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Abstract
Energy poverty is a persistent global issue where households lack access to adequate energy services. Research
often focuses on contemporaneous factors, overlooking the predictive power of long-term socioeconomic trajec-
tories. This study addresses two questions: How do past socioeconomic conditions affect future energy poverty?
And what are the minimal interventions that could prevent a household from becoming energy-poor? We aim
to shift the focus from reactive mitigation to proactive prevention by developing a framework that forecasts
risk and identifies actionable pathways to avoid it. Using seven years of Australian longitudinal data, we train a
machine learning classifier to predict energy poverty in the following year. We then apply counterfactual analysis
to identify minimal, interpretable changes that alter the predicted outcome. The model successfully predicts
future energy poverty with a ROC AUC of 70.01%. The counterfactual analysis consistently reveals that modest
increases in household income, often less than 5%, are the most effective single intervention. Other factors, such
as decreases in energy prices and reductions in unemployment, also contribute to preventing energy poverty,
often in combination with income gains. “What-if” scenarios suggest that external shocks, like a sudden rise in
energy prices or job loss, can be offset by small, timely income adjustments. The effectiveness of these changes,
whether recent or past, highlights the importance of long-term financial stability. Also, it enables proactive policy
by identifying at-risk households a year in advance and suggesting targeted interventions as a more efficient
alternative to broad measures.
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1. Introduction

Energy poverty remains a pressing global challenge, affecting the quality of life for millions of people. It
refers to a situation where households cannot access or afford adequate, reliable, and clean energy ser-
vices for their daily needs. Despite international efforts to address this issue, approximately 750 million
people still do not have access to electricity, and over 2 billion lack access to clean cooking fuels [1].

The consequences of energy poverty extend far beyond basic comfort. Limited access to energy
reduces educational opportunities, restricts access to jobs [2], and negatively affects well-being [3] and
health [4]. For instance, Nawaz [5] showed that households facing energy poverty are 9 to 13% more
likely to experience poor health compared to those who are not energy-poor. Poor indoor conditions,
such as a lack of adequate heating, have a considerable impact on both physical and mental health.
Long periods of low indoor temperatures have been linked to higher rates of illness and death [6, 7],
as well as worsening mental health issues [8]. Vulnerable groups, including infants, are especially at
risk for respiratory diseases [9, 10]. There is also evidence that energy poverty can increase the risk of
developing metabolic disorders like diabetes [11].

Workshop on the Foundations and Future of Change in Artificial Intelligence (FCAI 2025) at the 28th European Conference on
Artificial Intelligence (ECAI 2025, October 25–30), Bologna, Italy
*Corresponding author.
$ diogo.freitas@staff.uma.pt (D. N. Freitas); eduardo.ferme@staff.uma.pt (E. Fermé); sbudria@nebrija.es (S. Budría)
� 0000-0002-2351-8676 (D. N. Freitas); 0000-0002-9618-2421 (E. Fermé); 0000-0001-5537-4059 (S. Budría)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

27

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:diogo.freitas@staff.uma.pt
mailto:eduardo.ferme@staff.uma.pt
mailto:sbudria@nebrija.es
https://orcid.org/0000-0002-2351-8676
https://orcid.org/0000-0002-9618-2421
https://orcid.org/0000-0001-5537-4059
https://creativecommons.org/licenses/by/4.0/deed.en


Diogo Nuno Freitas et al. CEUR Workshop Proceedings 27–43

Many factors contribute to energy poverty. These include rising energy prices, economic instability,
and the presence of inefficient or poor-quality housing [12]. Research has extensively examined
the socioeconomic aspects of energy poverty, with the aim of identifying households at risk and
designing targeted policy solutions [13, 14, 15]. However, most studies focus mainly on contemporaneous
socioeconomic conditions and assume that only current variables are needed to explain energy poverty.
As a result, there is limited understanding of the long-term impact that past socioeconomic factors have
on future energy poverty.

Besides identifying households at risk, it is equally important to consider what actions can help
prevent energy poverty. In other words, if a household is predicted to become energy-poor, what actions
could be taken, or could have been taken, to prevent this outcome? Ideally, these actions should require
minimal intervention but provide the greatest benefit in terms of prevention.

Our work addresses these two gaps in the existing research: First (Contribution 1), we explore
how past factors, such as income, energy prices, regional circumstances, and other socioeconomic
variables, affect future energy poverty outcomes. We apply a machine learning algorithm that uses
household-level data from seven previous years to predict energy poverty status in the following year.
Second (Contribution 2), we use counterfactual analysis on the model developed in Contribution 1 to
identify specific, minimal, and human-interpretable changes that could help a household shift from
being energy-poor to non-energy-poor. These changes might result from personal actions or targeted
policies. We refer to these as chains of minimal changes. We also present “what-if” scenarios that identify
shocks which increase poverty risk and the minimal counterfactual response required to mitigate that
risk.

Contribution 1 and Contribution 2 are complementary, and allow us to move from reacting to
energy poverty after it occurs to taking proactive measures to prevent it. Our approach identifies
households at risk one year in advance and provides practical suggestions for actions that require
the least effort but have the greatest impact on preventing energy poverty. In this way, we bridge
the gap between prediction and real-life intervention, providing practical guidance for policymakers,
community organizations, and individuals seeking to reduce the long-term effects of energy poverty.

To conduct our analysis, we use the Household, Income and Labour Dynamics in Australia (HILDA)
Survey1, which is a nationally representative, long-term study that tracks the same individuals and
households in Australia from 2007 to 2021. The survey collects data on income, jobs, education, health,
and family life, providing a strong foundation to study how energy poverty changes over time. For
measuring “energy-poverty”, we employ the Multidimensional Energy Poverty Index (MEPI) [16], which
combines both objective (expenditure-based) and subjective (self-assessed) indicators of energy poverty
into a single, comprehensive metric.

2. Literature Review

Energy poverty can be defined as a household’s inability to afford or access energy services needed to
support adequate living conditions and human development. While conceptual definitions of energy
poverty have been the subject of extensive discussion in the literature (for an overview see Sy and
Mokaddem [17]), the focus has generally been on the inability of households to afford and have access
to adequate energy services.

Based on the literature, energy poverty is a complex phenomenon stemming from a wide range
of factors. These include macroeconomic conditions like GDP, governance, and a country’s energy
mix [18, 19, 20, 21, 22, 23], as well as household-level characteristics such as income, dwelling type, and
size [24, 14, 25]. Individual attributes like educational attainment, health status, age, and employment
also play a significant role [26, 4, 27, 2, 28, 29, 13]. Furthermore, factors like spatial disparities, cultural
behaviors, and energy subsidies add to the complexity [30, 31, 32].

Given the multi-layered nature of these determinants, a recent body of literature has introduced
machine learning techniques to predict energy poverty outcomes. Evidence based on a Extreme Gradient
1https://melbourneinstitute.unimelb.edu.au/hilda
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Boosting (XGBoost) framework to predict the risk of experiencing energy poverty in the Netherlands
identifies income, house value, and house ownership as the main drivers of energy poverty [33]. In
a similar setting, and based on 11 European countries, income, household size, and floor area were
consistent predictors [34]. Evidence based on an Random Forest (RF) classifier across the European
Union uncovers household- and country-level predictors like dwelling conditions, energy efficiency,
and gas supplier switching rates [35].

While the previous studies are based on a single energy poverty indicator, other studies define a
multidimensional energy poverty index similar to ours [16]. These studies have shown that in Asian
and African countries, wealth, marital status, and residence attributes are significant predictors of
poverty [29]. Recent research has further advanced these methodologies by employing ensemble
models, such as XGBoost, combined with RF and Artificial Neural Networks (ANN), revealing the
critical importance of education and food security indicators in determining energy poverty [36].

3. Materials and Methods

We use the HILDA Survey, a comprehensive, nationally representative longitudinal study that examines
the economic, social, and demographic dynamics of Australian households. Initiated in 2001 and
conducted annually, it tracks individuals and households over time, providing important information on
income, labor market activities, health, education, and family relationships, among other factors. The
original 2001 sample included approximately 7,600 households and 13,000 individuals, with periodic
updates to account for attrition.

The variables used to model energy poverty are described in Table 3 (Section C), and include labor
market indicators (such as part-time employment rate, unemployment rate, and labor force participation),
economic measures (GSP per capita and energy prices), and household characteristics (income, household
size, and region). We also include individual information such as age, years of education, marital status,
employment, health, and the presence of children in the household.

In this study, we approach energy poverty as a classification problem. Let 𝒳 ⊆ R𝑑 be the feature
space, and denote an element (feature vector) by x ∈ 𝒳 . We employ a machine learning model
𝑓 : 𝒳 → [0, 1], where 𝑓(x) predicts the likelihood that a household, characterized by the features x
from the past seven years, will experience energy poverty in the upcoming eighth year. This prediction
relies on the MEPI indicator, which serves as our dependent variable.

Outcome—The MEPI Indicator: The MEPI variable captures both expenditure-based and subjective
dimensions. The expenditure-based measures include the 2M, TPR, and LIHC indicators. The subjective
dimension is reflected by two self-assessed indicators: the household’s inability to pay for heating due
to a lack of money (Heat), and the inability to pay electricity, gas, or telephone bills on time (Arrears).

The MEPI index is calculated as follows: Let 𝐽 = {1, . . . ,𝑚} be the set of 𝑚 = 5 poverty indicators.
Let ℐ be a set of individuals, with element 𝑖, 𝑖 ∈ ℐ , and 𝒯 be a set of time periods, 𝑡 ∈ 𝒯 , representing
a specific moment when the survey was conducted. Let 𝐸𝑃𝑖𝑗𝑡 denote the status of the 𝑖-th individual in
the 𝑗-th indicator during period 𝑡. If an individual 𝑖 is poor under indicator 𝑗 in the period 𝑡, then EP𝑖𝑗𝑡

takes the value of one, and zero otherwise. Following the family of indexes typically described in the
literature on material deprivation [37], individual 𝑖’s weighted poverty score is given by:

MEPI𝑖𝑡 =
∑︁
𝑗∈𝐽

𝑤𝑗EP𝑖𝑗𝑡, ∀ 𝑖 ∈ ℐ, 𝑡 ∈ 𝑇𝑖, 𝑇𝑖 ⊆ 𝒯 , (1)

where 𝑤𝑗 denotes the weight assigned to the poverty indicator 𝑗, with
∑︀

𝑗∈𝐽 𝑤𝑗 = 1. Hence, the MEPI𝑖𝑡
indicator ranges from 0 to 1 and captures the percentage of dimensions in which the individual is
deprived.

Although it is common to give the same importance (𝑤) to each indicator, we focus more on the
indicators where deprivation is rare. This method is known as the Frequency-Based Weighting Ap-
proach [38]. The weight given to an indicator is proportional to the percentage of individuals not
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classified as poor under that specific indicator within a particular state. In other words,

𝑤𝑗 =
(1− 𝑛𝑗)∑︀
𝑗∈𝐽(1− 𝑛𝑗)

, (2)

where 𝑛𝑗 is the proportion of poor individuals in dimension 𝑗. This choice is based on the belief that
lacking access to everyday items should be considered a more significant indicator of deprivation than
lacking access to less common items. The weights are calculated separately for each wave.

In the context of this work, an individual 𝑖 is regarded as energy poor if MEPI𝑖𝑡 > 0 [16]. This
means that a household is considered “energy-poor” if it is deprived in any one of the five dimensions.
Therefore, the variable of interest in this study, which indicates whether a person is energy-poor, is
binary: it is 1 if the person is energy-poor, and 0 if not.

Variables and Data Preparation: We model energy poverty at time 𝑇 = 8 as a function of socioe-
conomic and demographic characteristics observed in periods 𝑇 − 1, . . . , 𝑇 − 7. We exclude the period
𝑇 to ensure that our forecasting relies entirely on historical data. Our focus is on the role of past factors.
Including contemporaneous variables could potentially mask the effects of lagged factors, especially
if there is autocorrelation in the data. More importantly, the inclusion of contemporaneous variables
may introduce reverse causality between energy poverty and socio-demographic characteristics such
as health and education [39, 4]. By considering only past variables, we eliminate the risk that current
energy poverty influences these characteristics.

To capture the temporal dynamics of the variables, we created lagged features, which serve as
the input to the predictive models. Generically, for each original feature, we obtained new features
representing its values from each of the previous years.

We then split the dataset into training, validation, and test subsets to facilitate model development and
evaluation. Out of the 7,977 participants in our dataset, 6,382 (80%) were randomly selected for training
and validating the predictive models, while the remaining 1,595 participants (20%) were included in the
test set. The test set was held out and used exclusively to evaluate the final performance of the models,
providing a fair estimate of their forecasting accuracy. Moreover, the dataset is split by individual to
prevent data leakage.

Before training the model, we standardized the data to ensure consistency and reliability in our
modeling process. The standardization parameters were estimated solely from the training set to avoid
information leakage. Specifically, we removed the median and scaled the data using the interquartile
range, as described in [40]. These parameters were then applied to transform the training, validation,
and test data.

Model Development: We treat the energy poverty forecasting task as a classification problem.
Specifically, households are classified as energy-poor depending on whether their MEPI is greater than
0 (cut-off point). To model the relationship between the socioeconomic and demographic factors and
the MEPI indicator, we used a balanced bagging classifier.

A balanced bagging classifier [41] is an ensemble technique that combines the predictions of multiple
base models, in our case, decision trees, to improve the robustness and accuracy of the outcomes. In
order to further refine the modeling approach, we implemented the classifier in an One-vs-the-Rest
(OvR) binary classification framework [42].

We optimized the hyperparameters of our classifier using a grid search. For details on the specific
hyperparameters and grid configurations, see Section A. We employed 5-fold cross-validation on the
training dataset to ensure the robustness of the hyperparameters across different data splits, selecting
the best set based on the highest Receiver Operating Characteristic - Area Under Curve (ROC AUC)
score.

The final model was trained on the complete training set using the identified optimal hyperparameters
and subsequently evaluated on a held-out test set of 1,595 participants.
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In addition to the balanced bagging classifier, we tested two other class-imbalance ensembles. Namely,
we benchmarked the random under-sampling boosting [43] and the easy ensemble [44]. All models
used the same feature set, preprocessing pipeline, and 5-fold cross-validation on the training partition,
with hyperparameters tuned via grid search to maximize ROC AUC. However, the balanced bagging
classifier was the model that achieved the highest ROC AUC. Therefore, we chose the balanced bagging
classifier as our final model.

Counterfactual Explanations: Counterfactuals are a post-hoc means to understand and explain the
model predictions [45]. In the context of this work, counterfactuals are used to generate alternative
household profiles, and in combination with the machine model 𝑓 , help determine if one change (e.g.,
an increase in household income) or a set of changes in the user profile can increase or decrease the
likelihood of energy poverty. Additionally, they are also used to identifying the minimum response
needed to mitigate the risk of becoming energy poor after a shock that increases poverty.

Our focus is on minimal changes in order to ensure that the counterfactual recommendations remain
practical and actionable, allowing individuals to make small adjustments that could have a meaningful
impact on their future energy poverty risk. The minimal changes align with the concept of proximity,
where the suggested profile modifications are as close as possible to the individual’s original state.
Besides proximity, another relevant aspect is diversity, meaning that multiple plausible pathways out of
energy poverty profiles should be considered.

In this work, counterfactual explanations are formulated as a constrained optimization problem, as
proposed by Mothilal et al. [46]. Given an individual feature vector x with 𝑓(x) = 1 (classified as
energy poor at 𝑇 = 8), we search for a new feature vector x′ such that 𝑓(x′) = 0. The goal is to find x′

that is as close as possible to x, so only minimal and realistic changes are required.
Formally, if 𝑘 is the total number of counterfactual examples to be generated, then the set of counter-

factuals {x′
𝑖}𝑘𝑖=1 is obtained by solving the following optimization problem:

{x′
𝑖}𝑘𝑖=1 = argmin

x′
𝑖

⎧⎨⎩𝜆

𝑘

𝑘∑︁
𝑖=1

∑︁
𝑗∈ℱ

𝑚𝑗𝑤𝑗 · 𝑑𝑗(𝑥𝑗 , 𝑥′𝑖,𝑗)

+
1

𝑘

𝑘∑︁
𝑖=1

ℓ(𝑓(x′
𝑖), 0)− 𝛾𝐷({x′

𝑖}𝑘𝑖=1)

}︃ , (3)

where the first term measures the weighted distance between the original instance x and each counter-
factual x′

𝑖. The per-feature distance 𝑑𝑗(𝑥𝑖,𝑗 , 𝑥
′
𝑖,𝑗) measures the change for feature 𝑗 ∈ ℱ . The term 𝑚𝑗

is a binary mask, where 𝑚𝑗 = 1 if feature 𝑗 is mutable and 𝑚𝑗 = 0 otherwise. The weight 𝑤𝑗 reflects
the difficulty of changing feature 𝑗 and is defined as the inverse of the median absolute deviation (MAD).

The second term is a hinge-style loss on the logit of the predicted probability:

ℓ
(︀
𝑓(x′

𝑖), 0
)︀
= max

(︀
0, 1 + logit

(︀
𝑓(x′

𝑖)
)︀)︀
, where logit(𝑝) = ln

𝑝

1− 𝑝
. (4)

This penalizes any counterfactual x′
𝑖 whose predicted probability 𝑓(x′

𝑖) is not confidently below the
decision boundary for class 0.

The third term promotes diversity among the generated counterfactuals by maximizing their pairwise
distances. To avoid overloading notation, we distinguish between a per-feature distance 𝑑𝑗(·, ·) and a
vector-level distance Δ(·, ·):

𝐷
(︀
{x′

𝑖}𝑘𝑖=1

)︀
=

𝑘∑︁
𝑖=1

𝑘∑︁
𝑎=𝑖+1

Δ(x′
𝑖,x

′
𝑎), (5)

with
Δ(x,x′) =

∑︁
𝑗∈ℱ

𝑑𝑗(𝑥𝑗 , 𝑥
′
𝑗), (6)
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and, following Mothilal et al. [46], the per-feature distance is

𝑑𝑗(𝑢, 𝑣) =

{︃
|𝑢− 𝑣|, 𝑗 ∈ ℱcont.,

1[𝑢 ̸= 𝑣], 𝑗 ∈ ℱcat.

. (7)

That is, 𝑑𝑗 corresponds to the 𝐿1 change for continuous features, while categorical feature modifica-
tions are penalized uniformly to discourage unnecessary changes [46].

The parameters 𝜆 and 𝛾 control the trade-off between proximity, classification change, and diversity.
In our analysis, we set 𝜆 = 5 and 𝛾 = 2.5. We used a genetic algorithm to solve Equation (3) and
generated 𝑘 = 50 counterfactuals for each of the prototype profiles described below.

In our analysis, we set 𝜆 = 5 and 𝛾 = 2.5, based on preliminary tests with alternative parameter
values. These tests indicated that a lower 𝜆 resulted in counterfactuals needing larger changes in
features, making them unrealistic for households. On the other hand, higher 𝜆 values limited proximity
too much. Similarly, varying 𝛾 showed that values that were too small limited diversity, and values that
were too large reduced interpretability. The selected values offered the best trade-off between minimal,
realistic changes and sufficient diversity.

To encode immutability explicitly, let ℳ ⊆ ℱ denote the set of mutable features and ℐ = ℱ ∖ℳ
the set of immutable features. We impose the following constraints, for all 𝑖 = 1, . . . , 𝑘:

𝑥′𝑖,𝑗 = 𝑥𝑗 , ∀ 𝑗 ∈ ℐ. (8)

To ensure realism and actionability, we also restrict changes in continuous mutable features to lie
within a ±5% band around their original values. Let 𝜌 = 0.05. Then, for all 𝑖 = 1, . . . , 𝑘 and all
𝑗 ∈ ℱcont. ∩ℳ,

(1− 𝜌)𝑥𝑗 ≤ 𝑥′𝑖,𝑗 ≤ (1 + 𝜌)𝑥𝑗 . (9)

We note here that counterfactual explanations are closely related to, and often considered a form
of, contrastive explanations [47]. The literature, however, draws a subtle distinction between the
two. Contrastive explanations primarily identify the features responsible for a classification (e.g., “The
household is energy-poor because of its low income”) [48], whereas counterfactuals identify the minimal
changes that would alter the outcome (e.g., “The household would not be energy-poor if its income
were increased by X”) [45]. As our work focuses on providing actionable recourse by showing what
must change to mitigate energy poverty, we have adopted the term “counterfactual explanation” as it
most precisely describes our objective.

Prototype Profiles: To obtain a small set of representative borderline cases, we first define borderline
profiles as those for which the model predicts class 1 with low confidence. Specifically, when the
predicted probability 𝑓(x) lies in the range [0.5, 0.5 + 𝜀], with 𝜀 = 0.05. That is, the borderline sample
set is defined as

𝐵 = {x𝑖 | 𝑓(x𝑖) ∈ [0.5, 0.55] and 𝑦𝑖, 𝑦𝑖 = 1} , (10)

where 𝑦𝑖 = argmax𝑦 𝑓(x𝑖) denotes the predicted class label.
We then compute the empirical mean of the set 𝐵 = {x𝑖}𝑛𝑖=1 as

x =
1

𝑛

𝑛∑︁
𝑖=1

x𝑖. (11)

The first prototype 𝑝1 is chosen as the observation in 𝐵 closest to this mean, i.e.,

𝑝1 = argmin
x∈𝐵

‖x− x‖2 . (12)

Subsequent prototypes {𝑝𝑗}𝑚𝑗=2 are selected using the farthest-first traversal rule:

𝑝𝑗 = argmax
x∈𝐵

[︂
min

1≤𝐿<𝑗
‖x− 𝑝𝐿‖2

]︂
, 𝑗 = 2, . . . ,𝑚, (13)
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ensuring that each new prototype maximizes its minimum Euclidean distance to the already-selected
set. This procedure yields 𝑚 diverse, actual observations from the borderline region, with 𝑝1 capturing
the central tendency and the remaining {𝑝𝑗}𝑗≥2 spanning the range of variability in feature space.

In our application, we selected 𝑚 = 3 prototypes.

4. Results

Predictive Model (Contribution 1): A grid search was conducted to optimize the balanced bagging
classifier’s configuration for 𝑇 = 8. The best setup included 100 estimators with bootstrapping of
features but not samples. Each estimator sampled 50% of the data, and the sampling strategy ensured
an equal representation of energy-poor and non-energy-poor instances. Replacement was used in the
resampling process.

Our approach predicts energy poverty status in the eighth year for each household, using information
from the previous seven years as input features. The model achieved a ROC AUC of 70.01%, which
indicates that the model can discriminate between energy-poor and non-energy-poor households across
varying decision thresholds. For class-specific metrics, sensitivity was 73.25%, meaning that the model
correctly identified most energy-poor cases. The specificity of 66.77% indicates an acceptable rate of
correctly classifying non-energy-poor households.

These results show that the model favors sensitivity. This is useful for policy design, where identifying
the most energy-poor households is more important than avoiding the misclassification of some non-
energy-poor households. High sensitivity supports early interventions from a prevention perspective,
while reasonable specificity keeps misclassifications within an acceptable range.

Overall, our results support the use of balanced ensemble methods with appropriate sampling and
parameter selection to model energy poverty using historical data.

Counterfactuals (Contribution 2): To interpret the predictive model and develop actionable insights,
we conducted a counterfactual analysis on three representative prototype profiles, as described in
Section 3. Each prototype represents a borderline energy-poor household, where the model predicts
energy poverty with relatively low confidence. It is important to note that, for interpretability, all
features were transformed back to their original scale by applying the inverse of the preprocessing
transformation. Moreover, the immutable features include demographic attributes such as age and age
group classifications, marital status (including being married, divorced, or widowed), the presence of a
disability, the presence of children in the household, and the household size.

For each prototype, we generated 50 diverse counterfactual examples that change the predicted class
from energy-poor to non-energy-poor (i.e., from class 1 to class 0), while requiring only minimal and
realistic changes to the input features. All generated counterfactual profiles satisfy the classification
constraint 𝑓(x′) = 0.

We examined the full set of generated counterfactuals and analyzed the types of changes required
to shift a household’s classification. Among these, we identified a subset of counterfactuals that
involved only a single actionable modification. In all such one-action counterfactuals, the feature
that was changed was household income. That is, all one-action classification changes across the
three prototypes were achieved solely through an increase in income. No other individual feature was
sufficient to produce a change in predicted energy poverty status when modified in isolation.

The timing of these interventions varied across different counterfactuals. Successful income changes
tended to occur in more recent years, most frequently in 𝑇 = 6 and 𝑇 = 7, but also appeared in earlier
years, including 𝑇 = 1 and 𝑇 = 2. This indicates that while recent changes in income have strong
predictive power, improvements in earlier years can also contribute meaningfully to reducing energy
poverty risk. The scale of required income changes was generally modest, but varied slightly depending
on the year. In year 𝑇 = 1, the required increase ranged from 3.18% to 3.81%; in 𝑇 = 2, from 2.76%
to 4.03%; in 𝑇 = 6, from 1.83% to 4.93%; and in 𝑇 = 7, from 1.30% to 4.82%. These ranges show that
effective interventions can occur across multiple time points and typically demand income increases of
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less than 5%. This suggests that relatively small financial improvements, whether recent or distributed
over a longer time horizon, can be sufficient to prevent energy poverty for households at the margin.

Figure 1 shows several connected counterfactual (with more than one action) pathways that lead
from an energy-poor to a non-energy-poor household profile at time 𝑇 = 8. Each path represents a
sequence of minimal changes to selected features in earlier years. The figure illustrates the range of
time steps and features through which this transition can be achieved.

Across all paths, an increase in household income appears as a consistent component. Income changes
are present at multiple time points, including 𝑇 = 1, 𝑇 = 2, 𝑇 = 6, and 𝑇 = 7. The required increases
range from 2.26% to 4.36%, confirming earlier results that show small changes in income are effective in
changing the classification of households that are near the energy poverty threshold.

In addition to income, other features involved in the transitions include energy price, unemployment
rate, and part-time employment rate. Decreases in energy prices at 𝑇 = 1 and 𝑇 = 3, and reductions in
unemployment at 𝑇 = 4 and 𝑇 = 7, contribute to multiple successful pathways. Several paths combine
income changes with labor market improvements, such as a decrease in the part-time employment rate
at 𝑇 = 6 or 𝑇 = 7.

The timing of the changes is also significant. While most changes occur in the final time step (𝑇 = 7),
effective changes in earlier years, especially 𝑇 ≤ 4, also appear. This suggests, similar to the one-action
counterfactuals, that both recent and earlier interventions can influence future energy poverty status.

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8

Time Periods

Initial Profile
Energy-poor
Household

Final Profile
Non-energy-poor

Household

Household income
(↑ 4.28%)

Unemployment rate
(↓ 4.97%)

Change on energy price
(↓ 2.10%)

Household income
(↑ 2.82%)

Energy price
(↓ 1.88%)

Unemployment rate
(↓ 4.56%)

Household income
(↑ 4.10%)

Household income
(↑ 2.26%)

Household income
(↑ 4.36%)

Part-time rate
(↓ 1.47%)

Part-time
employment

rate
(↓ 1.03%)

Household
income

(↑ 4.28%)

Figure 1: Connected pathways showing updated cases for transitioning from energy poor to non-energy-poor
profile, with specific feature changes at each time step.

Shocks (Contribution 2): To further explore how households may avoid energy poverty under
different conditions, we present in Table 1 a set of scenarios based on selected multi-feature counterfac-
tuals. These scenarios describe situations in which a change in a macroeconomic or household-level
factor (in other words, a shock) increases the risk of energy poverty. For each situation, we identify the
minimal change that the model associates with successfully avoiding this outcome.

In one scenario, energy prices rise by 3.03% in year 𝑇 = 4. The model finds that a compensating
income increase of 2.92% in year 𝑇 = 7 is required to prevent the household from entering energy
poverty. Similarly, when energy prices increase by 3.16% in year 𝑇 = 6, a larger income adjustment of
4.82% in 𝑇 = 7 is needed to offset the rising cost burden.

Changes in labor force participation also play a role. When the total labor force participation rate
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Table 1
Counterfactual Scenarios for Avoiding Energy Poverty. The table shows the initial shock that increases poverty
risk and the minimal counterfactual response required to mitigate that risk, as identified by the model.

Shock (Risk Increase) Required Response (Mitigation)

Scenario Factor Change Time Factor Change Time

1 W Energy Price
Increase

3.03% 𝑇 = 4 → Income Increase
2.92% 𝑇 = 7

2 3.16% 𝑇 = 6 4.82% 𝑇 = 7

3 ² Labor Force Drop –2.15% 𝑇 = 5 → Income Increase 3.23% 𝑇 = 7

4 ¢ Energy Price
Volatility

3.46% 𝑇 = 2 → Income Increase 3.73% 𝑇 = 7

5 l Becomes
Unemployed

— 𝑇 = 2 → Income Increase 1.83% 𝑇 = 6

drops by 2.15% in year 𝑇 = 5, the model identifies a 3.23% income increase in 𝑇 = 7 as sufficient to
prevent energy poverty. Shifts in energy cost volatility show a similar pattern. When the energy price
change rate increases by 3.46% in year 𝑇 = 2, future income must increase by 3.73% in 𝑇 = 7 to avoid
a negative classification.

A final scenario involves a complete loss of employment, with the individual becoming fully unem-
ployed in year 𝑇 = 2. In this case, a modest income increase of 1.83% in year 𝑇 = 6 is sufficient to
counterbalance the risk introduced by the unemployment shock.

These scenarios show that while the causes may differ, income remains the most frequent feature
requiring adjustment. Small income increases, aligned with observed external conditions, are often
enough to reduce the likelihood of energy poverty according to the learned model.

5. Discussion

Our study suggests a novel approach to energy poverty prevention by combining a machine learning
algorithm with counterfactual analysis. We used a machine learning algorithm to predict energy poverty
one year in advance and identify minimal-effort interventions. With this, our work shifts the focus
from reactive mitigation to proactive prevention.

The primary contribution of this work is a framework that not only identifies households at risk of
future energy poverty but also provides actionable, human-interpretable pathways to avoid it. Our
model achieved a ROC AUC of 70.01%, and can therefore distinguish between future energy-poor and
non-energy-poor households using only historical data. The model’s sensitivity (73.25%) is significant
from a policy perspective as it focuses on accurately identifying households at risk, which is essential
for successful early intervention. This provides the Contribution 1 of this work.

Our counterfactual analysis highlights the central role of household income. In all the prototype
profiles, a modest rise in household income was always the most effective way to change a household’s
predicted condition from being energy-poor to not being energy-poor. This was true for both single-
action and multi-feature counterfactuals. The required income increases were often less than 5%,
suggesting that for households on the borderline, relatively small financial improvements can make a
significant difference.

Our results also highlight the long-term nature of energy poverty. The use of data from the preceding
seven years confirms that energy poverty is not merely a consequence of immediate circumstances but
is related to a household’s long-term socioeconomic trajectory. This challenges the conventional focus
on contemporaneous factors and suggests that policies must consider the cumulative impact of past
conditions. Interestingly, our analysis revealed that interventions could be effective at various time
points. For example, both recent income gains (in years 𝑇 = 6 and 𝑇 = 7) and earlier improvements
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(in years 𝑇 = 1 and 𝑇 = 2) were shown to reduce future risk. This implies that both sustained financial
health and timely support can be critical for prevention. We highlight here that the contemporaneous
relation between income and energy poverty has been highlighted in previous work [33, 34]; however,
our results reveal the effect of lagged income and future energy poverty, indicating that a household’s
long-term financial trajectory, not just its present condition, is an important determinant of its future
risk.

Other indicators of energy poverty include the unemployment rate, the rate of part-time employment,
and the cost of energy. Concerning energy prices, their connection to energy poverty aligns with recent
research [35].

In addition to the counterfactual analysis, we examined whether small year-to-year income increases
are associated with improvements in MEPI values in the observed data. The results indicated that
households experiencing a modest income increase of less than 5% exhibit a lower average MEPI (0.051)
compared to households without such an increase (0.062). Regression results in Table 2 of Section B
confirm that these differences are statistically significant. A small income increase is associated with an
average reduction in MEPI of 0.011 (𝑝 < 0.001), even after controlling for year fixed effects and clustering
standard errors at the household level. These findings support the plausibility of our counterfactual
scenarios, showing that the small changes in income identified through the framework align with
realistic transitions found in the HILDA dataset.

All things considered, the findings of this study offer concrete guidance for policymakers and social
support organizations. The predictive model can serve as a tool to identify households that are likely
to face energy poverty. This allows for early, targeted support to prevent the problem before it fully
develops. The counterfactual analysis complements the model’s predictions by generating interpretable
scenarios for intervention. It also provides evidence-based strategies with minimal interventions to
prevent energy poverty.

For policymakers, this framework supports the design of more efficient and cost-effective programs.
Instead of implementing broad, untargeted subsidies, governments could deploy precise interventions,
such as small, targeted income supplements, financial counseling, or employment support for households
flagged by the model. The scenarios presented in Table 1 illustrate how such support could be tailored
to offset specific external shocks, like rising energy prices or a drop in labor force participation. This
counterfactual analysis constitutes the Contribution 2 of our work.

For non-governmental and community organizations, our findings reinforce the importance of
programs aimed at improving income stability. The evidence that even small income increases can be
highly effective provides a strong rationale for prioritizing such initiatives.

However, we acknowledge several limitations in this explanatory study. First, the predictive power
of our model (ROC AUC of 70.01%) is good but not perfect. Misclassifications are inevitable, and it is
important to consider their real-world consequences. A false positive (wrongly flagging a household
as at-risk) may lead to inefficient allocation of resources, while a false negative (failing to identify a
household that will become energy-poor) means a missed opportunity for prevention. Second, our
counterfactual analysis is based on the patterns learned by the model, but these should not be interpreted
as definitive causal links. For instance, while an income increase is associated with avoiding energy
poverty, our study does not model the underlying cause of that increase (e.g., a new job, a promotion,
or a government benefit), which could have its own complex effects. The prototype approach does not
distinguish cases where profiles are close in feature space but differ in which features contribute to that
similarity. Another limitation is the uniform treatment of households, which overlooks heterogeneity
in responses to energy poverty predictors. In other words, this approach implicitly assumes that all
households above the threshold experience energy poverty in a similar way. However, in practice,
households may face very different forms of deprivation. Factors such as income, age, education, and
personal traits likely influence how individuals experience and respond to energy challenges [49].
Finally, our findings are based on data from the HILDA survey. The specific drivers of energy poverty
and the effectiveness of certain interventions may differ in other countries with different climates,
energy markets, economic conditions, and social safety nets. Therefore, the generalizability of our
results to other contexts should be approached with caution.
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A. Model selection and grid search parameters

To identify the optimal hyperparameter configurations for predicting energy poverty, a grid search
approach was implemented. This process systematically tested combinations of model parameters and
evaluated their performance using cross-validation.

We used 5-fold cross-validation on the training dataset to ensure that the models were validated
on various data splits and that the hyperparameters chosen were robust across different subsets of
data. The best set of hyperparameters was then chosen based on the highest average ROC AUC score
from the validation folds. The ROC AUC score measures the model’s ability to discriminate between
energy-poor and non-energy-poor households.

Additionally, the grid search utilized the one-vs-rest framework, which creates a binary classifier for
each class.

All models were optimized and trained using Python, and the scikit-learn library for model implemen-
tation and evaluation. The model description and the parameters used in the grid search optimization
are detailed below.

Balanced bagging

A balanced bagging classifier [41] is an ensemble technique that combines the predictions of multiple
base models, e.g., decision trees, in order to improve the robustness and accuracy of the outcomes.
This method specifically addresses class imbalance by ensuring that each decision tree in the ensemble
is trained on a balanced subset of the dataset. These subsets are created by resampling the original
training data, wherein each subset contains a representative distribution of both minority (energy-poor)
and majority (not energy-poor) classes.

The parameter grid included the following parameters:

• Number of estimators: 10, 50, 100
• Maximum samples (proportion): 0.5, 1.0
• Maximum features (proportion): 0.5, 1.0
• Bootstrap sampling: True, False
• Bootstrap feature selection: True, False
• Sampling strategy (proportion): Auto, 0.5, 1.0
• Replacement: True, False
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B. Robustness Check: Income Increases and MEPI

Table 2
OLS regression of MEPI on small income increase (0–5%), with year fixed effects

Variable Coefficient Std. Error 𝑧-stat 𝑝-value
Intercept 0.0550 0.003 20.034 <0.001
Small income increase (0–5%) -0.0112 0.002 -6.282 <0.001
Year fixed effects Yes
Observations 64,927

Results are based on OLS regression with robust standard errors clustered by household. Households
experiencing a modest year-to-year income increase of less than 5% exhibit a lower average MEPI
(0.051) compared to households without such an increase (0.062). Regression results confirm that these
differences are statistically significant.

A small income increase is associated with an average reduction in MEPI of 0.011 (𝑝 < 0.001), even
after controlling for year fixed effects and clustering standard errors at the household level.

These findings support the plausibility of our counterfactual scenarios by showing that the small
income changes highlighted by the framework correspond to realistic and observed transitions in the
HILDA dataset.
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