks 
and identifying system configurations and privileges, to formulating Boolean expressions, 
transforming them into Conjunctive Normal Form (CNF), and solving them to evaluate attack 
feasibility. The output supports decision-making by identifying vulnerable configurations and 
suggesting minimal corrective actions to enhance system security. 

The proposed methodology was validated on three real-world attack models and approved in 
practical experiments on laboratory testbeds. For each attack, we computed minimal sets of 
configuration changes required to block the attack using Z3. It is much less than the total number of 
vulnerable combinations and configurations combinations, which lead to 𝐹௜ = 𝑡𝑟𝑢𝑒. These 
characteristics and solver performance are summarized in Table 2.  

Table 2 
Summarized results of computer experiment  

Attack Total 
vulnerable 

combinations 

Minimal fixes 
required 

Solving time 
(Z3-python) for 
all vulnerable 

combinations, s 

Solving time 
(Z3-python) 

for 
minimal sets, s 

ARP Spoofing and 
MITM 

56 2 0.056749 0.002239 

IFM controller 
vulnerability 

180 2 0.139388 0.002247 

Caddy Wiper 23520 3 59.087932 0.002832 

 
Additionally, using expressions (1)-(3), we can analyze dependence of attack feasibility 

probability on the number of vulnerable configurations and privileges {𝑐௜, 𝑝௜}, which characterizes 
the general system resilience. The results are presented in Figure 12 for 𝐹ଵ and 𝐹ଷ respectively. Each 
point represents the fraction of true Z3 outcomes over 100 random samples with 𝑘 active variables. 

The scripts developed for conducting the computer experiment are presented in [38]. 
By reviewing the solver’s suggestions, a system administrators can form their own judgment 

about which changes should be implemented. The solver provides a formal estimate of the minimal 
set of configurations and/or privileges that need to be modified to render the attack infeasible. 
However, due to financial or other practical considerations, it may be more feasible to apply 
alternative changes. Therefore, the administrator should also analyze other viable options. The 
SAT/SMT solver facilitates this process by producing a structured list of all vulnerable configuration 
combinations that make the attack possible, enabling the selection of the most appropriate variant 
for system reconfiguration. 

4. Conclusions 

The proposed models, constructed in the form of logical graphs, enable a comprehensive 
reconstruction of cyberattacks, allowing for the analysis of their impact on ICS components. These 
models facilitate the identification of weak configurations and the necessary conditions that enable 
successful attacks. An analysis of typical attack graphs across various ICS elements reveals that 
reducing the attack surface requires minimizing the number of communication channels that could 
potentially be exploited. Additionally, the number of vulnerable devices should be reduced by 
upgrading them to more secure alternatives.  Wherever feasible, cryptographic  mechanisms should  
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(a) 

 
 (b) 

  
(c) 
Figure 12: Probability of successful attack realization (𝐹୧ = True) depending on the number of 

active (vulnerable) system configurations and privileges: (a) 𝐹ଵ, (b) 𝐹ଶ, (c) 𝐹ଷ. 
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be employed to ensure authentication and integrity of control and monitoring messages. Physical 
safeguards, such as mechanical fuses, should also be considered to prevent systems from entering 
unsafe operational states. 

The proposed methodology allows for the detection of critical system configurations and provides 
a list of minimally required changes to block potential attack paths. The integration of SAT/SMT 
solvers into this process enables automation of the analysis and configuration evaluation. The 
developed solver scripts serve as a practical tool to assist security administrators in making informed 
decisions. 

Ultimately, timely reconfiguration of ICS environments, based on the identified attack vectors, 
enables proactive defense. This approach helps to anticipate possible infection, propagation, and 
persistence mechanisms used by advanced malware, thereby strengthening the system’s overall 
cybersecurity posture.  
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