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Abstract 
An approach to identifying information objects (IOs), data about which is received by the monitoring 
system from independently operating sources, is presented. It considers a situation where data about the 
same physical object can be entered multiple times into an information resource, as about different 
objects. At the same time, the values of such IOs features do not completely coincide, since the data 
sources introduce some operation errors. The proposed approach for object identification is based on a 
new proximity (similarity) measure of information objects, which takes into account the existing 
probabilistic uncertainty regarding the values of quantitative features and the uncertainty of the 
possibility type for qualitative features. 
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1. Introduction 

The majority of information systems have a functionally, and sometimes organizationally 
dedicated monitoring subsystem, the aim of which is to extract (obtain) data about the external 
environment and the state of the system as a whole. This work focuses on one of the problematic 
tasks of forming an information resource that is populated with data from monitoring the external 
environment, shaped by the actions of dynamic objects in the surrounding space. As the number of 
monitored objects increases, along with expanding the means of monitoring, or when multiple 
monitoring systems are integrated into a higher-level system, there is an increased probability that 
data about the same object can independently be entered into the common information resource of 
the monitoring system. This situation is typical for cases when the monitoring system (or 
subsystem, if the monitoring system is hierarchical) simultaneously analyzes objects in the 
surrounding space in overlapping spatial areas. Figure 1 schematically shows several overlapping 
areas monitored by different data sources (DS), and, accordingly, a few sources can observe the 
same physical (real) objects. The set of features of such objects, determined by the data source, will 
be called an information object (IO). Essentially, the IO, formed by a suitable data source, is an 
information representation of a real object in the system’s information resource in the form of a 
finite set of features and their values. 
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In the case described above, there is a need to solve the problem of identifying IOs, that is, 
attributing them to a single physical object, with the subsequent unification (aggregation) of the 
characteristics of such (identified) IOs. In the simplest case, the values of IO features that refer to 
the same real object should completely coincide, even if they are determined by different data 
sources. Such a coincidence would make it quite easy to classify a certain number of IOs as those 
describing the same physical object, provided that in the area of the monitoring system operation, 
there are no different objects with completely identical observational characteristics. Regarding the 
latter condition, we would additionally note that if the monitoring system allows the formation of 
completely identical IOs without additional (marking) data that refer to different physical objects, 
this indicates its insensitivity to certain differences in the external environment, which can be seen 
as a flaw.  

 

Figure 1: Observation zones with overlapping areas related to different data sources of the 
monitoring system.  

In our case, given that among the key object features in the surrounding space are the static or 
time-varying coordinates of their location, we can reasonably assume that the condition above is 
satisfied. However, even if the feature values for different IOs referring to the same real object are 
equal, there would be a need to identify such IOs due to the fact that not all sources are able to 
determine the full list of features. Therefore, even in such a simple case, to solve the problem of 
identifying the IO, it would be necessary to introduce and analyze a certain IO proximity measure, 
such as Rao coefficients [1]. Additionally, the situation is further complicated by the fact that the 
monitoring system tools determine any features of objects with errors, which makes the chance of 
an exact match of even some feature values random and unlikely. This prompts a transition from 
searching for an exact equality of IO features to analyzing the proximity of IOs across the full set of 
features available for observation, taking into account the errors in their determination. Therefore, 
solving the problem of identifying IOs requires solving the problem of formally defining the 
proximity measure between the feature values and between IOs as a whole. 

2. Related works 

The problem of determining which observations or descriptions correspond to the same object 
(object instance) exists in various fields. These can be image recognition and analysis, natural 
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language generation and processing, text processing, integration of information resources, etc. For 
example, to track a moving object in computer vision systems, it is necessary to identify whether 
two shapes in different frames of a video stream are actually the same object. Creating a distributed 
information system with a common information space involves merging separate databases. As a 
result, it is necessary to determine which records belong to the same entity and solve the 
integration task when incomplete matching of their attributes. When preparing reference lists in 
articles, it is necessary to find which citations refer to the same papers to avoid duplication. In 
natural language processing, a key task is to determine which phrases (word combinations) refer to 
the same entity. An object identification for databases data merging/cleansing, record linking and 
duplicate removal was first formulated as a separate problem by Newcombe et al. [2] and solved by 
Fellegi and Sunter [3], whose method became the basis for further developments. 

There are currently numerous developments in this area, including Wang and Ji [4], Nagarajan 
and Grauman [5], Singla and Domingos [6], Cohen and Richman [7], Sarawagi and Bhamidipaty 
[8], Pasula et al. [9], etc. Most existing approaches are the development and improvement of the 
original Fellegi and Sunter model, in which object identification is considered as a classification 
problem. That is, it defines a vector of similarity scores between the attributes of two observations, 
based on which the classification into "Match" or "Not Match" is performed. Each candidate pair is 
assessed separately, and a matching decision is formed. Then a transitive closure is constructed to 
eliminate inconsistencies. At the same time, the development of new methods is ongoing in two 
directions: improving measures and metrics for assessing the proximity of research objects and 
improving methods for group processing of multiple comparisons.  

3. Problem formulation 

The set of information objects that will be used by an information system is first defined during its 
design phase. Later, over the life of the system, this set is supplemented and edited in accordance 
with users’ information needs. IOs can describe: 

 Single entities (material objects, persons) 
 Abstract entities (concepts) 
 Group entities (homogeneous or heterogeneous) 
 Static composite entities (situation description) 
 Dynamic composite entities (processes). 

An information object can be formally specified by a tuple 

𝐼𝑂 = 〈𝑚, 𝑆, 𝐷, 𝐾ௌ〉, (1) 

where m – IO unique identificator 
𝑆 = ൛𝑠௝ห𝑗 = 1 … 𝑙ൟ. – a set of IO features (attributes) 
𝐷 = {𝑑௜|𝑖 = 1 … 𝑝}. – a set of constraints on the object attribute values  
𝐾ௌ:𝑆 → 𝐷. – a mapping to set constraints for each attribute. 

In general, information objects are interconnected and interdependent. Let us define the set of 
relations between IOs as follows: 

𝑅 = 〈𝑅ଵ, 𝑅ଶ, 𝑅ଷ〉, (2) 

where 𝑅ଵ – inheritance relationship ("class-subclass") 𝑅ଵ(𝐼𝑂ଵ, 𝐼𝑂ଶ), where 𝐼𝑂ଵ is an upper class 
for 𝐼𝑂ଶ  

𝑅ଶ – aggregation relationship ("included in") 𝑅ଶ൫𝐼𝑂ଵ, ൛𝐼𝑂௝ൟ൯, where 𝐼𝑂ଵ features are included in 

the set of features of information objects set  ൛𝐼𝑂௝, 𝑗 = 1 … 𝑙ൟ 
𝑅ଷ – association relationship (semantic relations).  
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The total set of possible IO features can be divided into features of a quantitative and qualitative 
nature. The values of quantitative features are determined using certain measuring instruments 
and, accordingly, are characterized by uncertainty of the type "probability", since any means of 
measurement has limited, albeit defined, accuracy. The values of qualitative features are 
determined by the active participation of a person, and therefore contain a subjective component, 
which today is usually described by uncertainty of the type "possibility" [10, 11, 15]. It is obvious 
that in this case, the proximity (or distance) measure between the IOs described by a set of features 
should be a combined quantitative-qualitative one. Few such proximity measures are known. In 
particular, these include the Voronin approximation proximity measure [12], the Mirkin similarity 
measure [13], and the most “physically transparent” Zhuravlev measure [1, 14], which for two IOs i 
and j is determined as follows 

𝜌௜௝ = ෍ 𝛼௜௝
௟

௅

௟ୀଵ

, 
(3) 

where 𝑙 – an index of an object feature (𝑙 = 1, 𝐿തതതതത), L – total number of features; 

𝛼௜௝
௟   = ቊ

1, 𝑖𝑓 ห𝑥௜
௟ − 𝑥௝

௟ห ≤ 𝜀௟ ,

0, 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠;
 (for quantitative features) 

𝛼௜௝
௟  = ൜

1, 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠,

0, 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡 𝑜𝑟 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑚𝑎𝑡𝑐ℎ;
 (for qualitative features ) 

𝜀௟ - quantitative proximity threshold for the 𝑙-th feature. 
As can be seen from expression (3), Zhuravlev's measure for quantitative features allows the 

possibility of some slight difference in their values, within which it is assumed that the features 
still coincide. That is, a threshold analysis of the proximity of such feature values is used. It should 
be noted that determining the threshold value 𝜀௟ when solving a specific problem is up to the 
researcher. Such a possibility is not provided for qualitative features, and only complete 
coincidence/difference of their values is allowed. 

Let us consider the acceptability of the approach to accounting for the possible difference in the 
quantitative feature values 𝑥௜

௟ − 𝑥௝
௟ = 𝑟௜௝ through defining some admissible value of it - 𝜀௟. It is 

known that measurement errors of various quantities are distributed according to a certain law of 
probability distribution. This distribution is characterized by the mathematical expectation of the 
error (the average error value, which is equal to zero in the absence of a systematic component), 
the standard deviation from its mathematical expectation (mean square error - MSE), and other 
higher-order moments. 

It is generally accepted that measurement errors are most often distributed according to a 
normal law. Let us assume this statement is true for all our cases. Then the measurement error 
distribution for quantitative features is completely determined by the first order moment 
(mathematical expectation) and the second order moment - the dispersion, or the standard 
deviation of the random variable. It is quite obvious that when the linear distance 𝑟௜௝ between the 
measured feature values decreases, the probability that the obtained measured values actually refer 
to the same true value will increase nonlinearly, in accordance with the distribution laws of their 
measurement errors with two different means (which are generally characterized by different 
MSE). In addition, if the measured feature values coincide, but the values were obtained with an 
error, then such a coincidence cannot be guaranteed to mean a coincidence of the true values. 
Therefore, using the constant 𝜀௟ is a fairly rough approximation to reality. 

Therefore, this work aims to construct a proximity (similarity) measure to compare information 
objects, which takes into account the possibility of errors for both types of IOs features – 
quantitative and qualitative. 
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4. Determining the proximity measure for quantitative features  

This paper proposes an alternative method for calculating the degree of proximity between the 
quantitative feature values, which takes into account the probabilistic nature of the process of their 
definition by different sources. The currently known proximity measures between two measured 
(quantitative) feature values require calculating the probability that the true value of the feature for 
both measurements is actually the same value. Calculating such a probability requires full 
knowledge of the probability distribution laws for measured values (not just the measurement 
errors) and, therefore, the true value of the measured quantity. In our problem, this value is 
unknown. Taking into account the above, it is proposed to formalize the quantitative feature values 
by the normal distribution law of their determination errors, where the feature value obtained from 
the source is considered as the mathematical expectation. Data on the standard measurement error 
is expected to be obtained from the data source or determined based on its characteristics as a 
measurement means. Then the coincidence of the feature values obtained from two sources can be 
considered dependent on the probability of finding the true value in the intersection area of the 
two distribution laws, which can be calculated based on the Laplace function, the probability 
multiplication theorem for independent events and the well-known "three sigmas" rule. The 
expression for calculating the probability of finding a random variable x in the interval (с, d) with 
its normal distribution has the following form 

𝑃(𝑐 ≤ 𝑥 ≤ 𝑑) = Ф ൬
𝑑 − 𝑚

𝜎
൰ − Ф ቀ

𝑐 − 𝑚

𝜎
ቁ, 

(4) 

where Ф() – Laplace function 
  m – mathematical expectation of a random variable. 
Given the independence of the two measurements, the probability that the measured quantity is 

actually within the range of values (𝑐 ≤ 𝑥 ≤ 𝑑): 𝑃௜௝ = 𝑃௜(௖,ௗ) ∙ 𝑃௝(௖,ௗ), where 𝑃௜(௖,ௗ) and 𝑃௝(௖,ௗ) - the 
probabilities that the feature values for each measurement are within the interval (с, d). 

Consider the example shown in Figure 2. Let the value of the attribute x be measured by two 
different sources. The obtained measurement results are: 𝑋ଵ = 12 and 𝑋ଶ = 18 units. In this case, 
the MSE for measurement errors for each source are: 𝜎௑భ

= 3, 𝜎௑మ
= 2, and 𝑟௑భ௑మ

= 18 − 12 = 6. 
The boundaries of the overlapping regions of the probable value's areas (which determine the 

specified probability) for two variables - 𝛿௑భ௑మ
 (taking into account the "three sigmas" rule) are 

determined as the difference between the smaller value from the pair 𝑚௑భ
+ 3𝜎௑భ

  and 𝑚௑మ
+ 3𝜎௑మ

  
and the larger value from the pair 𝑚௑భ

− 3𝜎௑భ
 and 𝑚௑మ

− 3𝜎௑మ
, where 𝑚௑ଵ = 𝑋ଵ and 𝑚௑ଶ = 𝑋ଶ. 

For the case shown in Figure 2: 𝑚௑భ
+ 3𝜎௑భ

= 21; 𝑚௑మ
+ 3𝜎௑మ

= 24; 𝑚௑భ
− 3𝜎௑భ

= 3; 𝑚௑మ
−

3𝜎௑మ
= 12, so the interval 𝛿௑భ௑మ

= (12,21). 
Next, we calculate the probability that the true value of each measurement is in the range 𝛿௑భ௑మ

. 
For the given example, we get 

𝑃௑ଵ(12 ≤ 𝑥 ≤ 21) = Ф ൬
21 − 12

3
൰ − Ф ൬

12 − 12

3
൰ = 0,49865, 

 

𝑃௑ଶ(12 ≤ 𝑥 ≤ 21) = Ф ൬
21 − 18

2
൰ − Ф ൬

12 − 18

2
൰ = 0,43319 + 0,49865 = 0,93184. 

Finally, for a given case, the probability that the measured quantity is within the common range of 
measurement values from two data sources is: 𝑃௑భ௑మ

= 0,49865 ∙ 0,93184 ≈ 0,46. 
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Figure 2: Error distribution laws for measured feature values (Xଵ = 12 and Xଶ = 18), obtained 
from two data sources. 

We will perform similar calculations for other measured values of the same feature 𝑋ଵ = 14 and 
𝑋ଶ = 17 units (other parameters are the same as in the previous case), 𝑟௑భ௑మ

= 17 − 14 = 3.  
For this case: 𝑚௑భ

+ 3𝜎௑భ
= 23; 𝑚௑మ

+ 3𝜎௑మ
= 23; 𝑚௑భ

− 3𝜎௑భ
= 5; 𝑚௑మ

− 3𝜎௑మ
= 11 and, 

respectively, 𝛿௑భ௑మ
= (11,23). Next we calculate 

𝑃௑ଵ(11 ≤ 𝑥 ≤ 23) = Ф ൬
23 − 14

3
൰ − Ф ൬

11 − 14

3
൰ = 0,84, 

 

𝑃௑ଶ(11 ≤ 𝑥 ≤ 23) = Ф ൬
23 − 17

2
൰ − Ф ൬

11 − 17

2
൰ = 0,9973. 

 

Therefore 𝑃௑భ௑మ
= 0,8377. 

Let's perform another calculation to analyze the change nature in the proposed proximity 
measure and set 𝑋ଵ = 15 and 𝑋ଶ = 17 units (𝑟௑భ௑మ

= 2). Then: 𝑚௑భ
+ 3𝜎௑భ

= 24; 𝑚௑మ
+ 3𝜎௑మ

=

23; 𝑚௑భ
− 3𝜎௑భ

= 6; 𝑚௑మ
− 3𝜎௑మ

= 11 and, respectively, 𝛿௑భ௑మ
= (11,23). So  

𝑃௑ଵ(11 ≤ 𝑥 ≤ 23) = 0,905,  

𝑃௑ଶ(11 ≤ 𝑥 ≤ 23) = 0,9973.  

And finally, 𝑃௑భ௑మ
= 0,9025. 

We also note that if the distribution laws and the measured values completely coincide, the 
probability calculated by the expression (1): 𝑃௜௝

௟ ≈ 1. If they do not intersect within 3, the value 

𝑃௜௝
௟  will be equal to zero. 

Comparing the calculation results, it can be stated that as the difference between the two 
feature value measurements 𝑟௜௝ obtained from different data sources decreases, the value of the 
proximity measure increases. Additionally, the measure value changes nonlinearly in relation to 
the linear change of 𝑟௜௝ in accordance with the distribution laws of measurement errors of the 
feature value. Testing the proposed measure for compliance with known conditions for its 
acceptability and validity (non-negativity, symmetry, maximum similarity of an object to itself, and 
the “triangle inequality” [1]) shows the possibility of non-fulfilment of the last condition while 
meeting the first three conditions. At the same time, the latter condition is considered additional 
and optional [1]. 

The obvious advantage of using probability to calculate a proximity measure for quantitative 
features is that the probability (and therefore the measure) changes from 0 to 1, i.e., it is 
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immediately normalized. That is, calculating proximity values for different features does not 
require their transformation when determining the common proximity for all features. 

Thus, the proposed proximity measure for quantitative features can be considered acceptable, 
especially since it is based on a probability analysis that has a specific physical meaning. Also, this 
proximity measure is simply transformed into a distance measure by its inversion  

𝜌К௜௝
௟ = 1 − 𝑃௜௝

௟ . (5) 

 

5. Determining the proximity measure for qualitative features 

Let us consider the problem of calculating the possibility that two specified values of a certain 
qualitative feature are actually the same value. At the same time, it is important to remember that a 
qualitative characteristic can be expressed in numbers and still retain its qualitative character, since 
this feature character is determined not by the form of its expression (reflection), but by the 
method of its acquisition. 

To determine the proximity measure between the values of qualitative features, it is proposed to 
use their formalization in the form of fuzzy sets by constructing a triangular membership function 
for each obtained feature value on a clear set of its possible values (an example is shown in Figure 
3). The number of feature values in the support sets is determined by the possibility of other 
feature values in reality (which can be considered a certain analogue of measurement error for 
quantitative attributes). Then the distance between the qualitative feature values can be defined as 
the maximum value of the set, which is the intersection of two fuzzy sets (formalized feature 
values). So the expression for the proximity measure is 

𝑀ீభீమ
= 𝑚𝑎𝑥൛𝜇ீభ∧ீమ

(𝑥)ൟ = 𝑚𝑎𝑥൛𝑚𝑖𝑛ൣ𝜇ீభ
(𝑥), 𝜇ீమ

(𝑥)൧ൟ, (6) 

where 𝐺ଵ and 𝐺ଶ – clear values of the feature x 
  𝜇ீభ

(𝑥), 𝜇ீమ
(𝑥) – membership functions of fuzzy sets constructed for both values of 

the qualitative feature. 
Figure 3 shows the results of the formalization of two qualitative feature values expressed in the 

form of a number: 𝐺ଵ = 12 and 𝐺ଶ = 18. The region of clear feature values, which are covered by 
non-zero values of the membership function, is specified by the maximum possible errors in the 
feature determination. As a result, the proximity measure is between the obtained values 𝑀ீభீమ

=

0,67. It is obvious that if the clear feature values approach each other, the value of the proximity 
measure approaches 1. Otherwise, it approaches zero. 

 

Figure 3: Determination of the proximity measure for qualitative features by formalizing them in 
the form of fuzzy sets 
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To obtain a distance measure, by analogy with quantitative features, it is also necessary to 
invert the obtained value, since as the obtained feature values approach each other, the value 𝑀௜௝

௟  
will increase: the proximity measure is 

𝜌௓௜௝ = 1 − 𝑀௜௝
௟ . (7) 

The problem is solved similarly in relation to qualitative IO features, given by linguistic 
concepts on an ordinal scale. Then the fuzzy set is formed based on the term-set. In this case, to 
form fuzzy sets, it is necessary to sort the feature values by increasing (strengthening) of the object 
property that it characterizes.  

If the feature is nominal, the membership function will be characterized by one extreme value 
and some constant value  for all other members of the set, which will characterize the possibility 
of false determination of the feature. Therefore, if the IO feature values obtained from two sources 
do not coincide, their proximity will be determined by this value , regardless of the feature values 
themselves.  

The proposed proximity measure for qualitative features of fuzzy sets meets all four conditions 
for the measures’ validity.  

Note, if, instead of the error distribution laws, we use their triangular approximation for 
quantitative characteristics, the triangle inequality condition will also be met. 

6. Determining the proximity measure (metric) for IOs on the set of 
their features 

To determine the metric (function) of IOs similarity by all features, we can use one of the known 
additive functions with normalization by the number of values of quantitative and qualitative 
features and, if necessary, different weight values for each feature, or subsets of quantitative and 
qualitative features as a whole. It is desirable that the sum of the weight coefficients be equal to 1. 
Considering the different natures of uncertainty for quantitative and qualitative features, the most 
acceptable expression for determining the distance measure between IOs on the set of their 
features is 

𝜌௒௜௝
ᇱ = 𝑤 ෍ 𝜌К௜௝

௟

௅భ

௟ୀଵ

𝐿ଵ൘ + (1 − 𝑤) ෍ 𝜌௓௜௝
௟

௅

௟ୀ௅భାଵ

(𝐿 − 𝐿ଵ)൘ , 
(8) 

where 𝐿ଵ  – the number of quantitative features 

  𝑤 – the weight coefficients for quantitative features.   

7. Analysis of the IOs proximity metric over time to improve the 
quality of identification 

The final stage of solving the identification problem may be the analysis of the IOs’ behavior 
(actions) over time from the point of view of possible changes in their feature values. This analysis 
requires setting a criterion by which IOs are considered to be identified as a single object, given the 
variable distance (proximity) between them over time. Such a criterion will be determined by the 
characteristics of the chosen distance metric and the specific application problem. For example, if 
the same physical object is observed by two data sources over several cycles of information update, 
increasing the probability of correct object identification can be achieved by analyzing the linear 
trend (𝛼௜) of the change in the distance metric (proximity). For this purpose, the well-known least 
squares method (LSM) can be applied. Let us denote the distance metric value between two IOs at 
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time i as 𝜌௒௜. Then, using the expression obtained based on LSM to calculate the trend line slope 

and substituting successive time stamps from the interval 𝑖 = 1, 𝑁തതതതത into it, we obtain 

𝛼௜ = ൭𝑁 ෍ 𝑖 𝜌௒௜ − ෍ 𝑖 ෍  𝜌௒௜

ே

௜ୀଵ

ே

௜ୀଵ

ே

௜ୀଵ

൱ ቌ𝑁 ෍ 𝑖ଶ

ே

௜ୀଵ

− ൭෍ 𝑖

ே

௜ୀଵ

൱

ଶ

ቍ൙ . 
(9) 

Using expressions for the sum of the first N terms of the arithmetic progression of natural 
numbers 

෍ 𝑖

ே

௜ୀଵ

=  
𝑁(𝑁 + 1)

2
 

(10) 

and the expression for the sum of the squares of the first N terms of the arithmetic progression of 
natural numbers 

෍ 𝑖ଶ

ே

௜ୀଵ

=  
𝑁(𝑁 + 1)(2𝑁 + 1)

6
, 

(11) 

we get 

𝜃 = ൭𝑁 ෍ 𝑖 𝜌௒௜ −
𝑁(𝑁 + 1)

2
෍  𝜌௒௜

ே

௜ୀଵ

ே

௜ୀଵ

൱ ൭
𝑁ଶ(𝑁 + 1)(2𝑁 + 1)

6
− ቆ

𝑁(𝑁 + 1)

2
ቇ

ଶ

൱൙ . 
(12) 

We can finally write after simplifications to define 𝜃 

𝜃 = ൭𝑁 ෍ 𝑖 𝜌௒௜ −
𝑁(𝑁 + 1)

2
෍  𝜌௒௜

ே

௜ୀଵ

ே

௜ୀଵ

൱
𝑁ଶ(𝑁ଶ − 1)

12
൘ . 

(13) 

If the value 𝜃 is close to zero, the distance between IOs in time has no trend towards change. 
This suggests that if these IOs were the candidates to be identified as one object by separate values 
𝜌௒௜, then most likely these IOs really belong to the same physical object. If the value 𝜃 is negative, 
then the distance between the IOs decreases over time, and therefore, the possibility that the 
identification problem is solved correctly increases. If the value 𝜃 is significantly greater than zero, 
most likely the IOs under consideration should not be identified as a single object, and the low 
value 𝜌௒௜ at a particular point in time from the interval was random. Moreover, a larger value 𝜃 
gives greater confidence that the IO data refers to different physical objects. 

8. Conclusions 

The paper proposes a method for solving the problem of identifying IOs that enter the monitoring 
system’s common information resource from several data sources. For this purpose, it is proposed 
to use a new proximity measure (similarity) of IO, which takes into account the nature of 
uncertainty of the type "probability" for quantitative features and the type "possibility" for 
qualitative features. At the same time, it does not require the transformation of feature values, 
which significantly simplifies the formation of a metric – a proximity (or distance) function 
between IOs as a whole according to all available features. The proposed measure was checked for 
compliance with the mandatory conditions for the validity of measures. 

Performing the IO identification procedure allows the consumer to avoid duplication or data 
conflict, as well as increases the accuracy of IO representation in the monitoring system. 
Additionally, it is proposed to analyze the linear trend of the change in time of the distance 
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between the IOs to be identified, which can be calculated using the least squares method, which 
improves the quality of solving the identification problem. 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools. 
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